Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция на других металлах

    Рациональная шкала Грэма представляет собой частный случай приведенной шкалы Антропова применительно к ртутному электроду. Каких-либо попыток сформулировать более общее понятие рациональной шкалы, распространить ее на другие металлы и использовать ее для сопоставления зарядов и условий адсорбции на различных электродах в работах Грэма не излагается. Термин рациональная шкала нельзя признать удачным. Действительно, как отмечалось выше, применение шкалы, основанной на нулевых точках, может оказаться рациональным в одних случаях и нерациональным в других. Кроме того, он в отличие от термина приведенная шкала не отражает самой сущности этой шкалы. Наконец, рациональная шкала была предложена позднее, чем приведенная шкала, и относилась лишь к ртути (распространение ее на другие металлы в том виде, в каком она была дана Грэмом, превратило бы ее в абсолютную шкалу Оствальда). В дальнейшем поэтому везде будет использоваться термин приведенная шкала потенциалов . [c.254]


    При этом атомарный (или ионный) водород, предварительно адсорбированный на катализаторе в непосредственной близости от реагирующей молекулы углеводорода, входит в состав переходного комплекса и далее, после перераспределения электронной плотности, регенерируется уже в молекулярном виде. Наличие поляризованного (и даже ионного) водорода на поверхности металлов в условиях реакции подтверждается работами различных авторов [129—131]. Так, после анализа экспериментальных данных, полученных при изучении адсорбции водорода на Pt, Ni и других металлах в условиях глубокого вакуума, сделан вывод [130] о существовании двух основных видов хемосорбции водорода слабой (обратимой) и прочной (необратимой). Слабо хемосорбированный водород находится, как правило, в молекулярной форме и несет при этом положительный заряд (М —Hj). При прочной хемосорбции водород диссоциирован и заряжен отрицательно (М+—Н-). При анализе состояния водорода в гидридах различных металлов [131] сделан вывод, что в гидридах большей части переходных металлов водород находится в двух формах Н+ и Н при этом форма (М+—Н ) является основной. [c.231]

    Из числа промышленных адсорбентов для осушки газов применяются силикагель, алюмогель (активированная окись алюминия), активированный боксит и молекулярные сита 4А и 5А. В последнее время молекулярные сита получили широкое распространение пе только для осушки, но и во многих других процессах нефтепереработки и нефтехимии. Молекулярные сита представляют собой кристаллические цеолиты (водные алюмосиликаты кальция, натрия и других металлов), обладающие высокой избирательностью адсорбции по размерам молекул, в результате чего молекулы малых размеров адсорбируются предпочтительно по сравнению с крупными молекулами. В противоположность обычным адсорбентам типа алюмогелей или силикагелей поры в кристаллической решетке молекулярных сит отличаются идеальной однородностью размеров, и поэтому можно количественно отделять мелкие молекулы, проникающие внутрь этих пор, от более крупных. Вследствие того что адсорбция на них представляет собой своеобразное просеивание смесей молекул с их сортировкой по размерам, они получили название молекулярные сита . Характеристика адсорбентов, применяемых для осушки газа, приведена в табл. 31. [c.159]


    Если размер частиц одного из компонентов не превышает 2/3 размера частиц другого, то возможно образование твердых растворов внедрения путем проникновения меньших по размеру частиц в междоузлия кристаллической решетки, образованной более крупными частицами (рис. 70, б). Твердые растворы внедрения, например, образуются при совместной кристаллизации железа и углерода, при адсорбции некоторыми металлами водорода и т. д. [c.111]

    Мы приводим здесь лишь немного примеров и для подробного ознакомления с обсуждаемым вопросом рекомендуем читателю литературу, упомянутую в начале данного раздела. Отметим лишь, что при адсорбции других газов иа металлах они ведут себя аналогично водороду. [c.121]

    Высокая катодная поляризация при восстановлении ионов никеля и других металлов этой группы (Со, Ре) объясняется с различных точек зрения, согласно которым затруднение процесса восстановления обусловлено большой склонностью к гидратации ионов никеля, замедленностью их разряда и перехода гидратированных ионов металла в промежуточные активированные комплексы, адсорбирующиеся на катоде и, т. д. В последнее время А. Т. Ваграмяном с сотр. было высказано [39] предположение, что трудность восстановления ионов металла группы железа связана с адсорбцией чужеродных частиц на поверхности электрода в процессе электролиза. [c.406]

