Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение растворителя и ионной силы

    НИТЬ путем изменения реагентов или условий реакции. Таким образом, остается только два параметра, р и Е , которые можно пытаться изменить так, чтобы получить желаемое различие в константах скоростей. Параметр р обычна можно изменить, изменяя такие условия проведения реакций, как температура, природа растворителя, ионная сила и т. д. Например, величина р для гидролиза эфиров (как обсуждалось в разделе 2, А) в щелочной среде значительно больше, чем в кислой. Встречаются также случаи, при которых нельзя достигнуть достаточно большой величины р(Аа), но, выбрав подходящий реагент, можно сделать член АЕ достаточно большим и получить подходящее различие в скоростях реакций. [c.186]


    Адсорбция представляет собой обратимый процесс процесс, обратный адсорбции, называют десорбцией. В отличие от десорбции удаление адсорбированных веществ с адсорбентов путем изменения свойств растворителя (изменение pH, ионной силы растворителя) называют элюцией. [c.170]

    Изучается зависимость скорости неко орой реакции от различных факторов. Как скажутся на численном значении константы скорости следующие изменения различные начальные концентрации изменение температуры введение различных веществ смена растворителя изменение объема системы изменение ионной силы раствора. [c.123]

    Константу диссоциации Кс называют концентрационной или классической константой. Она зависит от природы слабого электролита, природы растворителя и температуры, но не зависит от концентрации, хотя в некоторой степени изменяется с изменением ионной силы раствора. [c.63]

    Растворитель — диэлектрик ослабляет этот процесс тем сильнее, чем больше его диэлектрическая проницаемость ер. Если молекулы растворителя поляризуются сильнее, чем растворенные ионы, то, очевидно, деформация ионных полей ведет к притяжению их к молекулам растворителя и, следовательно, к отталкиванию друг от друга. При достаточно высоких концентрациях отталкивание может преобладать над притяжением за счет кулонов-ских сил и коэффициент активности становится больше единицы, что и наблюдается в растворах с большими значениями Вр (например, в водных). Поляризация диполей растворителя ионами приводит, с одной стороны, к их ориентации вокруг ионов, что способствует уменьшению ер, а с другой стороны, ориентированные диполи растворителя сгущаются вокруг иона, образуя его сольватную оболочку, что связано с локальными повышениями давления (явление электрострикции), способствующего росту Вр. Однако это повышение суммарно значительно меньше изменения ер в сторону понижения за счет ориентационной поляризации, поэтому в конечном итоге при повышении концентрации раствора 400 [c.400]

    Следующим этапом исследования является изучение кинетики брутто-процесса, измерение его скорости и ее изменение во времени, определение общего и частного порядков реакции, энергии активации, константы скорости. Влияние условий проведения на скорость процесса, таких, как давление, полярность растворителя, pH, ионная сила раствора, также позволяет сделать те или иные выводы о механизме. [c.366]


    Таким образом, изменение силы катионных кислот в двух растворителях определяется различием в кислотности ионов лиония самих растворителей. Поэтому для любых катионных кислот изменения в их силе одно и то же, т. е. [c.271]

    Как следует из приведенных выше уравнений, изменение нормальных потенциалов цепей без переноса при переходе от растворителя к растворителю определяется только изменением энергии ионов. Это обусловливает возможность использовать электродвижущую силу цепей без переноса для оценки величины ионов и молекул. [c.396]

    При полярографическом анализе неводные растворители могут улучшить условия анализа в связи с изменением растворимости веществ, силы электролитов, потенциалов восстановления. При хроматографическом анализе неводные растворители могут быть применены для изменения величины адсорбции, констант ионного обмена. Возможно применение неводных растворителей при анализе по комплексообразованию, при газовом анализе. [c.440]

    Подставив значения заряда радиуса ионов убедимся, что вычисленные АЕ в 1,5—2 раза больше экспериментальных данных. Дальнейшее развитие теории сольватации ионов показало непригодность уравнения (11.4) для расчета энергии сольватации. Основной недостаток теории Борна заключается в том, что в ней не учитывается структура растворителя, не отражена молекулярная картина процесса сольватации ионов. Расчет энергии сольватации ионов с учетом особенностей структуры воды был произведен Дж. Берналом и Р. Фаулером. По их идее, ионы, воздействуя на молекулы воды, нарушают ее собственную структуру. Эффект этого изменения пропорционален поляризующей силе иона, т. е. величине е/г. [c.272]

