Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Задачи и возможности газовой хроматографии

    Данная задача наглядно показывает возможности молекулярно-адсорбционной хроматографии. Схема работы близка по принципу к газовой хроматографии. Задача по разделению красителей на колонке с окисью алюминия в известной степени заменяет лабораторную работу по газовой хроматографии. При некоторой дополнительной затрате времени предлагаемую задачу можно в конце изменить, собирая не весь элюат каждого красителя в один сосуд, а отбирать отдельно и фотометрировать последовательно равные порции вытекающей жидкости. Это позволит составить выходную кривую для отдельных компонентов и познакомиться с методикой, принятой, например, для работ по разделению радиоактивных компонентов и т. п. В то же время построение выходной кривой делает такую задачу еще более близкой к газовой хроматографии задачу по газовой хроматографии трудно осуществить в учебной лаборатории за короткое время и самостоятельно. [c.62]


    Варьирование природы элюента и его давления в колонке в значительной степени способствует расширению возможностей газовой хроматографии как аналитического и препаративного метода, а также как метода физико-химического исследований. Фактически в газовую хроматографию вводится дополнительная переменная, с помощью которой можно в достаточно широких пределах управлять селективностью, эффективностью и сорбционной емкостью колонки. Естественно поэтому, что теория хроматографического процесса с неидеальными элюентами существенно сложнее, чем в обычной газовой хроматографии. Кроме того, при переходе к неидеальным элюентам необходимо решить целый ряд практических задач, связанных с разработкой узла подготовки элюента, с дозированием проб под давлением, с герметизацией аппаратуры, с учетом повышения летучести неподвижных жидкостей и изменения чувствительности и других характеристик детекторов, с интерпретацией получаемых хроматограмм. [c.3]

    За последние десять лет было получено решение ряда нестационарных задач в газовой хроматографии с помощью метода моментов. Благодаря относительной простоте использования метода удалось рассмо-треть довольно сложные процессы в хроматографической колонке с учетом продольного размывания, кинетики массопередачи внутри и вне частиц сорбента. Кро.ме того, стала возможной дальнейшая детализация механизма удерживания и размывания полос в хроматографии, позволившая учесть неоднородность сорбента, хи- [c.39]

    Задачи и возможности газовой хроматографии [c.322]

    Многообразие задач, решаемых аналитической реакционной газовой хроматографией, вызывает необходимость использования различных схем. На рис. VI.И приведены возможные схемы сочетания реактора и хроматографа. [c.197]

    Индексы удерживания являются весьма информативной и удобной формой представления данных по относительному удерживанию органических соединений самых различных классов и в настоящее время с успехом используются при решении даже таких сложных задач, как, например, идентификация компонентов нефти или исследование запаха пищевых продуктов. Их можно применять, в частности, и для расчета абсолютных параметров — удельных удерживаемых объемов идентифицируемых соединений при любых условиях анализа, если в тех же условиях определены удельные удерживаемые объемы не менее четырех н-алканов, в том числе служащих в качестве стандартов при измерении индексов [391. Такой косвенный путь нахождения Vg (в сравнении с весьма трудоемким экспериментальным определением) существенно расширяет возможности их использования в качественном газохроматографическом анализе. Обсуждению самых разнообразных аспектов применения индексов удерживания Ковача в аналитической газовой хроматографии посвящен обзор [401. [c.168]


    Прогресс в газовой хроматографии был достигнут с помощью высокоэффективных хроматографических колонок. Очень трудные задачи разделения компонентов, весьма сходных по свойствам, возможны лишь на высокоэффективных хроматографических колонках. Однако для многих целей использование хроматографических колонок с максимальной разделительной способностью либо не является необходимым, либо нецелесообразно, так как процесс приготовления такой колонки оказывается слишком трудоемким, а продолжительность анализа слишком велика. Если принять во внимание это обстоятельство, то прежде всего следует иметь в виду цели применения хроматографической колонки. [c.67]