    Метод кривых заряжения был распространен на другие металлы платиновой группы (палладий, родий, иридий, рутений и осмий), а также на сплавы платиновых металлов между собой и с другими металлами. Ход кривых заряжения зависит от природы электрода. Так, на иридии и родии и в особенности на рутении и осмии адсорбция кислорода начинается при более низких потенциалах, чем на платине, в результате чего происходит сильное перекрывание областей адсорбции водорода и кислорода. Кривые заряжения палладиевого электрода характеризуются наличием горизонтального участка, соответствующего переходу от твердого раствора водорода в палладии с большим содержанием водорода (Р-фаза) к твердому раствору с малым содержанием водорода (а-фаза). [c.71]

    Прецизионные данные по дифференциальной емкости, полученные вначале на ртутном электроде, а затем на ряде других металлов (галлий, свинец, висмут, кадмий, сурьма, индий, цинк, олово, серебро и др.), послужили экспериментальной основой современной теории двойного электрического слоя. Для объяснения качественных закономерностей можно воспользоваться формулой плоского конденсатора (12.6), которая справедлива прежде всего для интегральной емкости. На рис. 31, а представлены кривые интегральной емкости для раствора поверхностно-неактивного электролита NaF. Ионы F" подходят к поверхности ближе, чем ионы Na+, поэтому в области адсорбции анионов емкость выше, чем при дС.О. В разбавленном растворе NaF вблизи п. н. з. среднее расстояние ионов до поверхности значительно возрастает, поскольку в этих условиях ионная обкладка двойного слоя наиболее сильно размывается тепловым движением. Поэтому здесь на К, -кривой наблюдается минимум. Слагаемое в уравнении (12.23), пропорциональное dK/dE, делает зависимость С от Е более сложной (рис. 31, б). [c.56]

    Зная, как протекает адсорбция поверхностно-активных веществ хотя бы на одном из металлов, например на ртути, можно, используя предложенную Л. И. Антроповым [6], приведенную или ф-шка-лу, найти наиболее вероятную область потенциалов, в которой следует ожидать адсорбцию тех же самых веществ на поверхности любого другого металла. [c.133]

    В последнее время был получен обширный экспериментальный материал по электрохимическим и физикохимическим свойствам адсорбционных слоев на металлах. При этом были использованы изменения адсорбционных потенциалов, применены радиоактивные индикаторы и другие методы, позволяющие определить влияние адсорбционных слоев на кинетику электродных процессов. Поскольку в процессе электроосаждения металлов адсорбционные явления занимают особое место, то при рассмотрении влияния чужеродных частиц, адсорбирующихся на поверхности электрода, в процессе осаждения металлов необходимо учитывать соотношение скоростей осаждения и пассивирования металла. В случае, когда скорость осаждения металла больше, чем скорость адсорбции, поверхность металла неполностью покрывается чужеродными частицами. При этом электрохимическая реакция протекает только на активных участках электрода и ее скорость будет пропорциональна доле активной поверхпости. Если скорость адсорбции больше скорости осаждения металла, то поверхность электрода полностью закрывается частицами (пассивируется). Б этом случае скорость протекания электрохимической реакции лимитируется перенапряжением, обусловленным работой проникновения ионов металла через адсорбированный слой  [c.370]


    Реальные процессы анодного растворения металлов сложны растворение сопровождается не только сольватацией иона, но и весьма часто предварительной химической адсорбцией анионов (С1 , ОН ) из раствора с образованием переходного, а затем устойчивого комплекса. Экспериментально химическая адсорбция анионов как стадия, предшествующая переходу металла в раствор, была обнаружена для платины, железа и некоторых других металлов. Так, скорость анодного растворения платины в соляной кислоте при постоянном потенциале оказалась пропорциональной концентрации ионов С1- в электролите. [c.416]

