Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм взаимодействия реакции

    Метод ЭПР применяется для изучения механизма химических реакций. Так, при исследовании реакции взаимодействия водорода с кислородом обнаруживаются спектры, приведенные на рис. 95, [c.148]

    Одна из основных задач химии — установить зависимость между строением, энергетическими характеристиками химических связей и реакционной способностью веществ, изучить влияние различных факторов на скорость и механизм химических реакций. О принципиальной осуществимости процесса судят по величине изменения энергии Гиббса системы. Однако эта величина ничего не говорит о реальной возможности протекания реакции в данных конкретных условиях, не дает никакого представления о скорости и механизме процесса. Например, реакция взаимодействия оксида азота (II) с кислородом [c.191]


    Детальный механизм этой реакции рассмотрен в работе [36], согласно результатам которой следует ожидать, что свободные радикалы могут принимать участие в торможении окисления не только за счет взаимодействия с активными радикалами по реакции (8), но и на стадии, предшествующей образованию активных радикалов, вследствие тушения возбужденных [c.41]

    Многие реакции протекают между веществами, первоначально находящимися в различных фазах. Такие реакции обычно сопровождаются другими, чисто физическими промежуточными процессами, которые влияют на суммарную скорость реакции. Рассмотрим взаимодействие смеси двуокиси углерода и воздуха с водным раствором извести. Прежде чем эти вещества вступят в реакцию, двуокись углерода должна продиффундировать по крайней мере к поверхности жидкой фазы. Механизм данной реакции можно представить следующими уравнениями  [c.38]

    Олефины. Механизм взаимодействия серной кислоты с ненасыщенными углеводородами пе совсем ясен. Важнейшими первичными реакциями являются различные степени этерификации (основа получения спиртов) и полимеризации для низших олефинов обе эти реакции подверглись тщательному изучению [18—22]. [c.224]

    Взаимодействие п-нитрозодифениламина с полиизопреном (получение каучука с аминными группами СКИ-ЗА) протекает, по-видимому, по несколько иному механизму, скорость реакции и деструкция полимера меньше, нет четкой корреляции между молекулярной массой и концентрацией функциональных групп. [c.229]

    Когда мы говорим, что реакция бимолекулярна , это значит, что мы акцентируем внимание на столкновениях двух молекул, как это происходит, в частности, при протекании реакции (И, 13). Сказать же, что реакция имеет второй порядок , означает отметить пропорциональность ее скорости произведению двух концентраций, не сообщая подробной информации о механизме взаимодействия. Понятия порядка и молекулярности не обязательно означают одно и то же. Например, газофазное окисление N0 кислородом имеет третий порядок, но маловероятно, чтобы оно было тримолекулярным, т. е. шло с одновременным столкновением трех молекул. [c.37]

    Качественный аспект проблемы подбора катализаторов. Теоретические предпосылки качественного этапа прогнозирования каталитической активности в значительной мере опираются на классификацию механизмов гетерогенного катализа. Самая общая классификация предполагает разделение механизмов гетерогеннокаталитических реакций на локальные и коллективные. Локальный механизм проявляется, когда взаимодействие субстрата с катализатором в ходе каталитического акта обусловлено индивидуальными свойствами атома поверхности твердого тела, играющего роль активного центра, при этом на гетерогенный катализ полностью переносятся представления гомогенного катализа. Если протекание реакции определяется свойствами катализатора как твердого тела, то говорят, что проявляется коллективный механизм [2]. [c.58]


    Химическая кинетика представляет собой учение о скоростях химических реакций, о факторах, определяющих эти скорости, а также о механизме химических реакций. Скорость химической реакции служит важнейшей количественной характеристикой химического взаимодействия. [c.8]

    Химические реакции подразделяют па элементарные (одностадийные) и сложные. При элементарной реакции в системе протекает только один процесс и уравнение реакции раскрывает ее механизм. Больщинство реакций (в том числе почти все изучаемые в курсе общей и неорганической химии) являются сложными и представляют суммарный результат нескольких элементарных процессов обычная запись этих реакций, как правило, не отражает их реальный механизм. Стадиями реакций могут быть не только химические процессы, но и, например, переход вещества из об-ьема фазы к ее границе, на которой протекает реакция, или перенос продуктов взаимодействия от этой поверхности в объем. Скорость подобных процессов определяется скоростью диффузии. [c.214]