    Основные требования, предъявляемые к методу газовой хроматографии вообще,— это высокая разделительная способность, малое время анализа, высокая чувствительность и возможность точного количественного расчета хроматограмм. Изменение параметров опыта вызывает различное изменение этих критериев. При стационарной хроматермографии правильный выбор условий опыта также требует компромиссного решения, отвечающего наилучшим образом поставленной аналитической задаче. [c.419]

    Приведенные уравнения показывают, что разделительная способность хроматографической колонки является функцией большого числа параметров, влияющих на эффективность проведения анализа. Умение управлять этими параметрами позволяет экспериментатору расширить возможности применения газовой хроматографии для решения различных специальных задач, в том числе задач, связанных с изучением и совершенствованием процессов горения. [c.99]

    Выбор диаметра колонки лимитируется двумя главными факторами увеличением ВЭТТ за счет поперечной диффузии с ростом диаметра и снижением сорбционной емкости колонки при его уменьшении. Очевидно, что в тех случаях, когда процесс разделения не лимитируется количеством макрокомпонентов в пробе, оправдано уменьшение диаметра. Так, в капиллярной хроматографии используют микроколонки диаметром вплоть до 20 мкм. Применение подобных колонок вводит существенные ограничения по количеству разделяемых веществ. При анализе смесей с большим разбросом по содержанию отдельных компонентов в режиме высокоэффективной хроматографии оправдано увеличение диаметра колонок до 2-3 мм. Это позволяет увеличивать количество пробы без нарушения линейности изотермы межфазного распределения для компонентов, определяющих загрузку колонки. В обычной жидкостной и газовой хроматографии диаметр колонки составляет 5-10 мм (в жидкостной) и 2-4 мм (в газовой) хроматографии. Но и здесь в соответствии с решаемой задачей возможны существенные отклонения в обе стороны минимально до 2-3 мм, максимально до 50-60 мм и более. Причем верхний предел определяется решением не только препаративных задач, но и чисто аналитических, например в эксклюзионной хроматографии. [c.186]

    Решение второй задачи, хотя и было заложено в судебной химии много лет назад, становится возможным лишь теперь с появлением и развитием новейших методов аналитической химии, таких, как разнообразные виды хроматографии и особенно тонкослойная и газовая хроматография, микрохимия, в частности микрокристаллоскопия с кристаллооптикой, оптические методы анализа (фотоэлектроколориметрия и спектрофотометрия), экстракционные методы анализа, люминесцентный, электрохимические электродиализ, электрофорез), радиохимические методы и др. [c.7]

    За последние 10—12 лет газовая хроматография, кроме решения аналитических задач, широко используется для определения удельной поверхности твердых тел. Преимущество этого метода перед статическими заключается в том, что он не связан с вакуумной аппаратурой, обладает высокой чувствительностью, позволяет определять поверхность от 0,01 до 1000 м 1г. Газохроматографические установки просты в монтаже и эксплуатации, высокопроизводительны и дают возможность определять величины удельных поверхностей в условиях, близких к условиям протекания адсорбционных и каталитических процессов. [c.116]

    Одной из характерных особенностей газовой хроматографии является простота аппаратуры, обеспечивающей возможность применения этого метода в широкой области практических задач разделения смесей. Даже наиболее совершенные приборы содержат [c.48]

    Современная газовая хроматография располагает большими возможностями для решения разнообразных задач. [c.371]

    Книга включает три раздела методические вопросы и аппаратура, теория хроматографии и использование газовой хроматографии в науке и технике. В частности, среди предложенных высокочувствительных детекторов привлекают наибольшее внимание пламенно-ионизационный и Р-ионизационный аргоновый детекторы, работе которых и посвящен в основном первый раздел. Во втором рассматриваются факторы, влияющие на эффективность и разделяющую способность найлоновых капиллярных колонок факторы, определяющие максимальную температуру, допустимую при использовании неподвижной фазы в ходе решения различных задач, и другие вопросы, В третьем на многочисленных примерах показаны исключительные возможности, которыми располагает газовая хроматография. [c.4]