    Например, основной метод разделения и очистки элементарных газов (азота и кислорода) состоит в дробной перегонке предварительно сжиженного воздуха и последующего избирательного поглощения примесных газов на специальных поглотителях. В последнее время в целях глубокой очистки газов щироко применяются процессы, основанные на диффузии (струйное фракционирование, диффузия через полупроницаемые мембраны, препаративная газовая хроматография, метод молекулярных сит). Однако до сих пор высшая степень очистки простых газов все же не превышает 99,99 %и лишь в отдельных наиболее благоприятных случаях приближается к пяти девяткам (99,999 %). Общей помехой для получения чистых газов является адсорбция влаги и посторонних газов на стенках емкостей, применяемых в ходе их очистки. Удалить посторонние прилипчивые газы со стенок стеклянной или металлической аппаратуры можно лишь путем длительного отжига в вакууме. Вместе с тем следует учесть также возможность поглощения самих эталонируемых газов конструкционными материалами (азота — титаном, танталом, цирконием и их сплавами водорода — платиной, осмием, иридием кислорода — медью, серебром и другими металлами). Кроме того, многие металлы и сплавы оказываются частично проницаемыми для отдельных газов (в первую очередь это относится к легким газам — водороду и гелию), что приводит к нх просачиванию в сосуды с эталонными газами извне. Таким образом, проблема эталонирования даже простых газов оказывается далеко не легким делом. [c.52]

    При этом условии силы электростатического и специфического взаимодействия (I рода) между добавкой и металлом будут для разных металлов приблизительно одинаковы, что создает возможность переноса данных по адсорбции, полученных на одном металле (ртуть), на другие металлы (цинк, железо). Эту точку зрения разделяют многие ученые. Так, в одной из своих последних работ А. Н. Фрумкин писал В первую очередь следует отметить, что сопоставление адсорбируемости должно производиться при потенциалах, равноотстоящих от точек нулевого заряда соответствующих металлов, как это было справедливо указано Л. И. Антроповым [172]. Коррозионный потенциал Есо, определить легко, но значения EN до сих пор еще не вполне надежны. По мере совершенствования методики определения нулевых точек на основе кривых дифференциальной емкости все отчетливее проявляется тенденция к [c.31]

    Исследования, проведенные на никеле, кобальте, меди и других металлах [41], показывают, что дифференциальные теплоты адсорбции уменьшаются с увеличением степени заполнения поверхности кислородом (рис. 10). Возникновение площадок связывается с формированием оксидных слоев и с теплотами образования объемных оксидов. Показано, что имеется соответствие между теплотами адсорбции кислорода и теплотами образования индивидуальных оксидов. Согласно общему правилу, сформулированному К. Танаку и К. Тамару,, теплоты хемосорбции кислорода на различных металлах могут быть определены из эмпирического уравнения  [c.36]

    Селективность образования олефинов при гидрировании ацетиленовых углеводородов на металлах изменяется от 30% на 1г-катализаторе до 97% в случае Pd-катализатора [137]. Другие металлы VIH группы занимают промежуточное положение по своей селективности в данной реакции. В аналогичный ряд располагаются металлы VIH группы по селективности гидрирования ацетиленовых углеводородов в жидкой фазе, в 96%-ном этаноле [173]. Селективность гидрирования алкинов зависит также от молекулярной массы углеводорода. Так, показано [161], что на Rh-ка-тализаторе с удлинением углеродной цепи а-у-изомеров С -Св-алкинов общая селективность процесса гидрирования уменьшается. Это является следствием увеличения адсорбции алкинов в ряду ft- g-углеводородов. [c.74]

    При рассмотрении различных вариантов адсорбции циклоалкенов на поверхности разных катализаторов в обзоре [34] сделан вывод, что скорость миграции двойной связи зависит от геометрии переходного комплекса, обусловленного природой катализатора. В работах [1, 34, 35] приведены данные по стереоселективности гидрирования различных циклоалкенов над Pt, Pd и другими металлами VIII группы. Рассмотрение полученных [c.31]