    Кинетика гомогенных химических реакций развивалась на основе более глубокого изучения механизма взаимодействия реагирующих веществ. Большое значение приобрела также теория цепных реакций, начало которой было заложено в работах Н. А. Шилова (1904) и которая получила развитие в работах И. И. Семенова и Гиншельвуда. [c.20]

    При практическом использовании любой реакции скорость, с которой она протекает, играет очень большую роль. Так, от скорости реакции, применяемой в каком-нибудь производственном процессе, будет зависеть производительность аппарата и, следовательно, количество вырабатываемой продукции. Скорость процесса твердения цемента определяет собой сроки введения сооружения в эксплуатацию и т. д. Поэтому очень важно знать, с какой скоростью будет совершаться та или иная реакция в данных условиях и как нужно изменить эти условия, чтобы она протекала с желательной скоростью . Теоретическое значение вопросов кинетики заключается в том, что изучение их позволяет выяснить многие важные детали химических процессов и глубже понять механизм взаимодействия веществ. [c.462]

    Радиационный метод воздействия начинает находить все более разнообразное применение при проведении химических реакций, главным образом для возбуждения процессов, обладающих цепным механизмом взаимодействия. Мы уже встречались с этим явлением при рассмотрении цепных реакций и встретимся еще при [c.556]

    Влияние инициаторов. Имеется большая группа химических реакций —окисление молекулярным кислородом, хлорирование и бромирование органических соединений, реакции полимеризации и др., которые начинаются при наличии инициаторов реакции и протекают по цепному радикальному механизму. Такие реакции называют цепными реакциями. Инициатором реакции обычно являются радикальные частицы. В качестве примера может быть приведена реакция взаимодействия газообразного хлора с водородом. В темноте эта реакция идет с малыми скоростями. При освещении или введении инициатора, например паров натрия, реакция идет со взрывом. Некоторые перекисные и азосоединения легко распадаются на радикалы и инициируют реакции полимеризации. [c.530]

    В последнее время появились экспериментальные данные, не укладывающиеся в рамки указанного механизма действия алкил-. фенольных ингибиторов (непосредственный гомолитический отрыв водорода гидроксильной группы пероксидными радикалами). Поэтому был предложен иной механизм взаимодействия радикала ROO- с молекулами ингибитора, так называемый механизм прилипания . Согласно этому механизму, пероксидный радикал сначала прилипает к молекуле ингибитора по обратимой реакции, а затем образовавшийся радикал-комплекс реагирует со следующим пероксидным радикалом  [c.61]

    На первый взгляд кажется очень естественным принять, что это элементарная бимолекулярная реакция, в которой две молекулы аммиака непосредственно превращаются в четыре молекулы образующихся продуктов. Однако, исходя из указанного принципа, обратная реакция при условии равновесия также должна быть элементарной реакцией прямого взаимодействия трех молекул водорода и одной молекулы азота. Поскольку такой процесс отвергается как маловероятный, бимолекулярный механизм прямой реакции также следует отвергнуть в пользу другого механизма. [c.49]

    На основании полученных ранее экспериментальных данных было высказано мнение, что реакция алкилирования бензола олефинами протекает по электрофильной схеме замещения с промежуточным образованием карбокатионов. Изменение условий экспериментов, природы катализаторов, структуры и длины цепи алкилирующего олефина влияет на соотнощение скоростей реакций алкилирования и изомеризации и тем самым определяет изомерный состав целевых продуктов. В данном разделе будут рассмотрены пути перераспределения изотопной метки О между компонентами реакции алкилирования в зависимости от условий. Для уточнения механизма взаимодействия ароматических углеводородов с олефинами проведено алкилирование дейтеро-обогащенного бензола этиленом, пропиленом, бутеном-1 и буте-ном-2 (табл. 4.2). Полученные алкилбензолы после разделения на препаративном хроматографе анализировали методами ИК-, масс- и ПМР-спектроскопии. [c.89]


    При рассмотрении закономерностей воспламенения мы можем определенных обстоятельствах не касаться особенностей цепного механизма реакции, констатируя лишь тот несомненный факт, что реакция в горючей среде приводит к разогреву и самоускорению. Самовоспламенение в общих чертах рассматривается здесь как тепловое. Цепной механизм взаимодействия сказывается лишь на существовании некоторых особенностей. [c.27]

