Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физико-химические основы адсорбционных процессов

    Физико-химические основы адсорбционных процессов....................................1161 [c.893]

    Физико-химические основы адсорбционных процессов [c.249]

    Однозначной связи между химико-минералогическим составом и адсорбционно-отбеливающими свойствами природных адсорбентов пока не установлено. Адсорбционные и отбеливающие свойства природных адсорбентов и оптимальные условия их термической или химической активации определяются на основе исследования комплекса физико-химических и адсорбционно-структурных свойств. Конечным этапом лабораторных испытаний является установление пригодности адсорбентов для конкретного технологического процесса. Основная библиогра фия по природным глинам приведена в гл. 1. [c.129]


    Адсорбционная очистка. При переработке нефти широко используют способность некоторых естественных глин, синтетических алюмосиликатов, силикагеля, алюмогеля и других веществ адсорбировать на своей поверхности различные компоненты и примеси. Упомянутые вещества являются полярными адсорбентами, их молекулы состоят в основном из оксидов кремния и алюминия. Физико-химические основы процесса адсорбции освещены в гл. 5. [c.402]

    И А. Б, Таубман, Физико-химия флотационных процессов (1933 г.), М. М. Дубинин, Физико-химические основы сорбционной техники (1935 г.), а также книгу Физические методы органической химии под редакцией А. Вайсбергера, т. I (1950 г.), содержащую главы с описанием методов исследования адсорбционных слоев. [c.5]

    Физико-химические основы процесса. Наиболее распространенным способом рекуперации летучих растворителей в химической промышленности является адсорбционный метод. Независимо от технологической схемы извлечения паров растворителя из очищаемых потоков (непрерывная или периодическая) при адсорбционном методе сорбент последовательно проходит стадии адсорбции, десорбции, сушки и охлаждения. Технологический режим каждой из этих стадий различен по температуре, влажности, скорости прохождения через слой сорбента газа, пара или воздуха и т. п. [c.131]

    Очевидно, что установление закономерностей активирующего действия ПАВ в полимерных системах, а следовательно, и условий их эффективного использования может базироваться на знании особенностей адсорбционного взаимодействия ПАВ с наполнителями (пигментами) в полимерных системах и его влиянии на адсорбцию полимеров и структурирование систем. Такой путь и был использован авторами, в результате были созданы физико-химические основы процесса адсорбционной активности наполнителей с помощью ПАВ и определены оптимальные условия активации. [c.15]

    В случае использования для электрофореза дисперсий полимеров в водной и неводной средах их заряд при наложении электрического поля обусловлен смещением двойного электрического слоя. Как известно, наличие такого двойного ионного слоя на коллоидных частицах связано с присутствием на поверхности адсорбционно-сольватных оболочек из-за адсорбции на их поверхностях из жидкой среды ионов электролитов, поверхностноактивных веществ, молекул растворителя или наличия зарядчика в виде ионогенного полимерного или олигомерного соединения. Физико-химические основы процесса электроосаждения таких систем отличаются от осаждения водорастворимых пленкообразователей.  [c.11]


    Адсорбционные явления, начиная с физико-механической адсорбции на поверхности раздела фаз и кончая капиллярной конденсацией, представляют сложную совокупность физических, химических и физико-химических процессов. В настоящее время нет единой теории, объединяющей все частные случаи сорбции на общей основе. Теория сорбции подразделяется на молекулярную, сорбцию Ленгмюра, основанную на валентной природе адсорбционных сил электрическую теорию адсорбции полярных молекул (теорию зеркальных сил, квантовомеханический учет дисперсионной составляющей адсорбционных сил) капиллярную конденсацию полимолекулярную адсорбцию Брунауера — Эммета — Теллера, теорию Юра — Гаркинса [25, 44, 69]. [c.66]

    Основой локальных установок может быть использование таких физико-химических процессов, как азеотропная отгонка, пароциркуляционный метод, экстракция, адсорбция или ионный обмен, флотация, а также различные методы химического разрушения растворенных веществ, однако адсорбционные установки, как правило, обеспечивают наиболее глубокую очистку воды от органических загрязнений. [c.236]

