Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения серебра органических соединений

    Хлор, содержащийся в различных неорганических и органических соединениях, может быть определен данным методом после переведения его в хлорид-ион. Бромид-, иодид-, роданид-ионы также могут быть осаждены количественно нитратом серебра. Ход анализа аналогичен описанному. [c.171]

    Известны косвенные титриметрические методы определения, основанные на обменных реакциях ионов серебра с цианидным комплексом никеля, сульфидом меди, на восстановлении ионов серебра металлической медью или амальгамами висмута, цинка, кадмия и последующем комплексонометрическом титровании обменивающихся ионов, выделившихся в количестве, эквивалентном содержанию серебра. К непрямым титриметрическим методам относится также осаждение серебра в виде труднорастворимых соединений с органическими или неорганическими реагентами с последующим титрованием избытка осадителя подходящим реа-1 ентом или растворение соединения серебра в цианиде калия, избыток которого оттитровывают стандартным раствором нитрата серебра в присутствии иодида калия. [c.77]


    Метод определения карбонильных соединений, основанный на реакции с аминными комплексами серебра, лишен недостатков, связанных с нестойкостью реактива и нерастворимостью образцов он применим лишь для. растворимых в воде альдегидов. Серебряно-аминный реактив стоек в течение не менее двух недель для его приготовления можно использовать органические растворители. [c.99]

    Сейчас для определения ХПК сточных вод применяют исключительно бихроматный метод. Перманганатный метод используется только при анализе органических компонентов природных вод, так как при большом количестве зачастую трудно-окисляемых органических соединений в стоках данный способ непригоден. В то же время бихромат калия в 18 н. серной кислоте в присутствии катализатора — сульфата серебра — способен окислять практически все органические вещества на 95— 100%. Суть метода заключается в обработке предварительно отфильтрованной через бумажный или мембранный фильтр сточной воды раствором бихромата калия и концентрированной серной кислотой с подогревом или без него в присутствии сульфата серебра. Непрореагировавший бихромат после окончания реакции оттитровывают раствором соли Мора, используя в качестве индикатора ферроин или Ы-фенилантраниловую кислоту. ХПК в миллиграммах кислорода на 1 л сточной воды определяют путем простого расчета. [c.123]

    В литературе опубликованы амперометрические методы определения некоторых гетероэлементов в растворах после разлон ения органических соединений. Так, фосфор в виде фосфата титруют, используя реакции осаждения этого аниона солями различных металлов — свинца [22], урана [23], железа [24]. Для индикации точки эквивалентности служит диффузионный ток избытка осади-теля. Аналогичным же методом находят содержание и мышьяка (осаждением арсената железа) [24]. Описан также способ последовательного титрования трех галогенов нитратом серебра в одном растворе плава после восстановительного разложения органического веш ества с металлическим калием [25]. Тот же прием применен и к определению азота в виде цианида [26]. [c.160]

    Метод определения основан на осаждении хлора азотнокислым серебром в присутствии азотной кислоты. Избыток азотнокислого серебра оттитровывают роданистым аммонием в присутствии железоаммиачных квасцов, являющихся индикатором. Помимо солей, в крови содержится много органических веществ (белки, углеводы, жиры и др.), которые могут осаждаться, образуя соединения с серебром, а в некоторых случаях восстанавливать его до металла. Поэтому определение хлора в присутствии органических веществ крови вести нельзя и их удаляют окислением (путем нагревания с марганцовокислым калием). Органические вещества при этом окисляются до углекислоты и воды, а марганцовокислый калий восстанавливается частью до двухвалентного марганца, частью— до темнобурой перекиси марганца. Избыток перекиси марганца восстанавливают до солей двухвалентного марганца при помощи глюкозы, которая не мешает определению. Реакции осаждения хлора и титрования избытка азотнокислого серебра идут по следующим уравнениям  [c.247]


    Наиболее важный классический метод определения содержания воды в органических растворителях — титрование методом Карла — Фишера [303]. Визуальная фиксация конечной точки титрования (выделение иода) не удовлетворительна при содержании воды менее Ы0 2%, но при электрометрической фиксации конечной точки (поляризованные платиновые электроды) можно достичь более низкого предела, составляющего Ы0 % [259, 260, 300]. Если требуется определить истинное содержание воды, то необходимо устранить реагирующие с иодом вещества (такие, как ионы серебра или меди и многие ненасыщенные органические соединения). [c.274]