    В справочниках обычно приводятся интервалы перехода индикаторов при ионной силе [i. = 0,1. Влияние индифферентных солей, называемое солевой погрешностью индикаторов, можно проиллюстрировать с помощью следующих данных. Увеличение ионной силы раствора от 0,1 до 0,5 путем введения хлорида калия влечет за собой смещение перехода фенолфталеина на —0,19 единиц pH интервалы перехода метилового оранжевого и метилового красного при этом не смещаются. Введение в раствор других растворителей вызывает изменение константы /Сд, i d и тем самым смещение интервалов перехода индикаторов. Так, например, в присутствии этанола интервал перехода метилового оранжевого смещается в более кислую сторону (при объемной доле этанола 10% на 0,10 единиц pH, при объемной доле этанола 50% на 1,2 единицы pH), а интервал перехода фенолфталеина — на более щелочную сторону (при объемной доле этанола 10% на 0,06 единиц pH, при объемной доле этанола 50% на 1,0 единицу pH). [c.191]

    Влияние перехода от протонного к полярному апротонному растворителю на скорость реакции в общем случае одинаково для 8 2 и 5 Аг реакций диполь-ионного и ион-ионного взаимодействия [12], но реакции 8 2 диполь-дипольного взаимодействия (например, пиридин или диметилсульфид с алкилгалогенидами) гораздо менее чувствительны к изменению структуры растворителя, если только при этом не изменяется заметно диэлектрическая проницаемость и ионная сила [68, 69]. Эти данные подтверждают, что раз- [c.13]

    Как и при разделении на ранее описанных полимерных ХНФ, механизм хирального распознавания в данной системе является сложным и до конца не выяснен. Однако основные причины удерживания сорбата были выявлены в ходе систематических исследований влияния его структуры и состава подвижной фазы на коэффициент емкости. Во многих отношениях альбумин-силикагелевый сорбент ведет себя подобно обращенно-фазовым материалам на основе алкилированного силикагеля. Спирты, преимущественно пропанол-1, помогают регулировать время удерживания, поскольку вызывают его быстрое уменьшение вследствие ослабления гидрофобных взаимодействий с сорбентом. Оптимизировать состав подвижной фазы можно, варьируя тремя основными параметрами, а именно pH, ионной силой и органическим растворителем-модификатором [90]. Вероятно, в любой хроматографической системе одновременно наблюдается влияние диполь-ионных и гидрофобных взаимодействий. Кроме того, возможно образование водородных связей и комплексов с переносом заряда. Большое влияние свойств подвижной фазы на значения к разделяемых энантиомеров можно объяснить зависимостью свойств белков от распределения заряда и его конформации. БСА состоит как минимум из 581 остатка аминокислот, связанных в единую цепь (мол. масса 6,6-10 ), и его надмолекулярная структура в значительной мере определяется присутствием в молекуле 17 дисульфидных мостиков. При рН7,0 полный заряд молекулы равен - 18, а изоэлектрическая точка равна 4,7. Как это хорошо известно из химии ферментов, смена растворителя способна вызывать изменения в структуре связывающего центра белка в результате изменения его заряда и конформации. [c.133]


    В то время как амины и аминокислоты, несущие положительный заряд, более прочно удерживаются при более высоких значениях pH, для отрицательно заряженных сорбатов справедливо обратное. Систематические исследования, проведенные на серии N-бензоил-о, L-аминокислот, позволили глубже понять механизм взаимодействия сорбата с белком. Влияние изменения свойств подвижной фазы на величины к VI а демонстрирует рис. 7.10. Во-первых, удерживание в значительной степени возрастает с усилением гидрофобного характера аминокислоты (Ser > А1а> Phe). Во-вторых, увеличение суммарного отрицательного заряда белка с увеличением pH вызывает уменьшение к для всех шести соединений (вследствие ионного взаимодействия). Далее, влияние концентрации буфера можно объяснить усилением адсорбции вследствие ионных взаимодействий при низкой ионной силе. Небольшое, но вполне заметное возрастание к для наиболее сильно удерживаемых сорбатов при высоких концентрациях буфера вероятнее всего является результатом усиления гидрофобных взаимодействий. Поскольку ионные (кулоновские) и гидрофобные взаимодействия по-разному подвержены влиянию ионной силы, то оба эффекта приводят к возникновению минимума в адсорбции сорбата (к ) в определенной точке. И наконец, совершенно очевидно влияние органического растворителя-модификатора он всегда приводит к понижению удерживания сорбата и тем сильнее, чем более гидрофобен сорбат. Влияние pH и ионной силы на удерживание незаряженных соединений невелико, но выражено вполне отчетливо. Оно связано исключительно с изменениями в связывающем центре ХНФ. Добавление пропанола-1 вызывает уменьшение удерживания по сравнению с наблюдаемым у заряженных сорбатов, что свидетельствует о преимущественном вкладе в удерживание гидрофобных взаимодействий. Это подтверждает также наблюдаемое очень большое влияние на удерживание длины цепи алканола-1. Высшие спирты являются значительно более эффективными конкурентами за связывающий центр, а потому вызывают более быстрое элюирование сорбата. Возможность регулирования удерживания путем изменения подвижной фазы, которую демонстрирует схема 7.6, говорит о том, что эту особенность данных хроматографических систем можно использовать в целях оптимизации разделения. [c.135]

