Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая связь и строение вещества. Ковалентная связь

    Физические свойства. Полученный указанными выше способами аморфный кремний представляет собой бурый порошок с температурой плавления 1420°С. Существует и другая аллотропная модификация кремния — кристаллический кремний. Это твердое вещество темно-серого цвета со слабым металлическим блеском, обладает тепло-и электропроводностью. Кристаллический кремний получают перекристаллизацией аморфного- кремния. Аморфный кремний является более реакционноспособным, чем химически довольно инертный кристаллический кремний. Кристаллический кремний — полупроводник, его электропроводность возрастает при освещении и нагревании. Это обусловлено строением кристаллов. Структура кристаллического кремния аналогична структуре алмаза. В его кристалле каждый атом окружен тетраэдрически четырьмя другими и связан с ними ковалентной связью, хотя эта связь значительно слабее, чем между атомами углерода в алмазе. В кристалле кремния даже при обычных [c.419]


    Катализатор вступает в химическое взаимодействие с одним или обоими реагирующими веществами, образуя при этом промежуточное соединение (АХ) и входя в состав активированного комплекса. После каждого элементарного химического акта он регенерируется и может вступать во взаимодействие с новыми молекулами реагентов. Таким образом, катализатор направляет химическую реакцию по принципиально новому пути, который отличается от некаталитического числом и природой промежуточных соединений, составом и строением переходного комплекса. Природа сил, вызывающих взаимодействие катализатора и реагентов, та же, что и для обычных химических соединений. Это прежде всего ковалентная связь, донорно-акцеп-торное и кулоновское взаимодействие, водородная связь. Для возникновения химической связи требуется определенное соответствие молекулярных орбиталей реагирующих молекул и катализатора до энергии и симметрии, поэтому катализаторы обладают свойством ус- [c.617]

    Изомерия и ковалентная связь — главные особенности органических соединений. Явления изомерии, многообразие органических соединений объясняет теория химического строения веществ А. М. Бутлерова. [c.176]

    Для большинства ковалентных молекул существует единственная электронная формула, описывающая химическую связь в каждой молекуле. Однако в некоторых случаях можно записать две или даже большее число одинаково удовлетворительных электронных формул, в которых учтены валентности всех атомов данного вещества. В таких исключительных случаях приходится иметь дело с так называемым резонансом. Представление о резонансе связано с использованием не слишком удовлетворительного приближения, с помощью которого мы пытаемся описывать химическую связь в молекулах привычным способом составления электронных формул. В подобных случаях отдельные электронные формулы называют резонансными структурами, а истинное электронное строение молекулы, которое мы пытаемся описать, называют резонансным гибридом. [c.123]

    В кристаллическом же состоянии электрические моменты диполей отдельных связей (даже если они и существуют) взаимно скомпенсированы и суммарный собственный электрический момент диполя в кристалле равен нулю. Поэтому исследования поляризационных явлений в кристаллах дают мало информации о направленности связей и структуре. Однако и в кристаллическом состоянии эта направленность существует, что особенно ярко проявляется в кристаллах с преимущественно ковалентной связью (кремний, германий, 1пР, 2п5 и т. п.). Связи в таких кристаллах направлены к вершинам тетраэдра (см. рис. 3 и 4), поэтому подобные вещества часто называют тетраэдрическими фазами. Жесткая пространственная направленность ковалентных связей предопределяет образование рыхлых кристаллических структур с низкими координационными числами (как правило, не выше четырех). Для солеобразных и металлических кристаллов, в которых доминирует, соответственно, ионная и металлическая составляющая связи, характерны плотные и плотнейшие упаковки с координационными числами 6—8 для ионных и 8—12 для металлических решеток. Здесь значительную роль играют размеры взаимодействующих атомов, которые и определяют координационное число в кристаллических решетках. Однако при этом сохраняется определенная направленность химической связи, что проявляется в пространственной периодичности строения кристаллов. На существование электронных мостиков между взаимодействующими атомами указывают [c.82]


    Образование устойчивой электронной конфигурации может происходить несколькими способами и приводить к молекулам (и веществам) различного строения, поэтому различают несколько типов химической связи. Таковы ионная, ковалентная и донорно-акцепторная (координационная) связи. Кроме этих видов связей существуют другие, не относящиеся непосредственно к рассмотренным электронным оболочкам. Таковы водородная и металлическая связи. Далее мы рассмотрим каждый из указанных типов связи отдельно, но прежде необходимо рассмотреть понятие валентность элементов . [c.42]