    Предложен метод определения содержания галогенов в органических и кремнийорганических соединениях [486]. Метод основан на реакции нуклеофильного замещения галогенов этилендиамином в среде ДМСО, ДМФА и других растворителей. Определение завершается потенциометрическим титрованием галогенид-ионов раствором нитрата серебра. [c.125]

    Для определения алкокси-группы (R0) в органических соединениях по методу Цейзеля используют иодистоводородную кислоту. Образующийся иодистый алкил отгоняют. На конечной стадии определения производят гидролиз иодистого алкила, а выделившийся иод-анион определяют по реакции с нитратом серебра. [c.83]

    Определение окисляемости по этому методу основано на окислении бихроматом органических веществ (и минеральных восстановленных соединений) при кипячении в присутствии серной кислоты, составляющей 50% общей смеси. Важными факторами, определяющими практически полное окисление органических соединений, находящихся в природных водах, является наличие избытка окислителя к концу кипячения, составляющего не менее 50% исходного, и добавление сернокислого серебра в качестве катализатора. Реакция протекает по схеме [c.70]

    Разложение по Кариусу проводят главным образом при определении галогенов (за исключением фтора, реагирующего со стеклом) и серы. Метод используют (без потерь вещества) при определении ртути, мышьяка, селена, бора, теллура и фосфора в органических соединениях. Метод Кариуса применим при анализе летучих металлоорганических соединений, например метил-олова. Несколько особый случай представляет окисление элементного бора, его карбида и нитрида азотной кислотой в присутствии бромида калия [5.994]. При вскрытии трубки галогены могут улетучиваться в виде галогеноводородов или свободных элементов вместе с выходящими газами. Потери галогенов можно избежать, если в трубку перед запаиванием добавить некоторое количество нитрата серебра. При этом галогениды осаждаются в виде солей серебра. В другом способе вещество помещают в трубку в маленькой серебряной лодочке, которая растворяется при окислении [5.995]. При определении иода в органических веществах вместо нитрата серебра вводят нитрат ртути [5.996]. Следует иметь в виду, что титрованию хлорид- и бромид-ионов раствором нитрата серебра мешают ионы ртути. [c.201]

    Внутрикомплексные соединения многих металлов интенсивно окрашены и имеют значения молярных коэффициентов погашения в органических растворителях до 1 10 . Это обстоятельство позволило разработать большое количество экстракционно-фотометрических методов определения малых количеств (до 1 10" %) ионов меди, серебра, цинка, железа, алюминия, никеля, кобальта и других элементов в самых разнообразных образцах ([14, 80, 81, 83—87, 96—100] см. также стр. 128). [c.56]

    Метод основан на определении общего органического хлора но Степанову. Хлорорганическое соединение реагирует с избытком металлического натрия в изопропиловом спирте. После разложения избытка натрия выделившиеся хлорид-ионы определяют титрованием с нитратом серебра. [c.419]

    Число реагентов, пригодных для определения микроколичеств серебра, сравнительно невелико [1—5]. Практически почти все фотометрические методы определения одновалентного серебра связаны с использованием органических реагентов. Одним из самых широко распространенных фотометрических реагентов является дитизон (дифенилтиокарбазон), предложенный Фишером [6,7]. Дитизон образует с серебром два соединения (состава 1 1 в кислой среде и состава 2 1 в нейтральной и щелочной), хорошо экстрагируемые малополярными растворителями. Для анализов в основном используют первое соединение, имеющее коэффициент молярного погашения примерно 27 ООО при 462 нм [8]. Дитизон обладает широким спектром действия, взаимодействует со многими металлами. Селективность определения достигается изменением концентрации водородных ионов в растворе. [c.47]


    В работе [132, 133] на примере анализа щавелевой кислоты, оксалата аммония, лимонной кислоты, цитрата натрия и п-амино-салицилата натрия была показана возможность радиометрического титрования органических кислот и их растворимых солей соединением AgNOa. Анализ этим методом включает в себя количественное осаждение солей серебра и последующее обнаружение избытка иона серебра в жидкой фазе после образования и осаждения твердой фазы. Недавним усовершенствованием радиометрического метода определения щавелевой кислоты явилось титрование 0,1 н. или [c.166]