    В основе физико-химического влияния среды на процессы деформации и разрушения твердых тел лежит эффект понижения их прочности в результате адсорбции. Природа этого весьма общего физико-химического явления состоит в следующем. При деформации и разрушении твердых тел всегда имеет место образование новых зародышевых поверхностей. Работа образования таких поверхностей уменьшается, если свободная поверхностная энергия на границе твердого тела с окружающей средой оказывается сниженной по сравнению с ее наибольшим значением в вакууме ( или в воздухе). Следовательно, присутствие поверхностно-активной среды должно приводить к облегчению возникновения и развития пластических сдвигов и зародышевых трещин. В микромасштабе это означает, что взаимодействие с адсорбционно-активными молекулами (или атомами) помогает перестройке и разрыву межатомных связей в дапном твердом материале. [c.336]

    Развитые представления о механизме поверхностного распространения жидких металлов и полученные на этой основе количественные соотношения могут быть применены при анализе различных физико-химических явлений при взаимодействии жидких металлов с твердыми. Это относится не только к процессу развития макроскопических трещин разрушения в присутствии ад-сорбционно-активных расплавов, но и к процессам пайки, сварки, нанесения защитных металлических покрытий и к различным случаям распространения растекания жидкой фазы и адсорбционного слоя в пористых телах (например, в катализаторах) и т. д. Найденные закономерности могут представлять интерес и для изучения [c.341]

    Когда говорят о теории хроматографии, то обычно имеют в виду решение дифференциальных уравнений материального баланса и соответствующие выводы относительно возможности и полноты разделения, если известно, что один компонент адсорбируется сильнее другого. Поэтому особенно важным является вопрос о том, почему один компонент смеси адсорбируется сильнее другого и что нужно сделать в отношении улучшения свойств адсорбентов и методов работы, чтобы максимально увеличить эффективность хроматографического разделения. Поскольку в основе молекулярной хроматографии лежит процесс адсорбции, необходимо исследовать адсорбционные свойства углеводородов и их спутников, присутствующих в нефтепродуктах. Такое исследование встречает большие затруднения. В лучших справочниках физико-химических констант нет главы, содержащей данные по адсорбции, несмотря на тысячи работ в этой области, которые опубликованы почти за 200-летнее существование этой области науки. [c.36]

    Варианты газовой хроматографии — газо-жидкостная и газо-адсорбционная— имеют свои преимущества и недостатки, поэтому выбор наиболее эффективного способа анализа в каждом случае определяется характером конкретной задачи. Так, в начальный период развития газовой хроматографии анализировали только газы и легколетучие жидкости на колонках с сильными адсорбентами. Переход к газо-жидкостной хроматографии способствовал уменьщению коэффициента распределения Г для более тяжелых сорбатов, в результате чего появилась возможность анализировать их хроматографическим методом. Использование неподвижных жидкостей самой разнообразной химической природы сделало газожидкостную хроматографию универсальным методом, позволяющим осуществлять разделение на основе различных видов физико-химических взаимодействий между сорбатами и растворителями. Кроме того, линейность изотерм растворения обеспечивала получение практически симметричных пиков сорбатов (при правильном подборе условий процесса). Однако существенные ограничения, связанные с летучестью неподвижных жидкостей, не позволяли проводить высокотемпературные процессы разделения высококипящих веществ ни в аналитическом, ни в препаративном вариантах. Поэтому дальнейшее развитие газо-адсорбционной хроматографии с применением однороднопористых адсорбентов различной химической природы было необходимо для обеспечения дальнейших успехов газовой хроматографии как метода анализа и исследования высококипящих соединений. [c.33]


    По мере того как развивалась теория газовой хроматографии и выяснялись зависимости хроматографических характеристик анализируемых веществ, адсорбентов и жидких неподвижных фаз от их физико-химических свойств, стало возможно не только предсказывать параметры хроматографического разделения на основе термодинамических и кинетических характеристик, но и подойти к решению обратных задач — определению физико-химических параметров по данным, получаемым при помощи газовой хроматографии [I—3]. Наибольшее значение газовая хроматография приобрела для определения термодинамических характеристик. Газо-адсорбционную хроматографию широко используют для измерения изотерм адсорбции. Из данных по изменению величин удерживания с температурой можно вычислять также энтропию и свободную энергию адсорбции. На основе хроматографического изучения адсорбции удается исследовать характер взаимодействия молекул адсорбата и адсорбента. Газо-жидкостная хромато рафия позволяет путем определения величин удерживания вычислять растворимость, теплоту и энтропию процесса растворения, а также измерять давление пара и температуру кипения анализируемых веществ, рассчитывать константы равновесия реакций в растворах и в газовой фазе и определять коэффициенты адсорбции на межфазных границах (жидкость—газ, жидкость—жидкость, жидкость—твердое тело). [c.223]