    Электролиз расплавленных солей проводится при температурах, незначительно превышающих температуру их кристаллизации. При таких температурах строение расплавов сохраняет некоторое сходство со строением твердых веществ. Такие свойства веществ, как объем и теплоемкость, упорядоченность кристаллической структуры и др., при плавлении изменяются несущественно. Это объясняется тем, что характер химической связи кристаллических веществ в твердом состоянии-—ионная, ковалентная, металлическая, — сохраняется и для веществ в расплавленном виде. Однако различие существует. При плавлении изменяется характер движения частиц. При повышении температуры степень неупорядоченности, имеющаяся в твердых кристаллах, возрастает и соответственно увеличивается электропроводность. Одновременно нарушается порядок расположения частиц в твердом веществе, т. е. уменьшается дальний порядок. При достижении температуры плавления дальний порядок полностью исчезает и вещество переходит в жидкость, но ближайшее окружение иона в жидком виде — так называемый ближний порядок — остается таким же, как и в твердом теле.. [c.465]

    Электролиз расплавленных солей ведут при температурах, незначительно превышающих температуру их кристаллизации. При этих температурах строение расплавов сохраняет некоторое сходство со строением твердых веществ. Такие свойства веществ, как объем и теплоемкость, упорядоченность кристаллической структуры и др., при плавлении изменяются относительно мало. Это объясняется тем, что характер химической связи кристаллических веществ в твердом состоянии — ионная, ковалентная, металлическая — сохраняется и для веществ в расплавленном виде. [c.442]

    Многообразие органических соединений объясняется. особенностями строения углеродного атома. Изучение строения и свойств органических молекул становится возможным благодаря стройной системе классификации. Наиболее простыми представителями соединений алифатического, алициклического и ароматического рядов являются углеводороды. Замещая атомы водорода в углеводородах на другие атомы или группы атомов (функциональные группы), можно перейти к различным классам органических соединений данного ряда. Соединения, содержащие одну и ту же функциональную группу, образуют гомологический ряд, представляющий собой ряд веществ, отличающихся друг 01 друга на любое число —СН2-групп. Детальное описание химической реакции называют механизмом реакции. Механизм протекания данной реакции зависит от многих факторов, важнейшими из которых являются природа реагирующих частиц, а также тип разрыва ковалентной связи. Различают гомолитическое и гетеролитическое расщепление связи. [c.316]

    Октетная теория явилась существенным прогрессом в уяснении природы химической связи. Она отразила различие между ИОННОЙ и гомеополярной, или ковалентной, связью, точнее охарактеризовала валентность некоторых элементов в их соединениях, в частности азота, кислорода и серы в ониевых солях, ввела понятие о координационной связи и необобщенных, или свободных, электронных парах. Все это позволило более успешно связать химическое строение органических соединений с их реакционной способностью и с их физическими свойствами. Изучение физических свойств органических веществ, проводимое с. 20-х годов нашего столетия новейшими физическими методами, позволило дать количественную характеристику химических связей, т. е. определить их длину, энергию, полярность, направление в пространстве и т. д. [c.98]

    Кроме величины химического сдвига (т. е. положения сигнала в спектре ПМР) первостепенное значение для определения строения органических веществ имеет форма (структура) сигналов. Простые синглетные сигналы (узкие полосы с одним максимумом) соответствуют, как правило, магнитным ядрам, в непосредственной близости от которых (на расстоянии до трех простых ковалентных связей) нет других магнитных ядер. Между близко расположенными магнитными ядрами через посредство связевых электронов осуществляется так называемое спин-спиновое взаимодействие, приводящее к расщеплению магнитных энергетических уровней и связанному с этим воз- [c.28]

    В пространственных (сетчатых) полимерах между цепями образуются химические связи. Если число поперечных химических связей намного меньше числа связей между атомами в основной цепи и если сетка имеет беспорядочное строение, то соединение сохраняет специфические для полимера свойства. При соединении атомов друг с другом только химическими связями с образованием трехмерной кристаллической решетки (при отсутствии межмолекулярных связей) вещество теряет свойства, специфические для полимеров. К таким веществам относится алмаз и все твердые тела аналогичной структуры, например карбид бора, окись алюминия (корунд) и др. В алма- е каждый атом углерода связан ковалентными химическими связями с четырьмя другими углеродными атомами, удаленными от него на расстояние 1,54 А. [c.17]