    Как показали работы М. М. Дубинина и его сотрудников [60, 61 ], при физической адсорбции на поверхности полярных адсорбентов, к которым относятся природные отбеливающие земли, силикагель, синтетические алюмосиликаты, активированная окись алюминия и др., основную роль играют ориентационное и индукционное взаимодействия. Молекулы этих адсорбентов, состоят в основном из окислов кремния и алюминия с включением конституционной и кристаллизационной воды, а в природных адсорбентах также из окислов других металлов. Структурные решетки этих адсорбентов образованы ионами , А " ", Мд " , 0 , ОН или комплексами (310 ) , (А1О4) и т. д. Ионы, лежащие на поверхности адсорбента, хотя в химическом отношении и уравновешены связанными с ними ионами противоположного заряда, находящимися в массе адсорбента, обладают электростатическими зарядами, силовые поля которых лишь частично скомпенсированы внутренними ионами. Нескомпенсированные силовые поля по- [c.234]

    Согласно таблицам Трэпнелла, экспериментальные значения начальных теплот адсорбции различных газов имеют наибольшую величину при адсорбции на тантале и нанменьшую — при адсорбции на меди ли золоте. Другие металлы, занимаюнлие промежуточное положение, располагаются в следующий ряд  [c.55]

    Несмотря на бесспорность того, что -электроны оказывают влияние на условия образования и прочность ковалентных связей, возинкающих при адсорбции иа металлах, нельзя ожидать простой зависимости между теплотой хемосорбции и каким-либо свойством, связанным с -электронами, так как хемосорбция зависит также от других свойств металлов. Последний член в выражении (32), учитывающий электроотрицательность металла, до некоторой степени характеризует легкость потери металлом электронов. Следует указать, что порядок расположения металлов по уменьшению теплот хемосорбции (см. раздел V, 86) почти совпадает с порядком их расположения по возрастанию работ выхода. Для образования диполей с участием адсорбированных атомов и металла необходимо совершить работу против работы выхода, свойственной металлу. Поэтому можно предположить, что чем меньше работа выхода, тем меньшую работу необходимо совершить для образования этих диполей и тем больше будет дипольный момент. [c.60]

    Аналогичные закономерности могут наблюдат1,ся при адсорбции других атомов и молекул. При адсорбции многих органических веществ, содержащих периферические диполи, на слоях различных, солей или поверхностях окислов металлов спектры [c.87]

    Такое воспроизведение структуры было обнаружено при осаж денин меди (рис. Х1-2) и некоторых других металлов на одноименном и даже чужеродном катодах при малых плотностях тока, т. е. при относительно небольшой линейной скорости роста кристаллов и небольшой толщине осадка. С увеличением толщины покрытия ориентирующее влияние поверхности основания постепенно уменьшается вследствие того, что некоторые побочные процессы, сопровождающие осаждение металла (адсорбция различных веществ на катоде, выделение водорода и др.), нарушают [c.339]

    На галлиевом электроде в отличие от ртути при адсорбции анионов в кислых растворах наблюдается возрастание перенапряжения водорода. Аналогичное действие анионов наблюдается и на многих других металлах, например на железе. Оно связано с уменьшением энергии адсорбции водорода при прочной адсорбции анионов. Снижение н. как видно из уравнения (50.2), приводит к росту перенапряжения. Этот эффект для Ga и Fe превалирует над электростатическим эффектом, вызванным сдвигом гргпотенциала в отрицательную сторону. Наоборот, в кислых растворах на Hg превалирует электростатический фкэффект и адсорбция анионов I" снижает перенапряжение водорода. [c.258]

    Другая отличительная особенность процессов адсорбции на металлах группы платины по сравнению с ртутным электродом связана уже не с механизмом адсорбции, а с характером распределения адсорбированных частиц по энергиям связи. Если на ртути идеально соблюдается энергетическая равноценность адсорбционных мест, то в случае твердых электродов нельзя не принимать во внимание большую вероятность нарушения такой однородности. Прежде всего могут отличаться по энергиям адсорбции различные грани. Значения энергий адсорбции на межкристал-литных границах, в узких шелях, микропорах, в местах включений посторонних частиц в поверхностный слой могут быть сун1е-ствеино иными по сравнению со значениями энергий адсорбции на чистых гранях. Особыми местами являются также вершины и ребра кристаллитов, выходы дислокаций и другие дефекты поверхности. Следует учитывать, что часто могут иметь место не [c.87]