    К группе конверсионных относят неметаллические неорганические покрытия, которые не наносятся извне на поверхность деталей, а формируются на ней в результате конверсии (превращений) при взаимодействии металла с рабочим раствором, так что ионы металла входят в структуру покрытия. Основой их являются оксидные или солевые, чаще всего фосфатные пленки, которые образуются на металле в процессе его электрохимической или химической обработки. Наиболее широкое распространение получили оксидные покрытия алюминия и его сплавов. Это связано с тем, что по разнообразию своего функционального применения, определяемого влиянием на механические, диэлектрические, физико-химические свойства металла основы, такие покрытия почти не имеют равных в гальванотехнике. Полученные оксидные пленки надежно защищают металл от коррозии, повышают твердость и износостойкость поверхности, создают электро- и теплоизоляционный слой, легко подвергаются адсорбционному окрашиванию органическими красителями и электрохимическому окрашиванию с применением переменного тока, служат грунтом под лакокрасочные покрытия и промежуточным адгезионным слоем под металлические покрытия. Эти характеристики относятся к оксидным покрытиям, полученным электрохимической, прежде всего анодной обработкой металла. Хотя выполнение химического оксидирования проще, не нуждается в специальном оборудовании и источниках тока, малая толщина получаемых покрытий, их низкие механические и диэлектрические характеристики существенно ограничивают область его применения. [c.228]

    Централизованная деструктивная адсорбционная очистка может быть применена для очистки сточных вод не только анилино-красочного комбината, но и многих других отраслей органической химической промышленности, поскольку в основу технологии очистки стоков положены не специфические химические реакции, а такие общие физико-химические явления, как коагуляция и адсорбция. Оптимальные условия этих процессов (pH очищаемого стока, расход реагентов) должны быть, разумеется, установлены для каждого предприятия в зависимости от химической природы загрязнений сточных вод. [c.233]

    Приведенный выше материал рассматривался в связи с общими факторами, имеющими значение при ионообменных реакциях (физико-химические и структурные свойства адсорбента и адсорбтива). Как известно из многочисленных примеров, немалую роль в адсорбционных процессах играет растворитель, свойства которого влияют на скорость процесса и установление окончательного равновесия. До сих пор недоставало экспериментальных результатов, чтобы выяснить внутреннюю связь между физическими и химическими константами растворителя и устанавливающимся равновесным распределением. В последних работах пытались найти зависимость между адсорбированным количеством и диэлектрической постоянной растворителя , его дипольным моментом, теплотой смачивания, выделяющейся при контакте растворителя с адсорбентом, изменением поверхностного натяжения, вызванным адсорбированным веществом на поверхности раздела вода — растворитель. До недавнего времени два основных типа адсорбции — молекулярную и ионообменную — четко не разделяли. Разбросанный экспериментальный материал, приведенный в литературе (краткий обзор дан в статье Фукса Успехи хроматографических методов в органической химии ), к сожалению, недостаточно характеризует системы ни относительно адсорбента, ни относительно адсорбтива, так что часто нельзя принять правильного решения даже относительно имеющего место типа адсорбции. Вообще на основе этого ограниченного материала об обменных реакциях в неводных растворителях можно сказать, что электролиты, растворенные в жидкостях, подобных воде (спирт, ацетон), при контакте с ионитами ведут себя, как правило, так же, как в водных растворах. Но иногда последовательность расположения ионов изменяется в зависимости от прочности связи с обменником и тем са.мым вытесняющей способности иона. Еще меньше систематических исследований по обменной адсорбции в жидкостях, несходных с водой (бензол и др.). Однако интересно отметить, что незначительная добавка воды к бензолу, вызывая незначительную диссоциацию, способствует обменной адсорбции. Очевидно, также растворимость воды в соответствующем растворителе имеет значение для из- [c.352]