    Химические связи в органических соединениях обладают, как правило, ковалентным характером и поэтому история современных взглядов на строение и свойства органических молекул начинается с теорий, основанных не на понятии ионной, а на понятии ковалентной связи. Первые электронные теории в органической химии также были качественными. В основном они создавались путем, уже испытанным в классической теории химического строения и стереохимии. Исходя из экспериментальных открытий и теоретических положений физики в области строения вещества, в первую очередь строения атомов, высказывались гипотезы о роли и распределении электронов в органических молекулах и выводы из гипотез сопоставлялись с фактами. В первую очередь для сопоставления избирались химические свойства как потому, что они были лучше изучены в тот период, так и потому, что они больше интересовали химиков. С появлением квантовой механики и возникновением в конце 20-х годов квантовой химии положение изменилось — наметилось определенное поглощение качественных электронных теорий квантовохимическими, но первые в чистом своем виде в определенных рамках продолжали оставаться приемлемыми для интерпретации фактов, так же как остается пригодной и классическая теория химического строения. [c.57]

    Следует помнить, что нет отдельной ионной или ковалентной связи, есть ионная составляющая химической связи. Степень ион-ности межатомной связи определяет возможность образования молекул в данных условиях, а также то, ограничится ли их взаимодействие при отвердевании вещества только установлением ван-дер-ваальсовских связей между ними, или же молекулы перестанут существовать как самостоятельные структурные единицы. Действительно, появление даже слабой ионной составляющей межатомной связи часто увеличивает ее прочность как раз настолько, насколько это необходимо, чтобы образующаяся молекула могла выстоять под ударами теплового движения, разбрасывающего атомы в разные стороны, и чтобы они не соединились друг с другом в каком-нибудь другом порядке. Полярные молекулы, в которых преобладает ковалентная составляющая межатомной связи (такие, как молекулы воды, толуола), при переходе вещества в твердое состояние сохраняют свою целостность и служат структурными единицами, из которых строятся молекулярные кристаллы. При этом они вступают в межмолекулярное электростатическое взаимодействие друг с другом, от которого в значительной мере зависят строение и многие свойства соответствующего твердого вещества, в частности температура плавления, растворимость. [c.83]

    Структурные формулы, или формулы строения, показывают порядок связи между атомами в молекуле вещества, т. е. химическое строение. В таких формулах ковалентные связи изображают черточками, например  [c.124]

    ДВОЙНАЯ СВЯЗЬ — химическая связь, осуществляемая двумя единицами валентности за счет четырех общих электронов между атомами в молекулах разных веществ, например, у кислорода 0=0, этилена СН2=СН2. С точки зрения электронной теории валентности Д. с. относится к ковалентной, или гете-рополярной, связи. Электронное строение этилена изображают формулой  [c.83]

    Из изложенного следует, что определение дипольного момента позволяет сделать заключения о характере химической связи (ионная, полярная или ковалентная) и о геометрической структуре молекулы. Так, для определения строения вещества вычисляют (по правилу сложения векторов) для различных моделей. Правильной [c.139]

    Отсутствие неспаренных электронов указывает на невозможность образования соединений за счет ковалентной связи, поэтому молекулы простых веществ, образуемых этими элементами, одноатомны. Особенности строения и высокая химическая инертность определили групповое название — благородные газы. [c.227]

    С введением в органическую химию электронных представлений, основанных на понятии ковалентной связи, как мы уже говорили, возникла современная теория химического строения. Правда, это не значит, что классическая, т. е. безэлектронная, теория химического строения сошла со сцены. Такой вывод был бы совершенно ошибочен. Будучи более грубым приближением к действительности, чем электронные теории, классическая теория продолжает верно служить органической химии. На классическую теорию в первую очередь опираются при исследовании строения природных веществ, к ней и классической стереохимии обращается почти вся синтетическая химия, она лежит в основе систематики и номенклатуры сотен тысяч органических соединений. Более того, применяя различные корреляционные соотношения и, в частности, прибегая к представлению о типах и подтипах связей, можно создать феноменологические теории зависимости между химическим строением и разнообразными физическими и физико-химическими свойствами органических молекул. Эти зависимости имеют уже количественную формуй. [c.351]