    На Р1-электроде и электродах из других металлов группы платины в растворах Н2СО, НСООН и СО2, согласно данным разных авторов, предполагается адсорбция частиц состава НСО, СО, НСОО или смеси таких частиц. Эти частицы окисляются при близких значениях потенциалов и не удаляются при гидрировании. В литературе для них используются названия частицы типа НСО , частицы О-типа или восстановленный СО2 . Последний термин определяется тем фактом, что того же типа частица образуется и при взаимодействии диоксида углерода с Наде на Р1-электроде. [c.102]

    На других металлах группы платины в работах В. С. Багоц-кого, Ю. Б. Васильева и сотр. были получены иного типа кинетические уравнения, формально отвечающие другим видам неоднородности поверхности. Так, на иридии процесс адсорбции метанола подчиняется зависимостям, отвечающим экспоненциально неоднородной. поверхности (3.36). На гладком родии адсорбцию метанола а первом приближении можно описать двумя кинетическими изотермами Темкина. [c.105]

    В основу адсорбционной теории коагуляции был положен следующий экспериментальный факт. Коагуляция отрицательного золя АзгЗ ) при добавлении хлористого бария сопровождается увлечением в коагулят (осадок) ионов бария, концентрация ионов хлора в растворе при этом остается неизменной. Позднее было установлено, что при коагуляции АзгЗз различные катионы поглощаются в эквивалентных количествах и что увлеченные в осадок ионы могут быть замещены ионами других металлов при обработке коагулята солями этих металлов. По данным Фрейндлиха, количество ионов, увлекаемых коагулятом, зависит от концентрации электролита в растворе, и эта зависимость может быть выражена изотермой адсорбции. Отсюда был сделан вывод, что должна существовать тесная связь между коагуляцией и адсорбцией ионов. Согласно таким представлениям, ионы, которые обладают большей адсорбируемостью (например, органические ионы), проявляют себя и как более эффективные коагуляторы при этом предполагается, что снижение -потенциала частиц связано с уменьшением числа зарядов частиц вследствие нейтрализации их адсорбирующимися ионами-коагуляторами. [c.339]

    При изучении роста очень тонких пленок т 100 А) необходимо принимать во внимание возможность ограничения скорости роста процессами переноса по поверхности пленки, а не переносом через пленку. Процессы переноса по поверхности в свою очередь зависят от распределения потенциалов в пленке вблизи поверхности. Известным примером такого рода эффектов служит окисление алюминия, когда после образования нескольких первых слоев скорость падает до очень низкого значения. То же наблюдается и при окислении некоторых" других металлов. Скорость окисления алюминия определяется стадией перехода его в виде ионов через границу раздела металл—окисел в междоузлии решетки окисла. Согласно теории, при переходе иона металла с поверхности металла в междоузлие окисла, связанного с металлом, ион металла должен преодолеть потенциальный барьер е. Этот барьер намного больше того, который приходится прёодоле-вать иону при переходе из одного междоузлия в другое, так что скорость диффузии в самом окисле не определяет скорости окисления в целом. Вероятность того, что такой переход произойдет, определяется "выражением V ехр (—е/ оТ ), где V— частота колебаний атома. Скорость переходов повышается под действием электрического поля, возникающего в результате адсорбции на внешней поверхности отрицательно заряженных ионов кислорода, поскольку они притягивают ионы А1 через слой окисла. Скорость роста пленки в этом случае определяется выражением [28] [c.478]

    Под действием внешней жидкой или газообразной среды адгезия полимерных плёнок к металлической поверхности снижается. Выше температуры стеклования 7, конкурентная адсорбция на металле осуществляется со взаимным вытеснением одного ве1пества другим. Этому способствует динамический характер сорбции. Уменьшение адсорбции полимера пропорционатьно парциально- му давлению или концентрации диффундирующего вещества в граничном слое и его адсорбционной способности. Условие стабильности адгезионных связей  [c.55]