    Метод Вашака и Шедивеца с применением пиридинового раствора диэтилдитиокарбамината серебра используется для определения мышьяка в чугуне, железе и сталях [1173], пиритах и огарках [1037, 1038], свинце высокой чистоты [850] и в металлическом свинце [799], нефтепродуктах [485, 862, 995], меди и ее солях [799, 912], пищевых продуктах [1118], природных водах и рассолах [673, 958, 1099, 1144], органических соединениях [787, 802], силикатных материалах [781], сере [509, 1096], поваренной соли [958], двуокиси германия [343, 670], олове, висмуте, селене и теллуре [799], серной [799], фосфорной [839] и азотной [621] кислотах, вольфрамовом ангидриде и вольфрамовой кислоте [536], плавиковой [621, 911] и соляной [621] кислотах, воздухе [1059], отопительном газе [1179], бромистоводородной кислоте и фторидах металлов [911], биологических материалах [824]. [c.72]

    Косвенные иодометрические методы основаны на титровании серебра стандартным раствором иодида калия в присутствии (окислителей — перекиси водорода [1537], бихромата калия [1538], меди(П) [1412], иода [447, 1172]. Точка эквивалентности характеризуется появлением синего окрашивания адсорбционного соединения иода с крахмалом . Титрование можно проводить стандартным раствором K4[Fe( N)e] в присутствии иода и крахмала [434] или в отсутствие окислителей титрованием избытка иодид-ионов стандартным раствором соли двухвалентной ртути с 1-фенил-тиосемикарбазидом в качестве индикатора [176]. Иодометрический метод использован для определения содержания серебра(П) в комплексном соединении с дипиридилом состава [AgDip2](N03)2 [590]. Комплексы серебра(П) могут использоваться в качестве окислителей. Исследовано [1124] окисление органических соединений в воде, диметилсульфоксиде и в смеси диметилсульфоксида и диметоксиэтана пиколинатом серебра(И). Толуол окисляется в бензойную кислоту, фенилэтил — в ацетофенон, альдегиды превращаются в соответствующие кислоты, а первичные спирты — в альдегиды. [c.84]

    Амперометрические методы определения основаны главным образом на реакциях образования ионами серебра труднорастворимых осадков с органическими и неорганическими реагентами. В качестве титрантов используются преимущественно органические серусодержащие соединения или иодид-ионы. Титрование проводят с платиновым вращающимся электродом, так как металлическая ртуть взаимодействует с ионами серебра, восстанавливая их до металла. Известны два варианта титрования катодный, основанный на восстановлении ионов серебра или органического реагента, и анодный,— при котором фиксируется ток окисления иодид-ионов или серусодержащих реактивов на аноде [357]. [c.86]

    Для фотометрического определения малых количеств серебра наибольшее распространение получили методы с применением органических реагентов. Многие из них образуют с серебром малорастворимые в воде внутрикомплексные соединения, извле-каюш иеся органическими растворителями, что позволило разработать чувствительные экстракционно-фотометрические методы. [c.100]

    Вторая группа. Предложен косвенный атомно-абсорбционный метод определения хлора, брома и иода в органических соединениях по избытку серебра в растворе после осаждения галогенида серебра. Для анализа невозгоняющихся органических соединений (п-хлоранилин, /г-бромацетанилид) пробу сплавляют с 10-кратным количеством металлического натрия, избыток натрия переводят в щелочной раствор (добавлением воды) и осадок отфильтровывают. Затем 1—4 мл раствора подкисляют азотной кислотой, вводят 5 мл раствора нитрата серебра (100 мкг/мл), осадок галогенида серебра отфильтровывают и избыток серебра в фильтрате определяют атомно-абсорбционным методом. Для анализа возгоняющихся соединений (1-хлорфеназин) пробу растворяют в бутиловом или амиловом спирте при нагревании в колбе с обратным холодильником. Добавляют металлический натрий, кипятят 30 мин и охлаждают. До бавляют воду, осадок отфильтровывают. Далее поступают аналогично первому случаю [365]. [c.260]