    Для определения механизма химической реакции и применения кинетических теорий с целью расчета абсолютных скоростей реакций следует рассматривать химическое превращение как процесс перегруппировки атомов, который в конечном счете определяется свойствами реагентов и характером их взаимодействия. В частности, знание поверхности потенциальной энергии целиком расшифровывает в адиабатическом приближении механизм химической реакции, а далее с помощью кинетических теорий возможен расчет ее скорости. Адиабата реакции определяется на основе квантовой химии. [c.50]

    Одной из главных трудностей дальнейшего развития представлений о механизме тримолекулярных реакций является, по-видимому, ограниченность знаний о многообразии межмолекулярных взаимодействий. Поэтому лишь совместное рассмотрение теоретических и экспериментальных кинетических данных может привести к правильной интерпретации опыта и к разумным прогнозам [1261. [c.119]

    Соотношение линейности Бренстеда — Поляни справедливо, если механизм каталитической реакции и характер связей при промежуточном взаимодействии реагирующих веществ с катализатором для рассматриваемой группы катализаторов или реакций одинаков. [c.412]

    Рассматривая механизм химических реакций, следует прежде всего иметь в виду, что характер взаимодействия существенно зависит от агрегатного состояния реагентов и продуктов. Реагенты и продукты, вместе взятые, образуют так называемую физико-химическую систему. Совокупность однородных частей системы, обладающих одинаковыми химическими составом и свойствами и отделенных от остальных частей системы поверхностью раздела, называют фазой. Например, если в стакан с водой внести кристаллы поваренной соли, то в первый момент образуется двухфазная система, которая превратится в однофазную после растворения соли. Смеси газов при нормальных условиях однофазны независимо от их природы. Жидкие системы могут быть однофазны (вода и спирт) или многофазны (вода и бензол, вода и ртуть). Системы, состоящие из одной фазы, называются гомогенными, а системы, содержащие несколько фаз,— гетерогенными. Соответственно этому в химии введено понятие о гомогенных и гетерогенных реакциях. Реакцию называют гомогенной, если реагенты и продукты составляют одну фазу. Это справедливо для так называемых обратимых химических реакций (с. 60)  [c.53]

    Любая методика расчета основывается на теоретических или гипотетических представлениях о механизме и природе течения того или иного процесса. Во второй главе были рассмотрены результаты экспериментов на различных конструкциях термокаталитических реакторов двух типов химических реакций. Эти реакции связывает между собой не только то, что они проводились в вихревых реакторах, но и то, что концентрация углеводородов достаточно мала и реакции проводятся в объеме инертного газового компонента. Процесс окисления углеводородов осуществлялся на поверхности катализатора до их полного разложения на СО и Н О, процесс пиролиза проводился в объеме водяного пара, другом типе катализатора, и задачей являлось их разложение до фракции (С - -С ), однако механизм взаимодействия с катализатором можно считать аналогичным при рассмотрении течения этих процессов в условиях высокоскоростного закрученного движения газового потока в реакторе. [c.282]

    При конденсации в кислой среде трех молекул ацетона основным продуктом является форон. Механизм этой реакции заключается в следующем сначала образуется окись мезитила, после чего метильная группа окиси, соединяясь с кетогруппой, взаимодействует с третьей молекулой ацетона  [c.320]

    Сернистые соединения с открытой цепью углеродных атомов, по-видимому, все имеют вторичный характер. Незначительная роль их в нефти по сравнению с высокомолекулярной частью, содержащей серу, внедренную в циклические системы, позволяет рассматривать последние как первичную форму сернистых соединений, образованных углеводородами или другими органическими веществами, пришедшими во взаимодействие с серой. Следовательно, должен существовать какой-то источник серы, который бы мог обеспечить позднейшие реакции с углеводородами. Этот источник серы чаще всего видели в процессе восстановления сульфатов, сопровождающих многие нефтяные месторождения, главным образом в виде гипса. Предполагалось, что при взаимодействии с углеводородами возможно восстановление сульфатов с образованием углекислого газа, сероводорода и воды. Эта реакция, известная в технике в виде содового процесса, по Леблану, идет однако только при высоких температурах, нереальных в нефтяных месторождениях. Затем были открыты различные бактерии, которые при обыкновенной температуре и без доступа воздуха могут восстанавливать сульфаты до сульфидов, гидросульфидов и сероводорода. Механизм этой реакции понимается таким образом, что микроорганизмы, нуждающиеся в кислороде для создания живого вещества бактерий, заимствуют необходимый им кислород из сульфатов, переводя их в различные сульфиды, дающие с водой сероводород и кислые сульфиды по уравнениям  [c.178]

