Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные пары структура

    Хотя и нельзя строго отнести частицы, получаемые при растворении щелочных металлов в растворителях типа этиламина, к ионным парам (структура этих частиц неизвестна), ясно, что эти частицы весьма близки к ионным парам. Они обнаруживают хорошо разрешенную сверхтонкую структуру от катиона, причем расщепления сильно зависят от температуры. Изменения расстояния между линиями составляют от 3 до 45% соответствующих значений для атомов при переходе от низкой температуры к наиболее высоким изученным температурам. Кроме аминов [132, 133], аналогичные спектры были получены в последнее время для калия в различных растворителях класса простых эфиров [134]. [c.286]


    Поведение и структура ионных пар и более сложных комплексов широко изучались такими методами, как кондуктомет-рия, спектроскопия комбинационного рассеяния, спектроскопия в УФ-, видимой и ИК-областях, а также методами электронного, и ядерного магнитного резонанса. Эти методы и полученные результаты описаны в обзоре [22]. [c.17]

    СИЛЬНО зависит от стерических эффектов, связанных с катионом. Для контактных ионных пар стереоспецифичность более вероятна это проявляется, например, в реакциях Н/О-обмена [28]. Известно, что краун-эфиры превращают многие (но не все см., например, [17]) контактные ионные пары катионов щелочных металлов в разделенные растворителем ионные пары. Последние реагируют менее специфично [28]. Влияние различных эфирных растворителей (например, эфиров поли-этиленгликоля или добавленных краун-эфиров) на структуру ионных пар рассмотрено в обзоре [32]. [c.20]

    В гетероядерной двухатомной молекуле АВ, где В-более электроотрицательный атом, чем А, связывающая молекулярная орбиталь содержит больший вклад атомной орбитали атома В, а разрыхляющая молекулярная орбиталь больше напоминает атомную орбиталь атома А. Если разность электроотрицательностей атомов А и В очень велика, как, например, в КР, валентные электроны локализуются на более электроотрицательном атоме (в данном случае Р) и представление о ковалентной связывающей орбитали теряет свой смысл. В такой ситуации правильнее говорить об ионной структуре К Р . Большинство гетероядерных двухатомных молекул имеют промежуточный характер связи между ионными парами и ковалентно связанными атомами другими словами, они имеют частично ионный характер связи и могут описываться структурами А В .  [c.544]

    Как оказалось [39], тетраэдрические металлсодержащие анионы, которые сами по себе не анизотропны, могут давать псевдоконтактный вклад в неметаллическом катионе. Причину и величину /-анизотропии можно в первом приближении объяснить электростатическим возмущением кристаллического поля сферического аниона, вызываемым катионом. Предполагается также, что за время жизни ионной пары тетраэдрическая структура аниона под действием катиона несколько искажается. Поскольку катион лежит на единственной в своем роде оси, он будет подвержен влиянию дипольного сдвига, обусловленного индуцированной в ионной паре анизотропией. Существует много эквивалентных путей, по которым катион может приблизиться к тетраэдрическому или октаэдрическому аниону для образования ионной пары, и все эти пути характеризуются сопоставимыми псевдоконтактными вкладами катиона. Таким образом, динамический процесс подобного вида не усредняет до нуля псевдоконтактный сдвиг катиона. В то же время динамический процесс такого вида усредняет до нуля влияние псевдоконтактного сдвига на положение сигналов атомов тетраэдрического илп октаэдрическою аниона. [c.189]


    С другой стороны, константа диссоциации фермент-субстратного комплекса Ks сохраняет постоянное значение при кислых и нейтральных значениях pH, но с дальнейшим увеличением pH она возрастает [13, 46]. Последнее объясняют тем, что правильная стереохимическая конформация активного центра обусловлена взаимодействием ионной пары (Asp-194)—СОО . .. " NHa — (11е-16), находящейся внутри ферментной глобулы (См. рис. 31). В результате депротонизации а-аминогруппы Пе-16 (с рКа — 8,5—9) происходит разрушение солевого мостика , что приводит к потере ферментом сорбционной способности. Это представление согласуется с данными рентгеновского анализа структуры кристаллического химотрипсина [17], однако ван<ность именно а-аминогруппы Пе-16 для катализа поставлена под сомнение в ряде работ ]47, 48]< [c.132]

    Кинетические закономерности и механизмы ионной полимеризации имеют более сложный характер, чем в случае радикальной, так как промежуточные активные центры могут сосуществовать в равновесии в виде различных форм свободных ионов, ионных пар, поляризованных комплексов и др. Смещение этого равновесия в ту или иную сторону путем изменения условий проведения реакций (температуры, природы растворителя, катализатора и др.) позволяет достаточно активно воздействовать на кинетику процесса и структуру образующегося полимера, что, как правило, исключается в случае радикальной полимеризации. [c.18]

    Число лигандов, связанных с центральным атомом (ионом), называют координационным числом иона (КЧ). Оно зависит как от электронной структуры, так и от соотношения между радиусами центрального атома (иона) и лигандов. Поэтому для одного и того же центрального иона возможны соединения с разными КЧ. Координационное число центрального атома (Иона) обычно превышает его валентность, понимаемую как формальный положительный заряд на атоме. Вернер ввел поэтому представление об остаточной, или вторичной, валентности, позволяющей атому (иону) присоединять число лигандов большее, чем его валентность, именно равное координационному числу. Так, например, нормальная валентность Со(П1) равна трем, но в Со(КНз) его КЧ = 6 и шести же равна его вторичная валентность. При этом связи всех лигандов с центральным ионом эквивалентны. Льюис с развитием электронной теории объясняет эту эквивалентность тем, что каждая из присоединенных групп (здесь 1 Шз) связана с центральным ионом парой электронов, передаваемой в общее пользование аммиаком. Такая связь получила название координационной или дативной (то же, что и донорно-акцепторная связь). [c.236]