    Косвенный атомно-абсорбционный метод определения миллиграммовых количеств иода в органических соединениях основан на его осаждении в виде иодида серебра и определении количества осажденного серебра. В микростакан помещают навеску пробы, содержащей около 50 мг иода, 3 г пероксида натрия, 250 мг нитрата калия и 100 мг сахарозы, переносят в микробомбу и нагревают на микрогрелке. Полученную массу растворяют в 50—60 мл воды, кипятят до разложения образованного пероксида водорода, раствор переводят в мерную колбу вместимостью 100 мл и доливают воду до метки. К 10 мл раствора добавляют серную и азотную кислоты до окрашивания метилового оранжевого в розовый цвет, для восстановления Юз до 1 добавляют 10 мг сульфата гидразина и выдерживают 15 мин на кипящей водяной бане. Иод осаждают избытком 0,005 Л1 раствора нитрата серебра, осадок отфильтровывают на фильтре синяя лента, промывают водой, сразу растворяют в 10%-ном растворе иодида калия, доводят объем раствора водой до 100 мл, разбавляют еще в 10 раз 10%-ным раствором иодида калия и измеряют абсорбционный сигнал серебра по линии [c.261]

    Коршун М. О. Скоростные методы микроэлементарного анализа. Сообщ. 6. К вопросу о механизме образования сульфата серебра при одновременном определении углерода, водорода и серы в органических соединениях. ЖАХ, 1952, 7, вып. 2, с. 101—103. Библ. с. 103. 7468 [c.284]

    Трубку наполняли и послойно Отдельные слои состояли из окиси меди, платиновой сетки или платинированного асбеста и металлического серебра. Хотя наполнение в трубке усложняло метод и одно определение занимало много времени, результаты оправдывали эти услол<нения. Однако метод, разработанный для анализа органических соединений, оказался непригодным для кремнийорганических веществ. Поскольку анализируемое вещество из лодочки испарялось в окислительный слой, то разложение вещества и полное окисление продуктов разложения проходило в основном в окислительном слое окиси меди, активная поверхность которой покрывалась мелкодисперсной двуокисью кремния, образующейся при окислении кремния. В результате окись меди быстро отрабатывалась и данные анализа получались неустойчивыми. Наблюдалось также и образование карбида кремния В этом заключалась основная трудность проведения анализа кремнийорганических веществ в трубке с наполнением. [c.261]

    Дитизоновый метод был применен для определения следов ртути в меди [458. 650, 1351], цинке [458], селене [1527], серебре [458], соединениях урана [1432], едком натре [502, 1409], серной кислоте [1588], угле [1089, 1631], рудах [1482], ртутьорга-нических фунгицидах [483], органических соединениях [268], пищевых продуктах [401], воде [1630], моче [354, 649] и других биологических материалах [2, 38, 545], а также в составах для устранения загрязнений [93, 94]. [c.216]

    Потенциометрические методы, описанные для хлоридов, в значительной степени применимы и для бромидов. В классическом титровании при использовании стандартного раствора AgNOз в качестве титранта кривая титрования получается очень четкой. Широкое применение метод нашел в микроанализе бромсодержащих органических соединений после сожжения их в кислороде в закрытой колбе. Для бромидов фактор пересчета меньше, чем для хлоридов, так как для одинаковой навески образца расход титранта АдМОз ниже за счет большей молекулярной массы бромсодержащих органических соединений. В равной степени этот фактор компенсируется за счет увеличения скачка потенциала в точке эквивалентности. Если бромид находится в смеси с хлоридом, титриметрическое определение суммы галогенидов — несложная задача. Однако определение каждого из галогенидов чрезвычайно сложно за счет образования смешанного осадка галогенидов серебра. При расчете потенциометрических кривых титрования смеси галогенидов Мартин [32] показал, что можно найти конечную точку титрования графическим методом и как можно применить методы коррекции, если мольное соотношение галогени- [c.270]