    В таблицу не помещена реакция между твердыми фазами, которая во многих случаях проходит с участием жидкой или газовой фаз, образующихся во время реакции. При ояисании таких превращений необходимо учитывать химическую реакцию, диффузию возникновение газовой фазы в результате диссоциации или йена рения, появление жидкой фазы (плавление) и кристаллизацию Поскольку участие жидкой и газовой фаз в реакциях между твер дыми фазами имеет, как обнаружилось, основное значение для вы яснения их механизма, эти реакции можно подразделить на четыре группы 1) проходящие при непосредственном взаимодействии реагентов в твердой фазе 2) проходящие с участием газовой фазы  [c.243]

    Механизм этой реакции состоит из двух стадий образование комплексного соединения и его реакция с двойной связью. Комплексное соединение, согласно Прево [55], образуется путем взаимодействия 2 молей бензоата серебра с одним молем йода. В растворе бензоат серебра оуш ествует в виде комплексной соли с координационным числом одного из атомов серебра равным двум. Существование аниона комплекса, в котором серебро обладает таким координационным числом было установлено Мак-Дуголлом и Алленом [39]. Кроме того, Прево [55f] удалось установить положительную природу йода в комплексе путем изучения его реакции с фенилацетиленом. Эти реакции могут быть выражены следующими уравнениями  [c.376]

    К разветвленным цепным реакциям относится, нанрнмер, реакция образова- ия воды из простых веществ. Экспериментально установлен и подтвержден расчетами следующий механизм этой реакции. В смеси водорода с кислородом при лагревании или пропускании электрического разряда нронсходнт взаимодействие чолскул этих газов с образованием двух гидроксильных радикалов  [c.183]

    Как показал анализ, ни молекулярные, ни ионные механизмы взаимодействия КН с кислородом практически не могут реализоваться. Хотя и медленно, но с поддающейся измерению скоростью идет эндотермическая реакция КН-ьОг—>-К -1-Н02. Скорость такой реакции мала. Например, в кумоле при 100"С скорость образования радикалов по этой реакции равна и,= 1,1-10 " моль/(л-с.) [32]. Образовавшиеся в углеводороде алкильные радикалы вызывают цепную реакцию окисления КН до КООН — первичного молекулярного продукта. Протекание цепной реакции окисления обусловлено следующими причинами. [c.27]

    Различие в механизме взаимодействия пероксидных радикалов ведет к разным константам скорости обрыва цепей для первичных и вторичных РОг существенно (на 1—4 порядка) выше чем для третичных 2к( = 3-Ю л/(моль-с) для РОд толуола, 2-10 для рОг этилбензола, 7-10 для РОг тетралина и 1,5-10 для РОг кумола (30 °С [49]). Энергии активации реакции низкие (8—12 кДж/моль) для вторичных КОг и высокие (33—55 кДж/моль) для третичных КОг. Поэтому с повышением температуры окисления различие между к( вторичных и третичных КОг уменьшается. [c.32]

    Авторы, объясняющие реакцию алкилироваиия, исходя из предположения об ионизации молекул изопарафина с разрывом связи С—Н, используют основные положения карбоний-ионного механизма каталитической полимеризации олефилов, разработанного Витмором с сотр. [7] и получившего в настоящее время широкое признание. В основе механизма каталитической полимеризации, предложенного Витмором, лежит электронная теория химического взаимодействия (реакций). Механизм реакции цепной. Первым звеном в этой цепи при контакте олефина с кислотным катализатором является образование исходного карбоний-иона путем присоединения иона водорода кислоты по двойной связи  [c.11]

    Естественно, чем точнее модель, тем ближе она к действительности, однако стремление полнее учитывать сложную природу гетерогенных реакций и механизм взаимодействия явлений различного происхождения закономерно приводит к слишком сложным уравнениям, содержащим большое количество неопределенных параметров. При этом модель теряет практическую ценность. Если промышленный процесс протекает по сложному и мало изученному механизму, проще подобрать и использовать простые эмпирические корреляции. Иными словами, приходится пользоваться принципом бритвы Оккама , согласно которому отбрасывается или отрезается все, усложняющее сущность ,, например лишние гипотезы и усложнения в объяснении наблюдений и опытов. Это означает, что математические модели не должны быть сложные, чем это необходимо для объяснения фактов, и не должны противоречить твердо установленным теоретическим положениям. [c.17]

    В табл. 63 приведены характеристики некоторых наиболее часто применяемых изотопов различных элементов. Большое и разнообразное применение метод меченых атомов нашел при химических исследованиях. С помощью этого метода изучают взаимодействие катализаторов с реагирующими веществами, строение молекул, механизм химических реакций, взаимодействие между раствором и осадком, диффузию в твердых телах, различные процессы, протекающие в растительных и животных оргаиизмах. На основе применения радиоактивных изотопов Ан. Н. Несмеяновым были разработаны новые методы определения давления насыщенного пара чистых веществ и парциальных давлений пара растворов, дающие возможность определять столь малые значения их, как 10 —10 мм рт. ст. и даже ниже. В настоящее время, бла- <, годаря большей доступности искусственно получаемых радиоак-тивных изотопов некоторых элементов, метод меченых атомов B eff более широко используется в исследовательских работах в раз- личных областях естествознания и техники. Он применяется для наблюдения за ходом производственных процессов, для контроля качества продукции, используется при автоматизации производства, применяется в медицине и сельском хозяйстве. [c.543]

    При выборе выражений для Г или возможны разные подходы, предполагаются различные механизмы протекания реакций на поверхности катализатора. Выражение различные механизмы не совсем удачно, так как под механизмом реакции следует понимать механизм перестройки молекулярных орбиталей в процессе хемосорбции и каталитического акта. Наиболее часто используют механизмы, предложенные Лэнгмюром — Хиншельвудом и Ридилом. Согласно Лэнгмюру —Хиншельвуду, реакция протекает между двумя соседними хемосорбированными частицами. Это соответствует положению о том, что Г,- в уравнении (228.1) определяется величиной хемосорбции г-го компонента. Лэнгмюром было выведено уравнение для адсорбции г-го компонента из смеси газов исходя из предположения о том, что на поверхности адсорбируются все компоненты, но в разной степени, в зависимости от энергии взаимодействия с поверхностью адсорбента. При этом уравнение Лэнгмюра принимает вид [c.645]

    Сходные идеи в теории катализа развивались Поляни, который в отличие от мультиплетной теории принимал положение о полном разрыве связи при адсорбции. Мультиплетная теория катализа сыграла в свое время прогрессивную роль в развитии катализа. Она обратила внимание на значение структурного соответствия, поставила вопросы о связи структурных факторов с энергетическими характеристиками катализаторов, их электронным строением. Большую положительную роль сыграла теория в решении практических проблем катализа, в поиске новых катализаторов. Однако в настоящее время мультиплетная теория в том виде, как она была предложена Баландиным, не может считаться совершенной. Для решения практических задач в соответствии с теорией необходимо знать энергии связей отдельных атомов с катализаторами разных составов, что требует больших затрат труда и времени. В теории не рассматривается молекулярный механизм взаимодействия субстрата с катализатором, не учитывается возможность протекания реакций при взаимодействии субстрата с единичным центром катализатора. [c.658]

    Реакции, которые рассматривак)тся как протекающие в одну стадию, называются элементарными-, их кинетические уравнения определяются стехиометрическими, выражающими истинный механизм взаимодействия. [c.29]

    Использование импульсного метода позволило экспериментально установить механизм протекания реакций и определить с достаточно высокой точностью кинетические константы отдельных реакций, составляющих суммарный каталитический процесс. Отличигельная особенность импульсного метода от традиционных проточных и проточно-циркуляционных заключается в том, что ставится прямой эксперимент по изучению кинетики реакции взаимодействия одного из компонентов реакционной смеси с восстановленным катализатором [c.108]

    Детальный механизм реакций гидрирования СО может быть сформулирован исходя из общепризнанной сейчас точки зрения о глубокой химической сущности катализа при рассмотрении взаимодействия монооксида углерода и водорода с активными центрами катализатора. Основным фактором, определяющим динамику поверхностного механизма взаимодействия СО и Н2, вероятные маршруты превращений промежуточных поверхностных комплексов и, как следствие, направление реакции гидрирования монооксида углерода, является форма активации молекул СО и Нт, определяемая природой центрального атома металла, типо.м его литандного окружения и внешними условиями синтеза, в первую очередь, температурой и давлением в системе. [c.169]

    Ригомонти и Пенетти [50] установили, что механизм взаимодействия воды и спиртов в реакции комплексообразования неодинаков. Вода, хотя и является агентом, ускоряющим реакцию, не способна, однако, ее инициировать. Спирты способствуют как инициированию, так и дальнейшему протеканию реакции комплексообразования. Роль воды сводится к растворению карбамида с образованием насыщенного раствора, что способствует переносу молекулы кристаллического карбамида к молекулам комплекса в ходе его образования. Инициаторами же реакции образования комплекса в этом случае являются кристаллы затравки, служащие ядрами кристаллизации. При добавлении спиртов инициирование цепи реакции обусловлено, очевидно, взаимодействием между молекулами спирта и карбамида, находящимися на поверхности кристаллов. [c.30]

    Даже на холоде диазониевые соли быстро взаимодействуют с фенолами, фенолятами и третичными ароматическими аминами, превращаясь в азосоединения. По механизму эта реакция является эяектро-фильным замещением в ароматическом ядре амина или фенола катионом арилдиазония ArlMsN  [c.165]

    Обычно при этой реакции наряду с орто-оксиальдегидом образуются незначительные количества пара-изомера. 1 озможно, механизм этой реакции заключается в том, что фенолят натрия вступает во взаимодействие с хлороформом в таутомерной форме циклогексадиенон-натрия (Джильман)  [c.628]

    Анализ проведенных исследований показал, что в целом решается комплекс проблем по повышению нефтеотдачи от фундаментальных исследований физико-химических основ подбора химреагентов, изучения свойств и вытеснения нефти до опытнопромышленных работ и внедрения разработок. Проведен комплекс работ по созданию химических композиций на основе полифункциональных органических соединений с регулируемыми вязкоупругими, вытесняющими и поверхностно-активными свойствами с целью избирательного воздействия на нефтенасыщенный пласт в тex юлoгияx повышения нефтеотдачи и обработки призабойной зоны пласта применительно к исследуемым месторождениям Республики Башкортостан. Теоретически разработана и экспериментально подтверждена концепция эффективного применения полифункциональных реагентов, обладающих свойством межфазных катализаторов. Изучен механизм взаимодействия полифункциональных реагентов с нефтью и поверхностью коллектора с использованием различных методов спектрофотометрии. Выявлены основные закономерности, происходящие в пласте под воздействием химреагентов. Установлено, что при взаимодействии ПФР с металлопорфиринами нефтей происходит процесс комплексообразования по механизму реакции экстра координации. Образование малоустойчивых экстракомплексов приводит к изменению надмолекулярной структуры МП и изменению дисперсности системы. Проведены сравнение реакционной способности различных ПФР и расчет констант устойчивости экстракомплексов. Показано, что наибольшей комплексообразующей способностью обладают ими-дозолины. Определены факторы кинетической устойчивости различных нефтей до и после обработки реагентами. Установлено, что реагенты уротропинового ряда обладают большей диспергирую-и ей способностью, чем имидозолины. Уменьшение размера частиц дисперсной системы вызывает снижение структурной вязкости нефти, что в конечном счете положительно сказывается на повышении нефтеотдачи. Показано, что вязкость нефти после контакта с водными растворами ПФР снижается в 3-8 раз. Оптимальные концентрации реагентов зависят как от структуры применяемого ПФР, так и от состава исследуемой нефти. [c.178]


Смотреть страницы где упоминается термин Механизм взаимодействия реакции: [c.283]    [c.542]    [c.213]    [c.13]    [c.72]    [c.62]    [c.223]    [c.15]    [c.91]   
Неформальная кинетика (1985) -- [ c.135 , c.136 , c.186 , c.187 ]




ПОИСК







© 2025 chem21.info Реклама на сайте