    Это изотактические (а), синдиотактические (б) и атактические формы (в) 0 всеми переходами от строгого повторения одной и той же ориентации через правильное чередование противоположно ориентированных радикалов к полному беспорядку. Число вариантов быстро увеличивается с переходом к сополимеризации двух, трех и более разных мономеров. Между тем в живых организмах белковые полимеры содержат одновременно до двадцати видов мономерных звеньев, принадлежащих разным аминокислотам. Даже одна лишь расшифровка последовательности расположения этих аминокислот представляет труднейшую задачу, а возможное число сочетаний здесь необычно велико. Это является основой индивидуализации белкового строения не только видов, но и отдельных особей. В живом организме строго регулярный синтез индивидуальных белков и нуклеиновых кислот обеспечивается серией строго коррелированных каталитических процессов. В полимеризации и сополимеризации, проводимой в лабораториях и в промышленности, также достигнуты результаты, хотя сильно уступающие биосинтезу полимеров, но имеющие выдающееся практическое значение. Действительно, отыскание удачного катализатора и правильный выбор условий позволяют из одних и тех же мономерных кирпичиков строить различные полимерные структуры. Рассмотрим некоторые особенности этих процессов, несмотря на то, что методы газовой хроматографии пока мало применялись к изучению стереорегулярной полимеризации. [c.45]

    Однако особенно плодотворной для изучения кинетики адсорбции оказалась теория газоадсорбционной хроматографии, подробно разработанная рядом чехословацких исследователей, с использованием метода моментов, широко применяемого в статистике. Впервые метод моментов для анализа хроматографических процессов был предлон ен Туницким. Теория моментов, используемая для решения линейных задач газоадсорб-циопной хроматографии, позволяет по форме хроматографического пика учесть действие продольной диффузии в газовой фазе, радиальной диффузии внутри поры частицы катализатора и конечной скорости адсорбции молекулы внутренней поверхностью поры. Опубликованные к настоящему времени работы показали большие возможности газовой хроматографии в исследовании процессов переноса и кинетики адсорбции на катализаторах. Попытка использования этого метода для изучения кинетики хемосорбции до последнего времени встречала, однако, серьезные затруднения из-за нелинейности обычной изотермы хемосорбции даже в области сравнительно невысоких парциальных давлений адсорбата. Поэтому, строго говоря, кинетику хемосорбции нельзя описать системой линейных дифференциальных уравнений. Переход же в линейную область путем значительного снижения концентрации адсорбата может быть осложнен влиянием неоднородности поверхности. В связи с этим большой интерес представляет оригинальная изотопная методика определения скорости хемосорб-ции водорода, описанная в главе четвертой, в которой показана возможность обработки экспериментальных данных по кинетике хемосорбции в случае нелинейных изотерм с использованием аппарата теории моментов. Б дальнейшем, по-видимому, эту идею можно будет обобщить на другие системы путем применения к ним методов, близких методам описания вэ- [c.5]

    Выбор конкретных условий проведения хроматографического анализа определяется тремя основными факторами а) составом анализируемой смеси б) поставленной аналитической задачей и в) имеющейся аппаратурой. К настоящему времени опубликовано знесколько тысяч методик хроматографического анализа, однако ими нельзя ограничиваться, во-первых, в связи с непрерывным ростом числа аналитических задач, а во-вторых, потому, что разработка новых сорбентов, новых вариантов анализа и новых детектирующих устройств в свою очередь требует дальнейшего увеличения аналитических возможностей газовой хроматографии и привязки ее к конкретным объектам, т. е.. разработки новых методик. Ниже будут рассмотрены лишь основные особенности анализа веществ различных классов и изложены отдельные методики, представляющиеся наиболее важными. Подробные данные о применении газовой хроматографии для исследования различных объектов имеются в специальных монографиях. Сюда относятся применение газовой хроматографии для исследования газов [1], вредных веществ в воздухе [2], вефти и продуктов ее переработки [3, 4], пищевых продуктов [5], хелатов металлов [6], работы по использованию этого метода в биологии и медицине [7, 8], химии древесины [9], химии полимеров [10] и т. д. [c.228]