    Потенциометрическое титрование сульфидов нитратом серебра при низких содержаниях сульфидов неосуществимо из-за их гидролиза и образования гидроксида серебра. Применяя плюмбат(П) натрия в качестве титранта, можно определить до 1 ррт сульфидов в присутствии 10 —10 -кратного избытка хлоридов, бромидов, иодидов, сульфитов, тиосульфатов или тноцианатов. Цианид при определении сульфидов описываемым методом должен отсутствовать [69]. Соли свнпца(П) предложено использовать как титрант при автоматическом потенциометрическом титровании нанограммовых количеств сульфидов [70]. Стандартное отклонение определений составляет 2% (при уровне содержания сульфидов 90 нг). Определению сульфидов этим методом не мешают галогениды, ацетат, сульфат, цианид, нитрат, фосфат и ионы аммония. Описываемый метод использован для определения серы в органических соединениях [71]. После сожжения образца серу восстанавливают в токе водорода над платиновым катализатором при 900°С и образующийся сероводород поглощают в специальном сосуде. Автоматически титруют сульфиды стандартным раствором свинца(II) с фиксацией конечной точки сульфидным ионоселек-тивным электродом. [c.575]

    Сланина и др. [295] предложили также автоматический восстановительный метод определения серы в органических соединениях при концентрации ее 10 " %. Пробу гидрогенизуют в широкой трубке в потоке водорода примерно при 1050°С над кварцевой ватой. Образовавшийся сероводород поглощают раствором 1 М КОН/1,5 М NH20H и тотчас же автоматически титруют 2-10 " М раствором нитрата свинца, пока не достигаешься некоторый заранее установленный потенциал ион-селективного электрода (мембрана из сульфида серебра, Орион 94-16А). Для того чтобы снизить общее время титрования до 5 —6 мин независимо от количества серы, содержащейся в анализируемом соединении, применяют специальную систему подачи титранта. [c.98]

    Грюнерт и Тельг [296] предложили анализировать нанограммовые количества (10 г) органических соединений аргентометрическим методом, в соответствии с которым пробу гидрогенизуют и определяют образовавшийся сероводород с помощью бипотенциометрической индикации точки эквивалентности. Электроды из сульфида серебра, используемые при бипотенциометрическом определении, достаточно стабильны и свойства их воспроизводимы. Относительное стандартное отклонение для этого метода составляет 2,5% при определении 120 нг серы. [c.99]

    Показателем содержания органических примесей в сточных водах является величина ХПК. Окисление органических примесей осуществляется дихроматом калия в присутствии концентрированной серной кислоты. В качестве катализатора окисления для труд-ноокисляющихся веществ применяется сульфат серебра. При действии дихромата калия в сильнокислой среде происходит практически полное окисление растворимых, коллоидных и нерастворимых органических примесей. Конечные продукты окисления — диоксид углерода, вода, аммиак, фосфаты и сульфаты. Но и в этих условиях небольшая часть органических веществ остается полностью или частично неокисленной. Степень окисления органических веществ обычно составляет 95—98%. По данным определения ХПК можно рассчитать, зная состав органического соединения, его содержание в воде. И наоборот, величину ХПК можно вычислить для определенного соединения, используя уравнение реакции его окисления. Теоретическое ХПК обычно выше установленного анализом. Практически при определении ХПК не окисляются пиридин и некоторые другие азотсодержащие органические соединения, а также труднорастворимые углеводороды (бензол, нафталин, парафины). Максимально определяемая данным методом величина окисляемости составляет Ш" мг Ог/л. [c.177]

    Позднее Климова и Мухина [3] разработали метод одновременного определения галогенов и серы в органических соединениях из одной навески. В качестве поглотителя галогенов они применяли металлическое серебро, а сера поглощалась закись-окисью кобальта (С03О4), [c.309]

    Метод основан на пиролитическом разложении полимера в токе кислорода с использованием для каталитического наполнения трубки сжигания оксида кобальта (II) и (III). При 800 °С происходит полное окисление углерода и водорода до диоксида углерода и воды, а азота — до диоксида азота. Наличие галогенов, серы и азота не мешает определению, так как продукты окисления серы и галогены полностью задерживаются слоем губчатого серебра, а оксиды азота улавливаются диоксидом марганца вне трубки. Диоксид углерода и воду определяют по привесу поглотительных аппаратов, наполненных аскаритом и ангндроном соответственно кремний (при анализе кремний-органических соединений) — по привесу оксида кремния, адсорбированного на кварце в стаканчике для разложения полимера. [c.151]

    Джильболт и Маккерди разработали ряд практических методов определения неорганических (фосфиты, ртуть, теллур) и органических (спирты, хелаты металлов) соединений с применением смешанного катализатора серебро(1) — марганец(И) для ускорения очень медленных реакций окисления церием(1У) соответствующих соединений [166—168]. При проведении исследований обнаружена интересная кинетическая особенность, которая состоит в том, что совместное действие этих двух катализаторов значительно больше суммы эффектов каждого из них в отдельности. Это явление пока еще не объяснено и заслуживает дальнейшего изучения. [c.350]