    Важной отличительной чертой конформаций, стабилизированных кооперативными взаимодействиями, является то, что переход молекул в неупорядоченное состояние совершается достаточно резко независимо от того, чем он вызван изменением температуры, состава или ионной силы растворителя или другого фактора. Часто такой переход приближается к случаю все или ничего , т. е. сильно отличается от постепенного сдвига конформационного равновесия в малых молекулах. Подобные резкие переходы могут быть обнаружены путем измерения любого физического параметра полисахарида, который зависит от общей конформации его молекулы. Характерные сигмоидные кривые иллюстрируют конформационные переходы ксантана, за которым следили по изменениям вязкости, оптического вращения в монохроматическом свете, площади детектируемого сигнала в спектре ЯМР (рис. 26.4,3) или амплитуды кривой кругового дихроизма при соответствующей длине волны, а также другими методами. [c.294]

    Очень важно, что из всех вышеперечисленных вариантов внутри- и межмолекулярных взаимодействий только дисуль-фидные мостики остаются неизменными при изменениях pH среды или смене полярности и ионной силы растворителей. Дисульфидные мостики разрушаются только под действием восстановителей. [c.70]

    В значительной мере дифференцирующее действие растворителя зависит от сольватирующей способности растворителя. Прн переходе от одного растворителя к другому энергии сольватации ионов и молекул электролитов изменяются в различной степени. Особенно это изменение становится заметным при переходе от растворителя одной природной группы к растворителю другой природной группы. Так, дифференцирующее действие ацетона и, вероятно, других дифференцирующих растворителей на силу кислот является результатом различия в энергии взаимодействия молекул и анионов кислот различной природы с полярными молекулами растворителя и определяется химическими особенностями растворителей. Однако дифференцирующее действие наиболее отчетливо проявляется при переходе от растворителей одной природной группы к растворителям другой природной группы и также при переходе от электролитов одной химической группы к электролитам другой химической группы. [c.35]

    Солевой эффект и эффект среды. Как мы уже видели, изменения ионной силы и состава растворителя могут привести к большой неопределенности в значениях pH, найденных с помощью индикатора. Если бы можно было иметь больше информации о кислотно-основных равновесиях, то эффекты, вызываемые указанными выше причинами, могли бы быть в значительной степени поняты и учтены. Соответствующая неопределенность возникает не только из-за чрезмерного упрощения при количественном описании кислотно-основных равновесий и не является следствием случайных ошибок. Все это существенно снижает полезность колориметрического метода определения pH. Чтобы ошибки были минимальными, буферные и исследуемые растворы должны, насколько это возможно, иметь одинаковую ионную силу и состав растворителя. [c.152]

    Величина lg/Сд, характеризующая собственную кислотность, сократилась. Таким образом, изменение силы катионных кислот в двух растворителях определяются различием в кислотности ионов лиония самых растворителей. Поэтому для любых катионных кислот изменения в их силе одно и то же, т. е. [c.535]

    Из этих уравнений следует, что изменение соотношения в силе катионных кислот под влиянием растворителей можно ожидать в связи с различием в энергии взаимодействия недиссоциированных молекул основания с растворителем и в связи с различием в энергии взаимодействия дипольных молекул растворителя с ионами основания. [c.664]