    В настоящее время накоплено достаточно экспериментальных данных, свидетельствующих о больших возможностях газовой хроматографии в качестве дополнительного средства для определения пестицидов и посторонних примесей в продуктах питания. При исследовании остаточного содержания пестицидов приходится иметь дело с весьма малыми количествалш, как, нанример, 1 мкг определяемого вещества в 1 г материала растительного или животного происхождения или почвы, т. е. с одной частью пестицида в миллионе частей анализируемого материала. Поэтому главной задачей анализа является выделение микроколичеств пестицида из макроколичеств постороннего вещества. [c.33]

    Несмотря на некоторые трудности работы с капиллярными колонками, они находят широкое применение при решении различных аналитических задач, иногда трудно разрешимых с помощью других способов газовой хроматографии. Это возможно вследствие ряда преимуществ капиллярных колонок черед наполненньши. Сюда относится возможность упеяичения скорости анализа при сохранении той же эффектиэностн разделения или увеличения эффективности по сравнению с обычной колонкой такой же длины при том же времени анализа возможность производить анализ с очень малыми пробами, что бывает необходимо, например, в важных биологических исследованиях возможность работы при давлениях, меньших, чем обычно требующиеся при [c.550]

    Самым эффективным из современных методов исследования состава слоншых смесей и структуры присутствующих в них компонентов можно считать хроматомасс-снектрометрию, сочетающую огромную разделительную способность газовой хроматографии с высокой чувствительностью и идентификационной мощью масс-снектрометрии (метод ГХ — МС). Для создания этого метода потребовалось решить две главные технические задачи разработать быстродействующие масс-спектрометры с очень большой скоростью развертки спектров (за время, меньшее времени элюирования любого соединения из ГХ колонки) и специальных сепарирующих устройств для концентрирования элюатов. Современные масс-спектрометры позволяют получить спектр вещества в интервале массовых чисел 50—500 за время, меньшее 1 с, при разрешении т/Ът= 500 и более [328, 329]. Отделение большей части (80— 90%) газа-носителя от элюирующихся органических соединений, необходимое для поддержания в масс-спектрометре низких остаточных давлений, возможно с помощью молекулярных сепараторов различных типов струйных [330, 331], эффузионных с тонконорис-тыми стеклянными трубками [332] или металлическими мембранами [333, 334], сепараторов с полупроницаемыми полимерными мембранами (тефлоновой [335], силиконовой [336]) и др. [c.40]

    Применение проявительного варианта в препаративной хроматографии позволяет осуществлять периодическое разделение смеси веществ. Для повышения производительности метода увеличивают диаметр колонки, что дает возможность значительно увеличить объем пробы. Оба эти фактора, однако, снижают эффективность разделения. Поэтому установление связи между диаметром колонки и ее удельной нагрузкой, с одной стороны, и эффективностью разделения, с другой — является основной задачей теории препаративной газовой хроматографии. [c.150]

    Важнейшей задачей является увеличение числа разделяемых газов. Развитие препаративной газовой хроматографии даст возможность выделять большие количества чистых летучих веществ из сложной смеси сходных соединений. В этом случае газовая хроматография приблизится к методу фракционной перегонки. [c.245]

    Практически не представляется возможным на основании литературных данных составить сравнительную таблицу точных значений ВЭТТ для насадок или коэффициентов полезного действия тарелок для тарельчатых колонок. Испытания эффективности про водили с самыми разнообразными эталонными смесями при самых различных условиях, В редких случаях делались указания нн условия, приведенные в главе 4,10 в качестве наиболее необходп мых. Разработка стандартного метода испытания эффективности является неотложной задачей, так как только таким путем можно будет получать сравнимые данные. Кроме того, в ряде случаев нри испытаниях применяли эталонные смеси недостаточной чистоты, а растворенная в пробе смазка кранов могла исказить результаты. По-видимому, необходимо составить новые характеристики эффективности важнейших насадочных и наиболее употребитель ных тарельчатых колонок с учетом вышеизложенного и с привлечением последних достижений науки и новейших методов анализа, например инфракрасной спектроскопии, газовой хроматографии и масс-спектрометрцческих методов измерения. [c.184]