    Существует огромное количество органических соединений, дающих чувствительные цветные реакции с медью, и описано много колориметрических методов для определения последней. Двумя наиболее важными колориметрическими реактивами являются дитизон и диэтилдитиокарбаминат натрия. Дитизон — более чувствительный реактив, но ртуть, серебро и большие количества железа препятствуют его прямому применению, и необходимо принимать специальные меры, если присутствуют эти элементы. Метод определения посредством диэтилдитиокар-бамината применим в присутствии умеренных количеств железа так же, как и в присутствии ртути, а возможно и серебра. С другой стороны, марганец, никель и кобальт мешают при диэтилдитиокарбаминатном методе, но не мешают при дитизоновом. Висмут мешает в обоих методах, но в дитизоновом меньше, чем в диэтилдитиокарбаминатном. Дитизоном определяются меньшие количества меди, и потому при определении следов этот реактив часто имеет преимущество. Кроме того, дитизоновый метод можно применить к кислым растворам, и поэтому [c.308]

    Наиболее удобный для определения таких количеств хлоридов метод Шёнигера [1] требует значительного времени и наличия беззольных фильтров высшей очистки [2]. Поэтому нами была проверена возможность прямого потенциометрического титрования примеси хлоридов в некоторых окрашенных органических соединениях раствором азотнокислого серебра с применением серебряного индикаторного электрода [3, 4]. [c.224]

    Внутрикомплексные соединения (дитизонаты [6, 8, 14, 19, 20, 22, 29, 30], оксихинолинаты [6, 8, 14, 18, 20, 22, 26], купферонаты [6, 14, 19, 20, 30, 31 ], диэтилдитиокарбаминаты [6, 8, 14, 19, 20, 30, 32, 33] и др.). Эти соединения применяШся для полного отделения и разделения небольших количеств элементов. Для растворения внутрикомплексных соединений и извлечения их из водной фазы чаще всего используются хлороформ или четыреххлористый углерод. Дитизон, 8-оксихинолин, купферон и диэтилдитио-карбаминат натрия являются групповыми реагентами, которые позволяют определять как группу интересующих аналитика примесей, так и отдельные примеси (меняя pH исходного раствора, добавляя другие комплексообразующие вещества и т. д.). Внутрикомплексные соединения многих металлов интенсивно окрашены и имеют значения молярных коэффициентов погашения в органических растворителях до 1 10 . Это обстоятельство позволило разработать большое количество экстракционно-фотометрических методов определения малых количеств (до 1-10 %) ионов меди, серебра, цинка, железа, алюминия, никеля, кобальта и других в самых разнообразных образцах [6, 14, 15, 17—24, 29—33], а также стр. 107, 109. [c.32]

    Рений в органических соединениях определяют гравиметрическим методом Б виде перрената серебра после сухого сожжения в кислороде [155, 166] и фотометрическим — в виде комплекса рения с роданидом после разложения кислотами [239]. Первый метод имеет ограниченное применение, так как галогены (С1, В, I) поглощаются серебром вместе с РегО/, а при наличии золуобразующих гетероэлементов в веществе часть рения задерживается образующимися нелетучими оксидами. В обоих случаях рений может быть определен расчетным путем только тогда, когда известна брутто-формула соединения. Второй метод детально не описан, а лишь упомянут в обзоре, посвященном анализу элементоорганических соединений. [c.193]

    Другие методы. Для определения серы в органических соединениях предложено использовать поглощение окислов серы электролитическим серебром и титрование образующегося Ад2804 раствором роданида аммония с использованием в качестве индикатора железоаммонийных квасцов. Минимальная определяемая концентрация 0,01 %, абсолютная опшбка определения +0,2% [333]. [c.32]


Смотреть страницы где упоминается термин Методы определения серебра органических соединений: [c.76]    [c.108]    [c.118]    [c.173]    [c.218]    [c.307]    [c.376]    [c.307]    [c.289]    [c.218]   
Аналитическая химия серебра (1975) -- [ c.119 , c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Соединение определение



© 2025 chem21.info Реклама на сайте