    Физико-химические и методические основы адсорбционно-комплексообразовательного хроматографического метода были освещены в ряде работ [16—23]. Были показаны также возможности применения этого метода в различных областях науки и промышленности, как, например, глубокая очистка содей металлов, разделение солей металлов на группы или выделение одного из компонентов смеси, концентрирование растворов солей металлов, качественный анализ смесей ионов, исследование процессов комплексообразования, попутное извлечение редких и рассеянных элементов при комплексном использовании рудного сырья, разделение близких по свойствам элементов, разделение органических веществ и осуществление некоторых химических реакций в органической химии [16—53]. Но наибольшие успехи применения этого метода были достигнуты при глубокой очистке веществ и получении их в спектрально чистом виде. [c.102]

    Несмотря на указанные трудности, метод расчета по коэффициентам внутренней диффузии на основе модели послойной отработки зерен адсорбента представляется целесообразным. Поэтому необходимо установить зависимости коэффициентов внутренней диффузии от физико-химической природы системы адсорбтив—адсорбент и степени отработки адсорбента. Это даст возможность аналитически рассчитывать адсорбционные процессы в широких диапазонах изменения физико-химической природы системы адсорбтив—адсорбент с привлечением электронно-цифровой вычислительной машины (ЭЦВМ). Одним из возможных решений является следующая замкнутая система рекуррентных уравнений, описывающих процесс в многоступенчатом аппарате со взвешенными слоями адсорбента. [c.197]

    Отсутствие таких конкурентных взаимодействий на границе раздела в водных системах обусловливает эффективность ПАВ при их ориентированной, физической (непрочной) адсорбции на твердых поверхностях. Вследствие разнообразия современных синтетических полимерных связующих гидрофобизация твердой поверхности только путем ориентированной адсорбции ПАВ в таких системах не может быть эффективной. Наряду с условием прочной фиксации ПАВ на поверхности твердых частиц иногда возникает необходимость варьирования молекулярного состава углеводородного радикала [6, с. 348—353]. В связи с этим эффективно применение полимеров с активными функциональными группами и различной молекулярной природы. Такие полимерные модификаторы приближаются по своим свойствам ко второй группе ПАВ вследствие способности образовывать структурированные адсорбционные слои [14, 15]. Следует подчеркнуть, что в различных системах, особенно полимерных, одно и то же ПАВ может оказывать противоположное действие в зависимости от его концентрации и других условий применения, хотя его действие часто основано на одном и том же физико-химическом принципе. Молекулярный механизм действия ПАВ является основой, раскрывающей сущность процесса модифицирования, что позволяет определить оптимальные рецептуру и условия применения ПАВ. [c.11]

    Углеродные волокна на основе гидратцеллюлозы благодаря своим уникальным свойствам нашли применение в высокотемпературных процессах в качестве материалов, стойких к агрессивным средам, а также в электротехнике [1, 2]. В последнее время углеродные волокна, особенно активированные в токе СО2, находят все более широкое применение в качестве эффективных адсорбентов газов и паров [2-7]. Для изучения структуры и адсорбционных свойств углеродных волокнистых материалов используют различные физико-химические методы метод рассеяния нейтронов [8], вакуумно-статический [3 , 9]. Для этой цели успешно применяются и газохроматографические методы [7, 8,10-14]. [c.104]

    В табл. 1 приведены сравнительные данные физико-химических и адсорбционно-каталитических свойств зарубежных образцов адсорбентов на основе природных глин, используемых в процессах очистки ароматических углеводородов, и опытно-промышленного образца адсорбента А-4М, полученного из глинистых минералов Черкасского месторождения УССР. Исследования проводили на пилотной установке при температуре 200° С, давлении 20 ат и объемной скорости подачи сырья 5 ч . За показатели эффективности очистки принимали глубину очистки от примесных компонентов и количество сырья, очищаемое единицей массы [c.201]