    Возможность широкого варьирования коэффициентов активности путем подбора подходящих жидких фаз — важнейшая отличительная черта газовой хроматографии, которая имеет много общего с экстрактивной дистилляцией. На эту связь указывал Рек (1956). При помощи экстрактивной дистилляции можно разделить трудноразделяемые или азеотропные смеси посредством присадок третьего, относительно малолетучего вещества. Главная задача при этом сводится к подбору подходящего селективного растворителя для разделения. Как указывал Рёк (1956, 1960), в трехкомпонентной смеси растворитель — вещество 1 — вещество 2 для коэффициента разделения веществ 1 и 2 в случае бесконечного разбавления имеет место зависимость [c.451]

    Количественный анализ аминокислот методом ГХ представляет несомненный интерес. Как правило, количественное определение аминокислотного состава пептида является одним из решающих моментов анализа последовательности. Поскольку при деградации крупного белка образуется большое число фрагментов, желательно затрачивать на анализ каждого из них минимальное количество времени и вещества. Привлечение в данном случае ГХ достаточно хорошо удовлетворяет этим условиям. Многочисленные исследования по ГХ аминокислот в конечном итоге направлены на решение этой задачи. Однако к действительно эффективному количественному методу предъявляются несоизмеримо более высокие требования, чем к качественному. Если учесть к тому же трудности получения и разделения производных аминокислот, станет ясно, почему до сих пор не разработан стандартный метод их количественного определения с помощью газового хроматографа. Основные трудности связаны, как подчеркивалось в разделе о получении производных, с полифункциональными аминокислотами. Метод, игнорирующий их идентификацию, может найти лишь ограниченное применение. Количественный анализ только простых аминокислот не может удовлетворять экспериментатора [40]. Вопрос о том, все ли аминокислоты, встречающиеся в белках, можно определять ГХ с достаточной точностью, все еще остается открытым. Здссь можно только вкратце рассмотреть имеющиеся условия и возможности. Проблемы, связанные с аппаратурой, необходимой для количественной ГХ, уже обсуждались ранее (см. стр. 302). [c.335]

    Известно более 1000 неподнижных фаз, нашедших применение в газовой хроматографии. Стремление резко ограничить число применяемых неподвижных фаз неправомерно, поскольку именно возможность реализации различного типа межмолекулярных взаимодействий — сильная сторона газожидкостной хроматографии. Применение нашло около 100 достаточно часто используемых неподвижных фаз, из которых 20 используют примерно в 60—70% всех хроматографических анализов. Применение капиллярных хроматографических колонок с их высокой эффективностью в какой-то мере дало возможность снизить требования к селектин-ности и сделать эти 20 фаз достаточными примерно для 80% разделений. Однако всегда найдутся задачи, для кбторых селективность каких-либо неподвижных фаз является уникальной. [c.102]

    До недавнего времени было принято считать, что число сорбентов для ВЭЖХ сравнительно невелико, особенно в сопоставлении с газовой хроматографией, и задачи разделения в большее мере решаются правильным выбором подвижной фазы. Однако в последнее время число типов сорбентов для всех вариантов ВЭЖХ существенно возросло. Наряду с сорбентами универсального типа появились сорбенты специального назначения, дающие возможность успешно решать специфические задачи, например разделение белков, определение лекарственных препаратов в сыворотке, разделение О- и -изомеров и т. д. [c.225]

    Этот хроматограф пришеЛ на смену известному хроматографу ВЕГА. Газовый хроматограф серии 8000 сконструирован в соответствии с требованиями современных автоматизированных лабораторий, позволяет опеспечить решение многих аналитических задач, экономить лабораторную площадь, увеличить число производимых анализов, экономить текущие расходы. Прибор обеспечивает возможность выбора различных детекторов и капиллярных иа-садочных колонок, идеаль ю отвечает требованиям эффективного проведения текущих анализов, обладает возможностями комбинирования различных детекторов и инжекторов и удовлетворяет большинству жестких требований исследовательских лабораторий. [c.451]