    Б. обычно выделяют из тканей и органов, клеток и субклеточных элементов животных и растений, а также из микроорганизмов. Получение чистых лрепаратов Б. в большинстве случаев довольно трудная задача. Б. обычно экстрагируют разб. р-рами солей, к -т и щелочей. Получающиеся сложные смеси иодвергак1Т фракционированию. Широко применяется фракцион)юе осаждение (неорганич. солями, особенно сульфатом аммония, этанолом, ацетоном), изменение pH, ионной силы, темн-ры. Широко распространены методы хроматографии на ионообменных смолах (гл. обр. па целлюлозной основе), а также методы гель-фильтрации. Критериями чистоты Б. являются гомогештость при седиментации в ультрацентрифуге, электрофорезе и хроматографии. Нерастворимые Б. очищают от растворимых примесей водными р-рами солей, к-т, щелочей, органич. растворителями. [c.128]

    Таким образом, на примере трех типов реакций показана возможность целенаправленного синтеза каталитического центра в фазе ионита и тонкого регулирования скорости, а во многих случаях и механизма реакции путем подбора полилиганда (ионита), изменения условий синтеза ионитного комплекса, состава и устойчивости среднестатистического координационного центра. Ионитные комплексы технологичны и обладают достоинствами гомогенных комплексных катализаторов. Следует, однако, подчеркнуть, что для получения воспроизводимых результатов необходимо соблюдать условия синтеза как ионита, так и его комплекса состав координационного центра и соответственно каталитическая активность ионитного комплекса зависят от соотношения [L] [М], структуры полимерной матрицы, природы растворителя, ионной силы и pH раствора, температуры, природы и концентрации в системе контролируемых и неконтролируемых примесей. [c.322]

    Денатурация. Третичная структура белка более чувствительна по сравнению с его вторичной структурой к внешним воздействиям, вызванным присутствием слабых окислителей и некоторых других реагентов, изменением природы растворителя, ионной силы и pH среды, температуры, а также к воздействию облучения. Разрушение нативной структуры белка под действием внешних факторов называется денатурацией (рис. 1.18). Денатурацию белков можно вызвать нагреванием до 60 — 80 °С или действием агентов, разрушающих нековалентные связи в нативной структуре белка. Денатурация происходит на поверхности раздела фаз, в щелочных или кислых средах (например, денатурация белка пищи в желудке под действием соляной кислоты), при действии ряда органических соедиь -ний — спиртов, фенолов и др. Часто для денатурирования белков исполь- [c.75]

    Чем следует руководствоваться, выбирая детергент для использования Экстракцию периферических белков из мембранных фрагментов легко осуществить изменением pH, ионной силы или применением хелаторов двухвалентных катионов. После этого внеклеточные фрагменты политопиче-ских белков можно отщепить протеолизом. Иногда для выделения мембраносвязанных белков используют органические растворители, если нет необходимости в получении белков в нативном состоянии. Для выделения комплексов белка с аннулярными липидами используются неионные детергенты, в то время как при использовании ионных детергентов можно получить белок— детергентные комплексы. [c.91]

    При достаточно больших разбавлениях сила взаимодействия между ионами будет стремиться к нулю, и таким взаимодействием можно пренебречь. В сильно разбавленных растворах основное значение приобретает взаимодействие иопов с молекулами растворителя. При изменении состава или свойств растворителя будут изменяться коэффициенты активности, величины которых определяются взаимодействием ион — растворитель. С другой стороны, при больших разбавлениях изменение концентрации ионов будет приводить к изменению коэффициентов активности благодаря изменению сил взаилюдействия между ионами. В действительности изменение концентрации ионов (растворенного вещества) будет вызывать изменение свойств растворителя, но при достаточно больших разбавлениях эти эффекты будут пренебрежимо малы. Подобным же образом изменение растворителя будет влиять на взаимодействие ион — ион. [c.447]

    Отметим, что в теории Дебая—Хюккеля и Бьеррума фигурировала диэлектрическая постоянная ер чистого растворителя, что имеет смысл для разбавленных растворов. Однако Дебай и Полинг в дальнейшем показали, что при повышении концентрации изменением ер пренебрегать нельзя. Качественная картина влияния зарядов ионов на диэлектрическую постоянную, данная Хюккелем, сводится к рассмотрению влияния деформации полей, связанных с молекулами растворителя, за счет влияния на них соответствующих ионных сил. При сближении ионов друг к другу связанные с ними поля деформируются и деформируют поля окружающих их молекул растворителя. Взаимная деформация ионов в вакууме вела бы к дополнительному их притяжению вследствие возникновения электрических сил поляризации, действующих в одном направлении с кулоновскими межионньши силами. [c.400]