    Это предположение было обоснованным, так как многие исследования показали, что присутствие ряда органических веществ, особенно нитро- и нитрозосоединений, перемещает потенциал плати-но-водородного электрода далеко в положительную сторону [8 9]. Помимо того, было доказано, что практически всю анодную поляризационную кривую, приведенную на рис. 17, можно получить путем подбора серии окислителей с широким набором редокс-потен-циалов [85 88]. И. Л. Розенфельд и его сотрудники создали широкую номенклатуру эффективных ингибиторов, в которых сочетаются пас-сивационные и адсорбционные свойства, что способствует защите черных и многих цветных металлов от коррозии. Это достигается в результате перевода металла в пассивное состояние при восстановлении окислительного компонента ингибитора, адсорбция других компонентов ингибитора сокращает активную поверхность и облегчает достижение пассивности. [c.51]

    Большинство исследователей склоняются к мысли, что осаждение атомов металла при потенциалах ниже равновесного следует рассматривать как результат большей свободной энергии адсорбции атомов металла на чужеродной подложке (подложке из другого металла), чем на том же металле [91 184 188 193 194 204 221 241 243 244]. На этой основе были предложены модели ДФО, связывающие избыточную свободную энергию адсорбции, пропорциональную А м = Еы — Er ( м — потенциал выделения М на 71 1, а — равновесный потенциал металла М в данных условиях), с физическими характеристиками металлов М и и их иогюв [91 204 221 251 255], в частности с работами выхода электронов и электроотрицательностями. Так как характер распределения металла по поверхности и работа адсорбции зависят от состава раствора и особенно от присутствия поверхностно-активных веществ, то и в этом случае комбинация ионов тяжелых металлов (в концентрациях, исключающих контактный обмен, но не ДФО) с ПАОВ может оказаться весьма эффективной и экономичной антикоррозионной добавкой. [c.89]

    В начальный период этого цикла исследований основное внимание было обращено на выяснение роли адсорбции в процессах ингибирования. На основании концепции приведенной шкалы потенциалов было показано, что при коррозии металлов ингибирующее действие органических веществ меняется симбатно с их поверхностной активностью на ртути, если все эти измерения проведены при одинаковых ф-потенциа-лах, т. е. при одинаковых зарядах поверхности металла. Этим был доказан адсорбционный механизм действия большинства органических ингибиторов и внесен рациональный элемент в поиски вероятных ингибиторов. Было введено понятие о специфической адсорбции I и II родов. Специфическая адсорбция I рода определяется природой адсорбирующихся частиц природа металла здесь проявляется главным образом через его нулевую точку. Это позволило на основании адсорбционных измерений, проведенных на одном металле, предвидеть адсорбционное поведение того же вещества на других металлах. Так, в частности, оказалось возможным, используя приведенную шкалу, оценивать области потенциалов, внутри которых на данном металле следует ожидать адсорбцию и влияние органических веществ на коррозионные и другие электрохимические процессы. Подобный же подход был впоследствии плодотворно использован и в работах Лошкарева по электроосаждению металлов. Недавно в работах московских и тартусских электрохимиков были получены результаты, дающие экспериментальное качественное подтверждение этой концепции. Следует, однако, подчеркнуть, что она оправдывается для оиределенной, хотя и широкой группы ингибиторов (азотсо- [c.135]

    В настоящее время можно считать доказанным, что карбонатный хлороз является прежде всего болезнью железной недостаточности Особая роль железа в питании растений на почвах с избыточным содержанием карбоната кальция связана с двумя обстоятельствами Во-первых, железо потребляетси растениями в значительно больших количествах, чем другие металлы Во-вторых, большинство почв бедны железом, находящимся в почвенном растворе или адсорбированным в обменной форме В карбонатных почвах это положение усугубляется щелочной реакцией среды и присутствием карбонатов. Карбонат кальции снижает содержание железа не только за счет подщела-чиваиия среды, но и за счет усиления его адсорбции так называемой активной известью [c.478]


Смотреть страницы где упоминается термин Адсорбция на других металлах: [c.470]    [c.426]    [c.263]    [c.236]    [c.135]    [c.143]    [c.372]    [c.372]    [c.372]    [c.154]    [c.156]   
Смотреть главы в:

Методы измерения в электрохимии Том1 -> Адсорбция на других металлах




ПОИСК





Смотрите так же термины и статьи:

Другие металлы



© 2025 chem21.info Реклама на сайте