    Для описания адсорбционного равновесия в настоящее время широко используются уравнения, базирующиеся на различных представлениях о механизме адсорбции, связывающие адсорбционную способность с пористой структурой адсорбента и физико-химические свойства адсорбтива. Эти уравнения имеют различную математическую форму. Наибольшее распространение при расчете адсорбционного равновесия в настоящее время получили уравнения Фрейндлиха, Лангмюра, Дубинина — Радушкевича. Дубинина — Астахова и уравнение Кисарова [3]. Рассчитанные по ним величины адсорбции удовлетворительно согласуются с опытными данными лишь в определенной области заполнения адсорбционного пространства. Поэтому прежде чем использовать уравнение изотермы адсорбции для исследования процесса методами математического модели]зования, необходимо осуществить проверку на достоверность выбранного уравнения экспериментальным данным си-. стемы адсорбент —адсорбтив в исследуемой области. В автоматизированной системе обработки экспериментальных данных по адсорбционному равновесию в качестве основных уравнений изотерм адсорбции приняты указанные выше уравнения, точность которых во всем диапазоне равновесных концентраций и температур оценивалась на основании критерия Фишера. Различные способы экспериментального получения данных по адсорбционному равновесию, а также расчет адсорбционных процессов предполагают необходимость получения изобар и нзостер. В данной автоматизированной системе указанные характеристики получаются расчетом на основе заданного уравнения состояния адсорбируемой фазы. Если для взятой пары адсорбент — адсорбат изотерма отсутствует, однако имеется изотерма на стандартном веществе (бензол), автоматизированная система располагает возможностью расчета искомой изотермы на основе коэффициента аффинности [6], его расчета с использованием парахора или точного расчета на основе уравнения состояния. [c.228]

    Круг проблем, решенных физико-химической механикой, свидетельствует о том, что она немыслима без использования основных представлений современной коллоидной химии и физико-химии поверхностно-активных веществ. Большой вклад в ее становление внесли результаты научных достижений по проблеме Поверхностные явления в дисперсных системах . Ведущая роль в развитии исследований по проблеме поверхностных сил и поверхностных явлений принадлежит Б. В. Дерягину и его школе. Ими впервые развита строгая и общая теория электрокинетических явлений с учетом диффузионных процессов, а также теория коагуляции дисперсных систем. Созданы новые направления в изучении устойчивости пен и эмульсий на основе открытия и исследования равновесных состояний свободных и двухсторонних пленок. В развитие проблемы поверхностных явлений значительный вклад внесен также П. А. Ребиндером, А. Б. Таубманом, Ф. Д. Овчаренко, Е. К. Венстрем, Н. Н. Серб-Сербиной, Е. Д. Щукиным, Н. Н. Круглицким и др. Фундаментальные исследования поверхност-но-активных веществ и проблема строения их адсорбционных слоев на поверхности раздела фаз проведены А. Б. Таубманом с сотрудниками. Важные работы осуществлены по изучению физико-химии контактных взаимодействий в дисперсных системах (Г. И. Фукс, И. М. Федорченко, Г. В. Карпенко, Н. Л. Голего, В. Д. Евдокимов, Б. И. Кос-тецкий, Г. В. Самсонов, Ю. В. Найдич, Л. Ф. Колесниченко, А. Д. Па-насюк, В. Н. Еременко и др.). [c.11]

    Существует большое число различных теорий для объяснения пассивного состояния металлов. Наиболее обоснованны и общепризнанны в настоящее время теории, объясняющие пассивное состояние на основе пленочного или адсорбционного механизма торможения анодного процесса растворения металла. Суждение М. Фарадея о механизме пассивности было сформулировано более 100 лет назад так [6] ...поверхность пассивного железа окислена или находится в таком отношении к кислороду электролита, которое эквивалентно окислению . Это определение не противоречит ни пленочному, ни адсорбционному механизму пассивности. Пленочный механизм пассивности металлов у нас последовательно развивался в работах В. А. Кистяковского [7], Н. А. Изгары-шева [8], Г. В. Акимова [9] и его школы [1, 5, 10—12], П. Д. Данкова [13], А. М. Сухотина [14] и др. за рубежом — в работах Ю. Эванса [15]. В последние годы пленочный механизм пассивности особенно был развит школой К. Бонхоффера (У. Франк, К. Феттер) [16—24] и другими исследователями [25—31]. Состояние повышенной коррозионной устойчивости объясняется ими возникновением на металле защитной пленки продуктов взаимодействия внешней среды с металлом. Обычно такая пленка очень топка и невидима. Чаще всего она представляет собой какое-то кислородное соединение металла. Таким образом, при установлении пассивного состояния физико-химические свойства металла по отношению к коррозионной среде заменяются в значительной степени свойствами этой защитной пленки. [c.15]