    Современное состояние учения о химической связи и строении молекул позволяет рассмотреть вопросы взаимного влияния атомов в составе молекул органических веществ более подробно и конкретно. Если сопоставить между собой связи, образованные атомом углерода и атомами других элементов, обладающих различной электроотрицательностью (ЭО), то можно оценить искажение электронного облака атома углерода, образовавшего связь (табл. 14.1). Следовательно, образуя ковалентно-полярные связи, [c.448]

    Например, чтобы понять механизм электролитической диссоциации веществ с ионной и полярной ковалентной связью в Х классе, учащиеся должны хорошо знать, что такое электролиты, какое строение имеют молекулы и кристаллы веществ с различным видами химической связи. Самостоятельная работа может быть организована как фронтальная, чтобы быстрее и проще провести устное обсуждение ее результатов. Но если в классе заметно выделяются три группы учащихся с различной подготовкой в данный момент, то целесообразно провести индивидуальную самостоятельную работу по дифференцированным заданиям. В частности, задание может быть таким. [c.50]

    Образование устойчивой электронной конфигурации может происходить несколькими способами и приводить к молекулам (и веществам) различного строения, поэтому различают несколько типов химической связи. Таковы ионная, ковалентная и донорно-акцепторная (координационная) связи. Кроме этих видов связей существуют другие, не относящиеся непосредственно к рассмотренным электронным оболочкам. Таковы водородная, металлическая и вандерваальсова связи. Далее мы рассмотрим каждый из указанных типов связи отдельно, но прежде нам необходимо рассмотреть понятие валентность элементов , так как имеет смысл говорить не просто о валентности элемента, но о валентности элемента в определенном химическом соединении. [c.70]

    Химическому соединению присуще только ему свойственное химическое или кристаллохимическое строение, В химическом или кристаллохимическом строении главное — это химическая связь, ее природа. Именно химические соединения характеризуются наличием химической связи. С этой точки зрения молекулы и кристаллы, построенные из одинаковых атомов, являются химическими соединениями, Атомы в молекуле водорода связаны ковалентной связью. Все свойства (физические, химические, спектральные и т,п,) молекулярного водорода отличны от атомарного , А по Менделееву, в результате химического взаимодействия образуется тело, отличное от взаимодействующих веществ. Еще большее различие в свойствах, например, металлической меди (атомы связаны металлической связью) от свойств составляющих атомов меди, Вообпд,е кажется странным, почему классическая химия считает, что в результате процесса Н + Г —> Н Р образуется химическое соединение, а в процессе И + Н —+ Н Н или Г + Р —> —> р—Р оно не возникает. Это по меньшей мере не логично. Естественно признание как гетероатомных (например, НР), так и гомоатомных химических соединений (Н2, р2, металлы и т,п,). [c.22]

    Поразительно, что еще в XIX в. химики сумели ввести такие понятия о структуре вещества, которые хорошо согласуются с современными представлениями, основанными на квантовой теории химической связи и на непосредственном определении структуры соединений методами дифракции электронов или нейтронов либо при помощи рентгеноструктурного анализа. Еще более поразительно то, что в появившейся в 1916 г. теории Косселя и Льюиса решающая роль в развитии представлений о возникновении химической связи отводилась электронам. (Напомним, что электрон был открыт Томсоном лишь за 19 лет до этого и что всего пятью годами раньше Резерфорд предложил планетарную модель атома.) Основными понятиями этой весьма успешной и продуктивной теории были электровалентность и ковалентность— качественные представления, которые до настоящего времени хорошо служат химии. На указанных представлениях о химической связи основана теория мезомерного и индуктивного эффектов, которая успешно применялась для объяснения данных, полученных в органической и неорганической химии (Робинсон, Ингольд, Арндт, Эйстерт). Несомненно также важное значение работ выдающихся ученых прошлого Кекуле, Купера, Бутлерова, Вернера и (по пространственному строению) Ле Бела и Вант Гоффа. [c.11]