    Последним из хроматографических методов, разработанных на основе теории распределительной хроматографии Мартина и Синджа, явилась колоночная хроматография в жидкой фазе. Этот метод развивался сравнительно медленно из-за высоких требований к аппаратуре, необходимой для его реализации. Только в последние годы жидкостная хроматография получила широкое распространение благодаря исключительно большим возможностям применения как в аналитических, так и препаративных целях, причем скорость анализа и его высокая чувствительность компенсируют высокую стоимость соответствующих приборов. Хотя метод жидкостной хроматографии имел те же предпосылки для развития, что и метод газовой хроматографии, в решении некоторых аналитических задач, прежде всего в области высокомолекулярных соединений, жидкостная хроматография имеет большие преимущества. Тем не менее в большинстве аналитических лабораторий жидкостная хроматография не может вытеснить хроматографию в тонких слоях, поскольку ТСХ выгодно отличается простотой оборудования и обслуживания и малыми затратами денежных средств. [c.14]

    В газовой хроматографии традиционно используется небольшое число типов адсорбентов силикагель, оксид алюминия, молекулярные сита, графитированная сажа и пористые полимеры. Каждый из них дает возможность решения нескольких хорошо определенных аналитических задач. Последние разработки широкого круга адсорбента для ВЭЖХ привели к изобилию новых материалов, отдельные из которых могли бы быть очень полезными для газовой хроматографии. Большинство силикагелей с ириви1ыми фазами могут быть использованы np i темпе- [c.100]

    Постоянное увеличение числа нормируемых в водах органических веществ делает задачу их определения актуальной [1]. Около половины нормируемых веществ может быть определено методом газовой хроматографии, но из-за низких значений предельно допустимых концентраций (ПДК) прямое определение возможно лищь для 10% соединений. Основное же количество может быть определено методом газовой хроматографии с предварительным концентрированием. Одним из перспективных методов концентрирования следовых количеств органических соединений является сорбционное концентрирование с последующей термической десорбцией в газовую линию хроматографа. Используя различные сорбенты и применяя ступенчатую десорбцию, можно значительно повысить чувствительность и селективность анализа. [c.144]

    К числу основных задач в области газовой хроматографии относится задача улучшения разделения компонентов смесей. Для этой цели эффективно использование так называемых реакционных методов, т. е. методов, включающих химические реакции. Химическая обработка возможна на разных стадиях процесса, например при разделении аминокислот нужно сначала защитить активные функциональные группы, при анализе высокополимерных веществ применяют гидролиз. Для увеличения избирательности газохроматографического определения нужна разработка селективных детекторов. Другие задачи включают увеличение экспрессивности анализа, что может быть достигнуто, в частности, повышением давления вплоть до 2—3 млн. Па, а также разработку методов определения микропримесей. [c.93]

    Р. Роуэн [5] подробно исследовал возможность применения в газовой хроматографии реакции гидрирования и дегидрирования для аналитических целей. Он показал, что проведение селективного гидрирования ароматических углеводородов и олефинов как групповой реакции не является сложной задачей. Экспериментально было показано, что платиново-глиноземный катализатор (1,4% платины на окиси алюминия), содержащий галоген, является лучшим для этой цели. Исследование гидрирования и дегидрирования проводилось, в основном, в следующих стандартных условиях высота слоя катализатора 13 см, диаметр реактора 6 жж, навеска катализатора 1,5 г, температура 299° С, скорость гелия (водорода) 60—70 мл/мин. [c.55]

    Образование производных неорганических соединений. Задачей образования производных этого типа является получение летучих соединений, достаточно устойчивых для газохроматографического анализа. Хлориды и фториды летучих металлов имеют достаточную летучесть, их используют для газохроматографического анализа, который дает ценную информацию. Так, Звара, разработавший оригинальные методы газохроматографического анализа неорганических соединений, писал, что по сравнению с другими методами газовая хроматография и термохроматография дают не менее убедительные результаты. Эти методы привлекательны не только из-за максимальной эксирессности, т. е. в чисто экспериментальном плане. Помимо этого, по сравнению с водной химией, они дают возможность изучить новые, принципиально важные свойства трансактиноидных элементов [81]. [c.43]