    Для количественной характеристики дифференцирующего действия растворителей на силу кислот величина изменения относительной силы кислот, выраженная в величинах р = —Ig = —Ig (Ядбд — как всегда, константа бензойной кислоты), была сопоставлена с изменением величины Ig Уо ионов и молекул этих же кислот. [c.334]

    Следовательно, 2 С сол зависит от различия в радиусах ионов в растворе и от расстояния наибольшего сближения их в ионите и, наконец, от различия в числах сольватации. С падением диэлектрической проницаемости С/сол будет возрастать. Если соотношбния в числах сольватации и в радиусах в среде и в ионите не изменяются, константа не будет зависеть от энергии ион-дипольного взаимодействия. Кроме того, АС/сол зависит от величины дипольного момента молекул растворителя. Чем дипольный момент молекул растворителя больше, а диэлектрическая проницаемость меньше, тем больше изменение константы. Следует ожидать большего влияния растворителей, дифференцирующих силу солей, на увеличениё селективности ионного обмена. Так как концентрация ионов в единице объема в ионите больше, чем в растворе, влияние растворителя на состояние ионов в ионите будет больше, чем в растворе. [c.366]

    Наличие в молекулах полиэлектролнтов групп различной природы определяет возможность возникновения взаимодействий разных видов (электростатических, гидрофобных, водородных связей) и повышенную по сравнению с нейтральными полимерами склонность цепей полиэлектролитов к конформационным изменениям при изменении pH, температуры раствора, природы растворителя. Об изменении конформации макромолекул можно судить по значению параметра а уравнения Марка — Куна — Хаувинка [т]] = = КМ . Известно, что а зависит от конформации макромолекул в растворе и изменяется от нуля для очень компактных клубков до 2 для палочкообразных частиц. Для многих глобулярных белков а = 0. В растворе сильного полиэлектролита при достаточно высокой ионной силе раствора а = 0,5, т. е. цепь имеет конформацию статистического клубка с уменьшением ионной силы параметр а увеличивается и при ионной силе, близкой к нулю, стремится к а = 2. Для слабого полиэлектролита в заряженной форме, а также для полипептидов в конформации а-спирали а = = 1,5—2. [c.123]

    При выборе индикаторов следует учитывать влияние тех факторов, которые могут вызвать изменение константы К1,1пй протолитической пары индикатора или константы автопротолиза растворителя /СнзоЬ. Из этих факторов отметим температуру и ионную силу раствора, а также присутствие других растворителей. Увеличение температуры водного раствора влечет за собой увеличенпе константы автопротолиза воды, вследствие чего смещаются интервалы перехода индикаторов. Так, например, при 18° С интервал перехода метилового оранжевого лежит в пределах от pH 3,1 до pH [c.184]

    При выборе индикаторов следует учитывать влияние тех факторов, которые могут вызвать изменение константы /Сд, ind протолитической пары индикатора или константы автопротолиза растворителя HSoiv этих факторов отметим температуру и ионную силу раствора, а также присутствие других растворителей. Увеличение температуры водного раствора влечет за собой увеличение константы автопротолиза воды, вследствие чего смещаются интервалы перехода индикаторов. Так, например, при 18° С интервал перехода метилового оранжевого находится в пределах pH 3,1—4,4, а при 100° С — в пределах pH 2,5—3,7. Изменение ионной силы раствора вызывает изменение коэффициентов активности заряженных форм индикатора, следовательно, изменяется реальная константа =/Са, гпа/П . [c.191]

    Для фракционирования белковых смесей, находящихся в растворе, широкое применение получили методы дробного осаждения, основанные на изменении растворимости белков в присутствии растворов солей и органических растворителей. При фракционировании солями чаще всего используют сернокислый аммоний, позволяющий создавать высокую ионную силу раствора при низкой температуре, а из органических растворителей — этиловый спирт и ацетон. На различиях в растворимости белков основано и изоэлектрическое осаждение, достигаемое за счет минимальной растворимости глобулярных белков в изоэлектричес-кой точке. В последние годы для фракционирования белков все чаще находят применение центрифугирование, избирательная адсорбция, различные виды хроматографии и электрофореза. [c.88]