    Некоторые свойства ионных кристаллов — соединений металлов с частично заполненными З -оболочками —хорошо объясняются в. рамках теории поля лигандов, созданной на основе предложенной Бете и Ван-Флеком теории кристаллического поля для твердых тел. Согласно теории поля лигандов, химическая связь в кристаллах соединений металлов является чисто ионной, ионы рассматриваются как точечные заряды, а их электрическое поле (с несферической симметрией ) вызывает расщепление Зй-уровня иона металла. Теорик> поля лигандов можно использовать для объяснения строения как комплексных соединений, так и различных твердых веществ, и в общем виде с учетом связывающих орбиталей лигандов она ближе к теории молекулярных орбиталей, чем к теории кристаллического-поля. Для учета отклонений от простого кулоновского взаимодействия точечных зарядов вводятся параметры, включающие степень ковалентности связи, поляризационные искажения за счет соседних зарядов величину отклонения от сферической симметрии ионов с частично-заполненной -оболочкой. С помощью теории групп можно объяснить и предсказать расщепление атомных уровней, соответствующее тому или иному типу симметрии внутреннего электрического поля в кристалле. [c.47]

    Обычно кристаллы образуются при охлаждении жидкостей или расплавов, при перенасыщении растворенным веществом холодных или горячих растворов, при конденсации газообразных и сублими- рованных веществ и в процессе перекристаллизации. Для образования кристалла необходимо, чтобы составляющие его частицы расположились в определенном, строго ориентированном порядке, т. е. чтобы эти структурные элементы образовали первичную кристаллическую ячейку, или так называемый центр кристаллизации. В дальнейшем, если первичная ячейка будет окружена средой, содержащей кристаллизирующееся вещество, и если для выделения его в кристаллическом виде созданы соответствующие условия (определенные температура и концентрация), то эта ячейка увеличи--вается в размерах, т. е. кристалл растет. При изменении условий, благоприятствующих кристаллизации, кристалл распадается. Образование как первичной кристаллической ячейки, так и всего кристалла в целом является следствием действия сил взаимного притяжения и отталкивания между составляющими кристалл частицами. К этим силам, или, как их еще называют, видам химической связи относят ионную, ковалентную или атомную связи, ван дерваальсовы, или молекулярные, силы и металлическую связь. Чаще всего взаимное упорядоченное расположение частиц, составляющих кристалл, осуществляется при помощи одного из перечисленных видов связи. Однако известны случаи, когда в строении кристалла одновременно находятся структурные элементы, в кото рых принимает участие несколько видов связи. [c.131]

    Наиболее простыми по молекулярной структуре химическими соединениями являются алканы нормального строения, которые имеют наибольшее число хорошо изученных гомологов. Их молекулы составлены (за исключением метана и этана) только из (СНз- ) и (-СНг-) структурных составляющих (из П 2 и П22 связей) с чисто ковалентными связями. В этой связи н-алканы нами рассматриваются как эталонные вещества, а остальные углеводороды и гете-роорганические соединения - как производные н-алканов (изоалканы как ал-килалканы, нафтены как алкилциклопентаны или алкилциклогексаны, ароматические - алкилбензолы и т.д.). [c.20]

    Одной из ваншейших задач, стоящих перед химической кинетикой, является изучение влияния строения веществ на кинетику химических реакщ1Й. Хорошо известно, что, наряду с обычными ковалентными связями, в молекулах большого числа соединений, в особенности органических, важным структурным фактором являются водородные связи, образуемые в опредолонных условиях валентно насыщенным атомом водорода с некоторыми другими, также валентно насыщенными атомами. Однако подавляющее большинство работ по изучению водородной связи до настоящего времени было направлено на выяснение условий ее образования, установление природы связи, изучение влияния этой связи на физические свойства различных соединений. И лишь в немногих разрозненных работах образование водородной связи связывается с химическим поведением веществ. [c.106]

    Использование представлений химии по.иимеров для объяснения поведения неорганических веществ связано с необходимостью различать два класса неорганических соединений полимерные и ионные. Иными словами, вид химической связи (ионная и ковалентная) между отдельными атомами и группами атомов, а также размеры отдельных атомов и ионов или молекулярных групп и способность атомов к изменению координации определяют строение и характер новедения веществ, используемых в качестве вяжущих. В то же время до сих пор внимание исследователей сосредоточивалось преимущественно на водородной связи [403, 464], роль которой в структурах гидроси-лпкатов несомненно значительна. [c.131]