    Хотя общие методы установления структуры вещества по продуктам пиролиза не разработаны и решение подобных задач весьма индивидуально и требует высокой квалификации и химической интуиции химика-исследователя, возможно сформулировать несколько положений, которые следует принимать во внимание. Во-первых, аналитический пиролиз целесообразно проводить в условиях, когда роль вторичных реакций невелика, в частности обращая внимание на возможность осуществления пиролиза при пониженных температурах. Вопвторых, идентификацию образующихся продуктов желательно проводить, используя капиллярные колонки и селективные детекторы (например, масс-спект-рометр, пламенно-фотометрический я др.). В-третьих, в эксперименте особое внимание следует обращать на анализ и идентификацию тяжелых продуктов, которые, по-видимому, в большей мере отражают структуру исходного полимерного образца. В-четвертых, определение функциональных групп в ряде случаев также можно проводить методом пиролитической газовой хроматографии, Особенно целесообразно этот метод иопользовать для определения тех функциональных групп, элементный состав которых отличается хотя бы по одному элементу от элементного состава других частей анализируемой молекулы. Так, в литературе [45] описан метод определения степени этерификации ксанто-гената целлюлозы. Основным продуктом пиролитических превращений дитиокарбоновых групп является се- [c.97]

    К сожалению, газо-адсорбциопная хроматография не нашла достаточно широкого применения как из-за недостаточной линейности изотерм адсорбции ряда определяемых веществ, так и из-за чрезмерно высоких потенциалов адсорбции высококипящих компонентов, многие из которых при тепловой регенерации подвергаются необратимым изменениям на поверхности сорбента (полимеризации, осмолению и т. п.), приводящим к сильному изменению свойств последнего. Высокое адсорбционное сродство к воде полярных сорбентов также является существенным недостатком, порождающим невоспроизводимость результатов при повторных определениях. Преимуществами газо-адсорбционной хроматографии являются возможность разделения низкокипящих газов (при больших удельных поверхностях сорбентов и близких к линейным изотермах), высокие коэффициенты селективности К ) и возможность работы при высоких температурах. Кроме того, меняя природу сорбента и температурный режим его работы, можно обеспечить не только высокие К , но и широкий диапазон компонентов, определяемых в одном опыте. Из сказанного следует, что одной из центральных задач газовой хроматографии является подбор и разработка сорбентов с оптимальными поверхностными свойствами и пористой структурой. [c.69]

    Для анализа низших спиртов с одной гидроксильной группой лучше использовать газовую хроматографию, в то время как жидкостная хроматография успешнее используется для разделения и определения высших свободных спиртов и их производных. Для разделения спиртов и гликолей методом жидкостной хроматографии используются простые сорбенты, а также ионообменные смолы и гели. За последнее время были разработаны новые сорбенты и носители, например пористая двуокись кремния, в виде микросфер, которые дают возможность достигнуть существенного увеличения скорости разделения [1]. Когда анализируют диолы, главным образом полимерные соединения типа по-лиэтиленгликоля, наиболее важной задачей является определение молекулярной массы. Для этой цели наиболее подходящей является гель-проникающая хроматография, но может также применяться и силикагель. [c.22]


Смотреть страницы где упоминается термин Задачи и возможности газовой хроматографии: [c.446]    [c.446]    [c.446]    [c.31]    [c.282]    [c.250]    [c.279]    [c.170]    [c.69]    [c.196]    [c.144]   
Смотреть главы в:

Экспериментальные методы в адсорбции и молекулярной хроматографии -> Задачи и возможности газовой хроматографии




ПОИСК





Смотрите так же термины и статьи:

Газовая хроматография хроматографы

Хроматограф газовый

Хроматография газовая



© 2025 chem21.info Реклама на сайте