    Характер и количественные параметры процесса адсорбции микропримеси из водных растворов существенно зависят от физико-химического состояния примеси в растворе, а также от вида, величины и состояния поверхности твердой фазы. Адсорбция ионных примесей происходит, в большинстве случаев, путем ионного обмена. Однако наблюдается в некоторых условиях и молекулярная сорбция, которая характерна для 2г, НЬ, ТЬ и других многовалентных катионов [772]. Поверхность сорбирует коллоидные и псевдоколлоидные формы, когда знак ее заряда противоположен знаку заряда мицелл. Наконец, возможна хемосорбция примесей с образованием поверхностных химических соединений, неопределенных в фазовом и стехиометрическом отношении. Методы адсорбционного концентрирования предполагают извлечение микрокомпонента из среды другого, плохо сорбирующегося вещества растворителя или раствора основы. В обоих случаях активной по отношению к примеси остается очень незначительная доля общей полезной поверхности сорбента. [c.292]

    Изучение адсорбционных явлений в газо-жидкостной хроматографии (ГЖХ) представляет непосредственный интерес как в связи с измерением различных физико-химических величин на основе хроматографических данных, так и в связи с аналитическими применениями. При решении этих задач эффекты адсорбции играют в основном отрицательную роль и требуют специального учета или устранения. Заметная асимметрия пиков, наличие хвостов, сильная зависимость времени удерживания от размера пробы, плохая воспроизводимость характеристик удерживания, являющиеся следствием адсорбции сорбата на межфазных границах сорбентов, приводят к большим трудностям при анализе микропримесей веществ и при проведении правильной идентификации компойситоп. в Т() же время алспрбии иные явления могут быть и ряде случаев иснольчовагал нрн г -дО>>ре селекТ 1В-] ых сорбентов, содержащих к к жидкие, так п твердые неподвижные фазы, а также для онреде. еиия равновесных характеристик сорбционных процессов. [c.7]

    Вступление химии электродных процессов, или, как ее иначе называют, электродики , в современную стадию развития происходит во многих направлениях. В настоящее время кинетика электродных процессов трактуется с формальной полнотой в соответствии с кинетикой, разработанной в других областях для описания последовательных химических реакций, и ее место как части физической химии гетерогенных реакций достаточно выяснено. Старый эмпирический подход к решению прикладных коррозионных задач уступает в настоящее время место более глубокому пониманию процессов растворения, электрохимического окисления и пассивации металлов на основе электродной кинетики. Влияние потенциала на протекание электрохимических реакций рассматривается аналогично влиянию давления на кинетику гомогенных химических реакций в конденсированных фазах. Начинает учитываться связь между электрокатализом и свойствами материала электрода, рассматриваемого как гетерогенный катализатор, а также адсорбционное поведение промежуточных частиц и реагентов на поверхности, что обеспечивает научную основу для быстрого развития технологии прямого электрохимического превращения энергии. Двойной слой более не трактуется просто как аналог плоского конденсатора, а следовательно, становится более ясной роль адсорбции и ее связь с электродной кинетикой. Полупроводники перестали быть объектом изучения только физики твердого тела, поскольку стали рассматриваться свойства их поверхности, находящейся в контакте с раство- [c.8]


Смотреть страницы где упоминается термин Физико-химические основы адсорбционных процессов: [c.4]    [c.168]    [c.168]    [c.82]    [c.29]    [c.157]   
Смотреть главы в:

Новый справочник химика и технолога Процессы и аппараты Ч2 -> Физико-химические основы адсорбционных процессов




ПОИСК





Смотрите так же термины и статьи:

Адсорбционно-химический акт

Основы процессов

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКИХ ПРОЦЕССОВ



© 2025 chem21.info Реклама на сайте