    И снова при описании общих эффектов природы ионных реагентов и диэлектрической проницаемости растворителя оказывается полезной электростатическая теория. Более того, простую электростатическую модель впервые применили для расчета влияния диэлектрической проницаемости и ионной силы среды на скорости именно ионных реакций. В соответствии с уравнением (5.96) изменение. чнергии Гиббса, сопровождающее образование ионной пары из ионов А и В в стандартной среде с диэлектрической проницаемостью ег, равно электростатической энерпии сближения двух точечных зарядов г в и на расстояние Гдв (Л А — число Авогадро). [c.294]

    Необходимо указать, что конфигурация двойной спирали ДНК сильно меняется в зависимости от количественного содержания воды и ионной силы окружающей среды. Методами рентгеноструктурного анализа доказано существование по крайней мере 6 форм ДНК, названных А-, В-, С-, 0-, Е- и 2-формами. Конфигурация двух из них в простейшей форме представлена на рис. 3.1, б и в. Можно увидеть, что у А-формы наблюдается некоторое смещение пар оснований от оси молекулы к периферии, что отражается на размерах (2,8 нм—длина одного витка, в котором вместо 10 содержится 11 мононуклеотидов меняется расстояние между нуклеотидами и др.). Если А- и В-формы представляют собой правозакрученную двойную спираль, то 2-форма (зигзагообразная) ДНК имеет левозакрученную конфигурацию, в которой фосфодиэфирный остов располагается зигзагообразно вдоль оси молекулы. Параллельно фосфодиэфирному остову в структуре А- и В-форм ДНК имеются большая и малая бороздки (желобки) — сайты, где присоединяются белки, выполняющие, очевидно, регуляторные функции при экспрессии генов. В настоящее время есть основание считать, что между А- и В-формами ДНК осуществляются взаимные переходы при изменении концентрации соли и степени гидратации. В-форма ДНК больше всего подходит к модели Уотсона и Крика. В этих переходах, которые могут быть вызваны растворителями или белками, очевидно, заключен определенный биологический смысл. Предполагают, что в А-форме ДНК выполняет роль матрицы в процессе транскрипции (синтез РНК на молекуле ДНК), а в В-форме—роль матрицы в процессе репликации (синтез ДНК на молекуле ДНК). [c.110]

    Вскоре после появления теории междуионного притяжения Дебая и Гюккеля данные о растворимости стали широко использовать для проверки справедливости этой теории. Бренстед и Ла-Мер [10] определили растворимость комплексных кобальтамминов 1,1-, 2,1- и 3,1-валентных типов. Значительно позже была измерена растворимость аналогичных соединений типа 2,2 и 3,3 [И]. Эти данные подтвердили, что фактор валентности в теоретическом уравнении имеет правильное значение, и показали, что пропорциональность значения lgy квадратному корню из ионной силы соблюдается весьма точно. В некоторых случаях [12] вычисленные на основании этих опытов данные согласуются с численными значениями теоретического коэффициента наклона. Позднее Ла-Мер и другие исследователи наблюдали резкое изменение величины наклона при достижении концентрации растворенного вещества, соответствующей насыщенному раствору в воде. Бакстер [13] подтвердил справедливость теоретических данных при 75° путем измерения растворимости иодата серебра в растворах солей. Измерения растворимости в органических растворителях с низкой диэлектрической постоянной, как правило, дают результаты, которые согласуются с теоретическими данными лишь качественно. [c.419]

    То молекул, то отличия В всличине этой энергии для разнык кислот не сказываются на изменении их относительной силы. Различие в энергии взаимодействия растворителя с молекулами кислот разной природы, как мы уже видели, связано с индивидуальными особенностями во взаимодействии полярной части молекул с дипольными молекулами растворителей. Различие во влиянии растворителя на изменение энергии ионов объясняется особенностями их структуры и отличием энергии их взаимодействия с дипольными молекулами растворителей. Например, различие в энергии взаимодейстЕия ионов карбоновых кислот и фенолов объясняется тем, что карбоновые кислоты при ионизации изменяют свою структу ру так  [c.641]


Смотреть страницы где упоминается термин Изменение растворителя и ионной силы: [c.15]    [c.69]    [c.339]    [c.69]    [c.185]    [c.184]    [c.340]    [c.31]    [c.99]    [c.575]    [c.482]    [c.50]    [c.110]   
Смотреть главы в:

Кинетика в аналитической химии -> Изменение растворителя и ионной силы




ПОИСК





Смотрите так же термины и статьи:

Ионная сила

Растворитель ионита



© 2024 chem21.info Реклама на сайте