    Система, описанная в работе [6], является дальнейшим развитием предыдущей в том плане, что учитывается пространственное строение молекул. Как и ранее, синтез ведется от конца к началу (от продуктов реакции к исходным веществам) по заранее определенному набору химических реакций. Аналогичный подход использован в системе [10]. Более обоснованными и перспективными являются методы, основанные на математическом описании структуры молекул и химических реакций и классифицируемые как логические методы [8, И]. В работе [8] для представления молекулы в качестве параметров используются тип атома и топо-тогическая структура связей между атомами в молекуле. При том акцент сделан на типы атомов углерода в молекуле в соответствии с природой связи углерода с другими элементами. В работе И] для характеристики молекулы используются три параметра естоположение атома в молекуле, ковалентные связи между томами и свободные электроны в каждом атоме молекулы. Послед- [c.443]

    Своеобразие химической связи в простых веществах-металлах, таким образом, состоит в отсутствии ковалентной составляющей, которая является главной компонентой связи в неметаллических простых веществах. С этой точки зрения кристаллическое строение металлов легче объяснить если учитывать главным образом ионное взаимодействие положительно зарял<енных ионов, т. е. атомов, потерявших свои валентные электроны (они перешли в зону проводимости). [c.253]

    Химические свойства. В молекулах галогенпроизводных атомы галогенов связаны с углеродными атомами при помощи ковалентных связей (стр. 28.) Поэтому галогенпроизводные не способны к электролитической диссоциации и не образуют ионов галогенов, как это имеет место в случае неорганических галогенсодержащих веществ (Na l, КВг, Nal и т. п.), в которых галогены соединены с металлами при помощи ионной связи. Тем не менее галогенпроизводные, как уже указано, представляют собой весьма реакционноспособные вещества, и атомы галогенов в них могут замещаться другими атомами и группами. Это объясняется тем, что ковалентные связи между атомами углерода и галогенов поляризованы (стр. 33). Прочность этих связей в разных соединениях неодинакова она зависит как от строения углеводородного радикала, так и от связанного [c.93]

    Направленность ковалентной связи. Направленность ковалентной связи является тем главным свойством, от которого зависит структура молекул и немолекулярных химических соединеЬий. Пространственная направленность ковалентной связи определяет химическое и кристаллохимическое строение вещества. Поэтому нередко МВС называют методом направленной валентности. [c.79]

    Данная глава посвящена физическим и химическим свойствам чистьк элементов и сходных с ними веществ. Строение этих веществ существенно отличается от рассмотренного нами ранее строения соединений с ионными и ковалентными связями. Металлические и неметаллические элементы существуют вследствие образования химической связи между одинаковыми атомами, что ограничивает число возможных молекулярных образований и способов расположения атомов в твердых веществах. Неметаллические элементы образуют неполярные ковалентные молекулы, начиная от двухатомных молекул типа Н2, О2, N2 или 2 и кончая гигантскими молекулами элементарного углерода и кремния. Ко всем этим системам вполне применимы те критерии, определяющие устойчивость молекул, которые были изложены в гл. 7 и 8. В этих системах все валентные атомные орбитали с достаточно низкой энергией заполнены связывающими или несвязывающими электронами а, геометрия молекул определяется отталкиванием валентных электронных пар. Поскольку атомы благородных газов обладают устойчивым электронным строением, эти элементы существуют в виде одноатомных молекул. Многие неметаллические элементы способны существовать в одной из двух или даже нескольких аллотропных форм в качестве примера можно привести углерод, существующий в виде алмаза и графита, а также кислород, элементарными формами которого являются О2 и О3 (озон). Размеры и строение молекул неметаллических элементов определяются теми же факторами, которые рассматривались в гл. 7 и 8. Некоторые из этих веществ будут подробно обсуждаться в разд. 22.5. [c.387]


Смотреть страницы где упоминается термин Химическая связь и строение вещества. Ковалентная связь: [c.280]    [c.391]    [c.345]    [c.357]    [c.6]    [c.79]    [c.152]    [c.72]    [c.230]    [c.109]    [c.161]   
Смотреть главы в:

Химия Пособие-репетитор для поступающих в вузы Изд2 -> Химическая связь и строение вещества. Ковалентная связь

Химия пособие-репетитор для поступающих в ВУЗы -> Химическая связь и строение вещества. Ковалентная связь




ПОИСК





Смотрите так же термины и статьи:

Вещества строение

Ковалентность

Связи ковалентные Связи

Связь ковалентная

Строение химическое

Химическая ковалентная

Химическая связь

Химическая связь ковалентная

Химическая связь связь

Химический ое не ная химическая вещества

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте