Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия между ионом и растворителем

    Твердые вещества, при растворении которых в воде и других полярных растворителях, образуются электролиты, являются, как правило, кристаллическими телами, имеющими ионные или близкие к ионным решетки. В чисто ионных решетках не существует молекул вещества, и кристалл любой величины можно рассматривать как одну огромную молекулу. Ионы противоположных знаков, составляющие такую решетку, связаны между собой большими электростатическими силами. При переходе ионов Е раствор, энергии электростатического взаимодействия ионов в решетке противопоставляется энергия взаимодействия ионов с дипольными молекулами растворителя, который втягивает ионы решетки в раствор. При этом ионы окружаются молекулами растворителя, образующими вокруг иона сольватную (в частном случае — гидратную) оболочку. Энергия взаимодействия ионов различных знаков, перешедших в раствор и окруженных сольватными оболочками, уменьшается по сравнению с энергией их взаимодействия в решетке (при равных расстояниях г между ионами) обратно пропорционально диэлектрической проницаемости растворителя О в соответствии с законом Кулона  [c.391]


    В сильных электролитах при больших разведениях многие величины, характеризующие свойства растворенных веществ, оказываются аддитивно складывающимися из соответствующих свойств ионов. Такими величинами являются кажущийся объем соли, теплота гидратации, сжимаемость и некоторые другие. Это естественно, поскольку при полной диссоциации соли в разбавленном растворе свойства одних ионов никак не влияют на взаимодействие других ионов с растворителем. Однако представление того или иного измеренного (вернее, вычисленного по результатам измерений) термодинамического свойства растворенной соли как суммы свойств ионов этой соли и нахождение величины слагаемых этой суммы невозможно без использования какого-либо более или менее произвольного предположения. Теплоты (энергии) гидратации отдельных ионов могут быть получены из вычисленных по уравнению (XVI, 55) теплот гидратации солей, если предположить, что энергии гидратации ионов и С1 одинаковы (с учетом различия в ориентировке молекул воды около аниона и катиона) . Другой метод определения теплоты гидратации заключается в подборе аддитивных слагаемых таким образом, чтобы величины энергий сольватации ионов линейно зависели от величин, обратных радиусам ионов. Вычисленные разными способами теплоты гидратации того или другого иона полуколичественно согласуются между собой. Теплоты гидратации одновалентных ионов имеют величины по- [c.420]

    Соли имеют более высокие температуры плавления и кипения, чем молекулярные вещества, потому что для разрущения их устойчивой кристаллической решетки необходима большая тепловая энергия еще большая тепловая энергия требуется для того, чтобы заставить положительные и отрицательные ионы обобществить свои электроны и объединиться в нейтральные молекулы, способные перейти в газовую фазу. Однако многие соли хорошо растворяются в воде, поскольку притяжение со стороны полярных молекул воды позволяет компенсировать притяжение между ионами кристалла. Ионы, окруженные в растворе полярными молекулами воды, называются гидратированными. Бензин и другие неполярные жидкости неспособны растворять соли, поскольку они не гидратируют ионы (точнее, не сольватируют их, так как в этом случае растворителем является не вода). [c.54]


    Изложенный выше подход для определения влияния растворителя на скорость ионных реакций был применен и к реакциям между ионами и полярными молекулами. Исходя из электростатических представлений, Кирквуд [16] вывел уравнение изменения свободной энергии при сольватации сферической полярной молекулы радиусом г и динольным моментом [c.37]

    При образовании соединений между частицами компонентов растворимость повышается. Весьма часто энергия, необходимая для разрыва связей между частицами вещества при его растворении, компенсируется энергией, выделяющейся при образовании соединений между частицами растворяемого вещества и молекулами растворителя. Это играет важнейшую роль, например, при растворении сильных электролитов в воде. Именно за счет энергии, выделяющейся прн гидратации ионов, и происходит разрыв связей между ионами при растворении кристалла с ионной решеткой. Наоборот, необходимость дополнительной затраты энергии, например, на разрушение комплексов в случае ассоциированного растворителя или другие подобные процессы всегда связана с уменьшением растворимости. При одновременном действии этих факторов суммарное влияние их на растворимость может быть весьма сложным. [c.330]

    Выделение и поглощение тепловой энергии объясняется разрывом связей в растворяемом веществе (распад на ионы) и образованием новых связей между ионами и молекулами растворителя (процесс сольватации). Разрыв связей требует затраты энергии, а при образовании связей энергия выделяется. Алгебраическая сумма поглощаемой и выделяемой энергии дает суммарный тепловой эффект растворения. [c.120]

    Во многих случаях наблюдается хорошая корреляция между акцепторными или донорными числами растворителей и изменением энергии сольватации ионов при переходе от одного растворителя к другому, что и дает основание для использования донор-ных и акцепторных чисел при количественной характеристике донорно-акцепторного взаимодействия. [c.33]

    Для данного растворителя при постоянной температуре граница будет определяться величиной расстояния между ионами г. Если г велико, то г е /ег меньше кинетической энергии, а если мало, то эта величина больше, и тогда происходит взаимодействие между ионами. Очевидно, главным обстоя- [c.114]

    Растворимость, константы диссоциации и другие свойства электролитов рассчитываются по разности между очень большими и близкими величинами энергий кристаллической решетки или сродства протона в вакууме и химической энергии сольватации ионов, поэтому ошибки в определении этих величин сильно сказываются на конечных результатах. Так, ошибка в 1% при определении химической энергии сольватации приводит к различию па один порядок в величине констант диссоциации. В связи с этим данные о величинах химической энергии сольватации могут быть использованы только для решения вопроса о направлении процесса, например для решения вопроса о том, в каком направлении влияет растворитель на растворимость электролитов, но они мало пригодны для численной характеристики влияния растворителей на свойства электролитов, на их растворимость, силу и т. д. [c.184]

    Водородная связь между кислотой и основанием, например растворителем, двояко влияет на силу кислот. С одной стороны, образование продуктов присоединения поляризует молекулу кислоты и как бы подготовляет ее к дальнейшей диссоциации, но, с другой стороны, образование прочного продукта присоединения уменьшает активную массу диссоциирующей кислоты и тем самым уменьшает ее способность к диссоциации. Энергия, выделенная при образовании продукта присоединения, является результатом выделения энергии при образовании собственно водородной связи и поглощения энергии, затрачиваемой на деформацию связей между водородом и остальными атомами в молекуле, например, затратой энергии на деформацию связи ОН в молекулах фенолов и карбоновых кислот. Выделенная свободная энергия является результатом суммарного эффекта. Так как энергия выделяется, образование водородной связи уменьшает способность кислоты к диссоциации. Большая способность кислот к диссоциации в растворителях, образующих более прочные соединения, является результатом того, что, как правило, эти растворители более основные и характеризуются большей энергией сольватации ионов, и в первую очередь протонов. Большая энергия сольватации компенсирует уменьшение свободной энергии раствора при образовании водородной связи. В результате этого кислоты в таких растворителях диссоциируют сильнее. [c.294]

    Полученные выражения сильно отличаются от уравнения Бьеррума. Они показывают, что константы ассоциации зависят от энергии кулоновского взаимодействия между ионами и от различия в энергии взаимодействия свободных и связанных ионов с дипольными молекулами растворителей. [c.320]


    Энергии взаимодействия молекул растворителя с неполярным радикалом молекулы кислоты и иона, образованного из этой молекулы, близки между собой, а так как изменение силы кислот определяется величиной (2 1д — 1е 7о олекул)> отличия в величине этой энергии для кислот [c.339]

    Изменение свободной энергии реакции аутопротолиза между молекулами растворителя в вакууме и в жидкости отличается на величину химической энергии сольватации ионов лиония МН+ и ионов лиата (М—Н)  [c.349]

    Твердое вещество, попав в воду, под действием ее молекул начинает дробиться на молекулы или ионы и распределяться в объеме раствора. Процесс этот связан с затратой определенной работы, которую выполняют молекулы растворителя за счет внутренней энергии. На эту работу затрачивается то или иное количество тепла, и температура раствора, следовательно, должна понижаться. Однако растворимость не является универсальным свойством всех веществ. Не всякое вещество будет растворяться в любом растворителе. Для растворения необходимо, чтобы между молекулами растворителя и частицами (молекулами или ионами) растворяемого вещества было определенное взаимодействие. Это взаимодействие может оказаться настолько сильным, что молекулы растворителя и молекулы или ионы растворяемого вещества образуют устойчивые соединения, которые могут быть выделены из раствора в виде так называемых кристаллогидратов. [c.128]

    В растворителях менее полярных, чем вода, ориентация диполей около ионов происходит значительно меньше. Соответственно уменьшается и вызываемое ею ослабление сил стяжения между ионами, из-за чего энергия молекулярного движения в растворе может оказаться недостаточной для отделения их друг от друга. Поэтому распад молекулы на ионы обычно не наблюдается в таких малополярных растворителях, как эфир, бензол и т. п., и лишь. сравнительно слабо происходит в растворителях промежуточной полярности, например спирте. [c.170]

    Исследования электрической проводимости растворов, а также изучение спектров ЭПР показало, что в системах типа ионы — растворитель наряду со свободными ионами существуют и ионные пары , которые движутся как одно целое и не дают вклада в проводимость. Представление о ионных парах в 1924 г. были выдвинуты В. К. Семеновым и в 1926 г. Бренстедом. Одно из первых наблюдений, подтвердивших теорию ионных пар, было сделано Крауссом, обнаружившим, что хлорид натрия в жидком аммиаке сравнительно слабо проводит ток. Бьеррум указал, что, увеличивая расстояние между ионами, можно определить некоторое критическое его значение, такое, что ионы, удаленные на расстояние, большее критического, почти свободны, а ионы, находящиеся друг от друга на меньшем расстоянии, связаны. В настоящее время ионные пары рассматривают как частицы, обладающие совокупностью индивидуальных физико-химических свойств, находящиеся в термодинамическом равновесии со свободными ионами. Энергия связи в ионных парах в основном электростатическая, хотя дипольные и дисперсионные силы также вносят некоторый вклад в энергию взаимодействия. Несомненно и то, что свободные ионы в общем случае нарушают структуру растворителя, в результате чего достигается дополнительная стабилизация ионных пар. Если исходные молекулы растворяемого вещества содержат ковалентные связи А В, то образование ионной пары А+, В- может стимулироваться действием растворителя стабилизация пары достигается за счет энергии ее сольватации. Важную роль при этом играет способность молекул растворителя проявлять донорно-акцепторные свойства. Так, перенос электронного заряда на А, естественно, облегчает перенос а-электрона от А к В, что создает условия для гетеролитического разрыва связи А В и способствует возникновению ионной пары. Этот вопрос в более широком плане обсуждается в концепции, развитой В. Гутманом. [c.259]

    Степень протекания химических сольватационных процессов зависит от электронной структуры молекул и частиц компонентов растворителя и растворенного вещества, способности частиц к ком-плексообразованию, диссоциации, ассоциации, образованию ионных пар и т. д. При сольватационных близкодействующих взаимодействиях их энергия достигает 400 кДж/моль. К дальнодействующим силам взаимодействий относят электростатические взаимодействия между ионами, металлическую связь и силы Ван-дер-Ваальса. Молекулы растворителя ориентируются в структуры различной устойчивости вокруг растворенных частиц с образованием сольватных оболочек. Число частиц растворителя в первой сольватной оболочке определяют как координационное число сольватации (гидратации) Пс- Значение Пс в водных растворах достигает 6—8. [c.91]

    Важной характеристикой сольватации является энергия взаимодействия ионов с молекулами растворителя, составляющими в растворе непосредственное окружение ионов, и с более отдаленными молекулами. Соответственно этому различают ближнюю и дальнюю сольватацию. С ближней связаны кинетические и термодинамические свойства растворов. Дальняя сольватация проявляется главным образом в поляризации молекул растворителя под влиянием кулоновских сил, действующих между ионами. Состояние ионов в растворах и молекулярный механизм протекающих в них процессов связаны с ближней сольватацией. [c.271]

    Показано, что функции распределения катион—анион, рассчитанные для концентрации 5 моль/л с учетом взаимодействия ионов друг с другом и с дипольными молекулами растворителя, имеют два максимума, отображающих существование в растворе ближнего порядка в расположении ионов, возможность нахождения диполя между двумя ионами различных знаков. Те же функции распределения, вычисленные без учета энергии взаимодействия между молекулами растворителя, имеют лишь один максимум. [c.273]

    Для того чтобы понять, почему эти соединения включаются в образование мембран, необходимо рассмотреть факторы, влияющие на растворимость. Степень распределения вещества в растворителе определяется соотношением сил взаимодействия вещество — вещество в твердом состоянии с силами взаимодействия растворитель — растворитель и вещество — растворитель в жидкой фазе. В полярных соединениях эти силы связывания кристаллической решетки достигают больших величин (например, электростатическое взаимодействие в ионных или цвиттер-ионных твердых веществах либо многочисленные водородные связи в сахарах). Мало вероятно, чтобы такие соединения легко распределились в неполярном растворителе, где взаимодействие вещество — растворитель будет очень слабым и создаваемый при этом небольшой запас энергии будет недостаточен, чтобы компенсировать энергию, необходимую для отрыва молекул из кристаллической решетки. Наоборот, высокополярные растворители, вероятно, будут растворять неполярные вещества, поскольку включение молекул неполярного вещества между молекулами полярного растворителя должно нарушать относительно сильное взаимодействие между молекулами растворителя без какой-либо значительной компенсации взаимодействием вещество — растворитель. Итак, для тех веществ, которые при растворении распределяются в виде изолированных молекул, существует хорошо известное качественное соотношение между растворимостью и относительной полярностью вещества и растворителя. [c.337]

    Здесь ЛЯ1° —количество тепла, затрачиваемое на распределение частиц растворяемого вещества (молекул, атомов или ионов) среди молекул растворителя. Для твердого вещества, растворяющегося в жидкости, ts.H соответствует энергии, необходимой для разрушения кристаллической решетки твердого вещества и для разрыва связей между молекулами растворителя. При растворении жидкости в жидкости или газа в жидкости ДЯ значительно меньше, особенно в последнем случае, поскольку при этом происходит концентрация молекул растворяемого газа до объема, равного объему раствора. Второе слагаемое АЯ, представляет собой тепловой эффект сольватации, т. е. количество тепла, которое выделяется при взаимодействии частиц растворенного вещества с молекулами растворителя и образовании новых связей между ними. Знак ДЯ° зависит от того, какое из этих слагаемых преобладает. [c.76]

    Отрыв каждого последующего электрона требует все большей энергии, так как электрон в процессе п-й ионизации должен покинуть ион с суммарным зарядом п— I. В качестве иллюстрации в табл. 4.4 приведены значения первых трех потенциалов ионизации элементов первого переходного ряда. Эти элементы в соединения обычно входят в виде многозарядных ионов (например, Fe +), что могло бы показаться удивительным, так как энергии, необходимые для образования таких ионов, очень велики. Однако значения, приведенные в табл. 4.4, относятся к энергии образования изолированных ионов в газовой фазе, в растворе они в значительной мере компенсируются энергией сольватации иона. Энергия сольватации в основном обусловлена электростатическим взаимодействием между ионом и дипольными молекулами растворителя (например, воды). [c.57]

    Переход от сольватно-разделенной к контактной ионной паре сопровождается изменением электростатической энергии. Если в контактной паре расстояние между ионами равно гд + + Гв, а в сольватно-разделенной + Лг,ю переход к контактной паре сопровождается выделением энергии, равной гА.1ве Лф(гА + /ТВ + Аг)(га + гь ). При гд гв и гд Дг эта энергия становится незначительной. Структура ионной пары зависит от растворителя в плохо сольватирующих растворителях образуются только тесные ионные пары. [c.278]

    Вопросы переноса энергии при радиолизе углеводородов привлекли к себе широкое внимание исследователей, и представление о переносе энергии неоднократно использовалось для интерпретации результатов. Передача энергии между молекулами растворителя М и молекулами растворенного вещества 5 может идти в форме переноса электрона (как это наблюдается в газах), переноса энергии возбуждения М - -5- 5 +М, образоса-. ния пары ионов с последующей нейтрализацией М++5 - - М- -5 или в форме процесса внутренней конверсии. [c.279]

    Еще более сложное, но не более строгое приближение было сделано Мельвин-Хьюзом [65], который при подсчете энергии ион-дипольйого взаимодействия учел эффект поляризации и силы отталкивания. Чтобы получить величину взаимодействия диполь — растворитель, была использ ована [66] модель Онзагера для диполя, окруженного оболочкой из молекул растворителя. Авторы воспользовались уравнением Пуассона для того, чтобы оценить влияние ионной оболочки на диполь. Полученные в этом случае ч )ормулы слишком сложны и вряд ли могут быть успешно применены для обработки экспериментальных результатов. Влияние ионной силы в реакциях между ионом и диполем может сказываться не только на специфических взаимодействиях. Для положительных ион-дипольных взаимодействий (0 > 90°) ориентация диполя приведет к тому, что поле иона будет уменьшать поля диполя. В результате следует ожидать, что ионная атмосфера оболочка), окружающая как свободный диполь, так и комплекс, образующийся при взаимодействии иона с диполем, будет гораздо сильнее стабилизировать свободный диполь. Это будет приводить к уменьшению скорости с увеличением ионной силы. В случае отрицательного взаимодействия увеличение ионной силы раствора вызывает увеличение скорости реакции. К сожалению, экспериментальных результатов, которые могли бы подтвердить эти выводы, до сих пор нет. Основная трудность здесь заключается в том, что до сих пор не было сделано ни одной попытки сравнить действие ионов и ионных пар в качестве реагентов [68]. Сложность модели сама по себе достаточно велика, и, по всей видимости, любое из соотношений, которое может быть выведено, сможет получить лишь качественное подтверждение. [c.459]

    В растворах, содержащих заряженные частицы, энергия взаимодействия между ионами убывает пропорционально Юг, где О — диэлектрическая проницаемость среды. Энергия взаимодействия между однозарядными ионами в водной среде при л = 5- 10- м (расстояние, равное среднему расстоянию между ионами в 1 М растворе) и 300 К равна 3,46 кДж/моль. Напряженность электрического поля между ионами равна 7,5 10 В/см. Энергия межмолекулярного взаимодействия, обусловленного ван-дер-ваальсовыми силами, на этих расстояниях практически равна нулю. Заряженные частицы взаимодействуют с нейтральными молекулами растворителя. Энергия такого взаимодействия характеризуется энергией сольватации ионов (см. 161). Энергия сольватации ионов соответствует по по- [c.601]

    Величина AG° характеризует влияние ионной силы и диэлектрической проницаемости растворителя в случае реакций между ионами в растворах (гл. XX). Энергию активации в уравнении (XVII. 31) определяют по уравнению (XVII. 23) теоретически вычислить ее не удается (см. стр. 237). [c.241]

    Определениед чисел сольватации и выяснением структуры растворов не исчерпывается вопрос о сольватации. Следует не только установить, какое число молекул воды присоединяется к иону и какие изменения происходят в структуре растворителя, но и установить, каковы энергетические изменения при взаимодействии между ионом и молекулами растворителя. Чтобы произошло растворение соли, нужно преодолеть взаимодействие между ионами, т. е. преодолеть энергию кристаллической решетки. Энергия, выделяющаяся при растворении соли, равна разности между суммой энергии гидратации ионов и энергией кристаллической решетки  [c.153]

    В работе совместно с Ю. А. Кругляком нами был предложен новый метод нахождения энергии и теплоты сольватации отдельных ионов. Этот метод основан на представлении о сольватации ионов как о процессе комплексообразования. Согласно этим представлениям, связь между молекулами растворителей и ионами осуществляется вследствие образования молекулярных орбит. При этом центральные атомы молекул растворителей (кислород, азот) являются донорадги неподеленных пар ялектронов, а ионы — их акцепторами, представляющими им свои вакантные орбиты. Число сольватации онределяется координационным числом, т. е. числом ближайших к заполненным вакантных орбит с близкими энергетическими уровнями. Первичная анергия сольватации представляет, следовательно, энергию комплексообразования, а вторичная — энергию электростатического взаимодействия комплекса с молекулами растворителей. [c.169]

    Таким образоА , открывается иуть оценг п изменения свойств электролитов под влиянием растворителей ио разности химических энергии сольватации ионов и молекул в различных растворителях. Однако этот путь ие всегда может быть использован, так как известно мало данных о хидшческих энергиях сольватации в неводных растворах. Следует заметить, что даже в тех случаях, когда они известны, их применение затруднено тем, что и в этом случае определение изменения свойств производилось бы по разности между большими и близкими между собой величинами. Небольшие ошибки в определении энергии сольватации приводили бы к большим ошибкам в величинах свойств. [c.184]

    Взаимная компенсация lg7o ионов и молекул при подсчетах влияния растворителей на силу кислот и на относительную их силу (для кислот с одинаковыми носителями протонов) говорит о том, что энергии и взаимодействия растворителей с радикалом, входящим в состав аниона и молекулы одной и той же кислоты, близки между собой. [c.337]

    Влияние растворителя. Сущность влияния растворителя на скорость реакции в общем случае обусловлена как ван-дер-ваальсовым, так и дисперсионным взаимодействием, электростатическим взаимодействием между ионами и диполями, а также сольватацией растворителем молекул исходных реагентов, активированных комплексов и продуктов реакции. Перемена растворителя вызывает изменение константы скорости, параметров уравнения (II.90), а в отдельных случаях и порядка реакции. Требуется установить количественную связь между характеристиками процессов образования активированного комплекса и свойствами растворителя. Задача эта весьма сложна и в общем виде далека от решения. Не представляется возможным оценить энергию каждого из видов взаимодействий в растворах — как реагентов (между собой), так и активированных комплексов и продуктов реакций с растворителем. [c.152]

    Приравнивая энергию переноса ионов из растворителя 1 в растворитель 2 идеальному соотношению между изобарным потенциалом и концентрацией растворенного вещества, получим [c.361]

    В растворах электролитов в неполярных растворителях к образованию сольватов приводят индукционное и дисперсионное взаимодействия. При взаимодействии иона с неполярной молекулой электростатическое взаимодействие осуществляется между зарядом иона и -квадрупольным (октупольным и др.) моментом, но оно, в общем, нез а ительно. В то же время ион наводит в неполярной молекуле индуцированный дипольный момент. Энергия инду]щионного взаимодействия между ионом, и наведенным диполем рассчитывается по формуле [c.266]

    Роль короткодействующих сил обусловливается не только за счет взаимодействий ион — растворитель. Большое значение здесь имеют также взаимодействия растворитель — растворитель, хотя в теориях они, как правило, не учитываются. Вследствие кооперативного характера таких взаимодействий общий вклад их в не-идеальность раствора может быть значительным, особенно для водных растворов электролитов. Причем этот вклад не зависит от полных энергий взаимодействия, а зависит от того, как энергия взаимодействия убывает с расстоянием. Чем резче энергия взаимодействия убывает с увеличением расстояния между частицами, тем больше потенциальный барьер, преодолеваемый частицей при смещении из положения равновесия. Именно поэтому для свойств растворов очень важны взаимодействия, пусть слабые, но быстро убывающие с расстоянием (короткодействующие силы). Этими взаимодействиями, как будет показано далее, определяется кинетическая сольватация ионов — воздействие их на величину потенциальных барьеров частиц и влияние в связи с этим на соль-ватнруемость ионов, что в свою очередь влияет на величину неидеальной части химического потенциала. Указанное влияние ионов на растворитель проявляется в усилении или ослаблнии связей между молекулами растворителя. [c.236]

    Термодинамический и кинетический подходы. В истолковании явления сольватации имеются два подхода. Один из них называется термодинамической сольватацией. Он основан на преимущественном учете взаимодействий ион— растворитель и предполагает, что при сольватации ионы прочно связывают определенное число молекул растворителя. Это число называется сольватацион-ным (в случае водных растворов — гидратационным). Для количественной характеристики сольватационные числа не всегда применимы, так как они в значительной степени зависят от методов их определения. Достаточно указать, например, что, по данным различных авторов, гидратационные числа для иона Li+ изменяются от 158 до 4, для иона Са + —от 16 до 6 для иона АР+ — от 39 до 6 и т. д. Более определенный смысл имеет число молекул растворителя, составляющих непосредственное окружение иона (координационное число). Оно служит одной из важнейших количественных характеристик процесса сольватации. Координационное число зависит от природы сольватирующихся частиц, их концентрации и т. д. Обсуждаемый подход к сольватации на основе преимущественной роли взаимодействия ион — растворитель связан с представлениями о термодинамической устойчивости ас-социата ион — молекулы растворителя, мерой которой является общая энергия взаимодействия между ними. [c.238]

    Следовательно, при растворении веществ происходит разрыв связей между ионами, атомами или молекулами, что связано с затратой энергии. Одновременно происходит взаимодействие частиц растворяемого вещества с растворителем, что сопровождается выделением энергии. Общий же энергетический эффект зависит от соотношения выделяемой или поглощенной энергии. Если энергия, затраченная на разрыв связей в исходном веществе, больше, чем выделившаяся при образовании сольвата, то наблюдается понижение температуры раствора, а если наоборот, — то повышение температуры раствора. Тепловая энергия, выделяемая или поглощаемая при растворении веществ, называется теплотой растворения. [c.103]

    Из соотношения (УП1.28) следует, что при увеличении заряда ионов расстояние, на котором они начинают взаимодействовать, увеличивается. Наоборот, при увеличении диэлектрической проницаемости растворителя сила электростатического взаимодействия между ионами уменьшается в В раз. Поэтому полярные растворители, характеризующиеся большим значением диэлектрической проницаемости, способствуют образованию растворов с малой склонностью к возникновению ионных пар. Даже на сравнительно малых расстояниях взаимодействием ионов можно пренебречь д мал по величине), поэтому ионы можно считать практически изолированными. При увеличении температуры, как следует из (УП1.28), параметр Бьёррума q уменьшается и взаимодействие между ионами ослабляется на меньших расстояниях, что объясняется возрастанием энергии теплового движения ионов. Параметр Бьёррума имеет вполне определенное значение для каждого растворителя при заданных температуре и заряде ионов. Например, для однозарядных ионов в воде (2+ = 2 =1) при 25° С = 298 К [c.260]

    Для преодоления электростатических сил, удерживающих ионную решетку, необходима большая энергия. Как правило, только вода и некоторые сильнополярные растворители хорошо растворяют ионные соединения. Какого же типа связи образуются между ионами и растворителем типа воды Молекула воды сильно полярна она имеет положительный и отрицательный концы. С1едовательно, существует электростатическое притяжение между положительным ионом и отрицательным концом молекулы воды и между отрицательным ионом и положительным концом молекулы воды. Такие взаимодействия называются ион-дипольными взаимодействиями. Каждая ион-дипольная связь относительно слаба, но в сумме они дают достаточно энергии для разрушения межионных сил в кристалле. В растворе каждый ион окружен груп- [c.31]


Смотреть страницы где упоминается термин Энергия между ионом и растворителем: [c.28]    [c.15]    [c.184]    [c.89]    [c.327]    [c.241]    [c.66]    [c.76]    [c.246]   
Кинетика реакций в жидкой фазе (1973) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы энергия,

Методы разделения стандартной энергии Гиббса переноса электролита между растворителями на ионные составляющие

Растворитель ионита

Энергия ионов



© 2025 chem21.info Реклама на сайте