    В зависимости от знака заряда на конце растущей цепи ионную полимеризацию подразделяют на анионную, протекающую под влиянием возбудителей основного характера, и катионную, вызываемую кислотными агентами. Активные центры при ионной полимеризации обычно имеют структуру ионных пар, компоненты которых называются растущим ионом (R+ или R ) и противоионом (А или В+). Реакционная способность активных центров при ионной полимеризации, в отличие от радикальной полимеризации в большой степени зависит от свойств реакционной среды. [c.28]

    Карбанионы, в которых отрицательный заряд стабилизирован резонансом, включающим перекрывание орбитали неподеленной пары с я-электронами кратной связи, являются практически плоскими, как того и требует условие резонанса, однако несимметричная сольватация или образование ионной пары могут заставить структуру несколько отклоняться от абсолютной планарности (89]. Крам и сотрудники показали, что при [c.233]

    Исследования электрической проводимости растворов, а также изучение спектров ЭПР показало, что в системах типа ионы — растворитель наряду со свободными ионами существуют и ионные пары , которые движутся как одно целое и не дают вклада в проводимость. Представление о ионных парах в 1924 г. были выдвинуты В. К. Семеновым и в 1926 г. Бренстедом. Одно из первых наблюдений, подтвердивших теорию ионных пар, было сделано Крауссом, обнаружившим, что хлорид натрия в жидком аммиаке сравнительно слабо проводит ток. Бьеррум указал, что, увеличивая расстояние между ионами, можно определить некоторое критическое его значение, такое, что ионы, удаленные на расстояние, большее критического, почти свободны, а ионы, находящиеся друг от друга на меньшем расстоянии, связаны. В настоящее время ионные пары рассматривают как частицы, обладающие совокупностью индивидуальных физико-химических свойств, находящиеся в термодинамическом равновесии со свободными ионами. Энергия связи в ионных парах в основном электростатическая, хотя дипольные и дисперсионные силы также вносят некоторый вклад в энергию взаимодействия. Несомненно и то, что свободные ионы в общем случае нарушают структуру растворителя, в результате чего достигается дополнительная стабилизация ионных пар. Если исходные молекулы растворяемого вещества содержат ковалентные связи А В, то образование ионной пары А+, В- может стимулироваться действием растворителя стабилизация пары достигается за счет энергии ее сольватации. Важную роль при этом играет способность молекул растворителя проявлять донорно-акцепторные свойства. Так, перенос электронного заряда на А, естественно, облегчает перенос а-электрона от А к В, что создает условия для гетеролитического разрыва связи А В и способствует возникновению ионной пары. Этот вопрос в более широком плане обсуждается в концепции, развитой В. Гутманом. [c.259]


    В области, прилежащей к значениям коэффициента активности насыщенного раствора около 1 или 1п у1 - -О, могут располагаться величины у1 растворенных соединений первой группы взаимодействий, которые в молекулярной и ионной формах не образуют каких-либо устойчивых структур с компонентами раствора (кривая 1). Для соединений этой группы значение коэффициента активности практически постоянно во всем диапазоне концентраций раствора. Остальные группы соединений характеризуются более существенной связью между значениями коэффициента активности и концентрации часто наблюдается плавный перелом хода изменения градиента коэффициента активности (А 1п у /Атг) вблизи зоны концентраций, где в соответствии с константами устойчивости степень связывания исходных веществ становится весьма высокой. В области со значениями коэффициента активности 0,2—0,8 могут быть ионные пары — второй тип взаимодействий, отражаемый кривой 2. Для комплексных соединений (кривая 3) — третьего типа взаимодействий — значения коэффициента активности даже при небольшой степени достижения равновесия составляют менее 0,2. Ионные пары и комплексы характеризуются значительной устойчивостью, и содержание в растворе первичных форм молекул и ионов, образующихся при диссоциации,становится заметно меньшим, чем содержание растворившегося вещества в пересчете на исходную его молекулярную форму. [c.75]

    Степень протекания химических сольватационных процессов зависит от электронной структуры молекул и частиц компонентов растворителя и растворенного вещества, способности частиц к ком-плексообразованию, диссоциации, ассоциации, образованию ионных пар и т. д. При сольватационных близкодействующих взаимодействиях их энергия достигает 400 кДж/моль. К дальнодействующим силам взаимодействий относят электростатические взаимодействия между ионами, металлическую связь и силы Ван-дер-Ваальса. Молекулы растворителя ориентируются в структуры различной устойчивости вокруг растворенных частиц с образованием сольватных оболочек. Число частиц растворителя в первой сольватной оболочке определяют как координационное число сольватации (гидратации) Пс- Значение Пс в водных растворах достигает 6—8. [c.91]

    Как видим, ближняя гидратация ионов в водных растворах тесно связана со структурным состоянием воды. Это заключается в том, что усиление упорядоченности воды ведет к ослаблению гидратации ионов. Например, разрушение структуры воды усиливает гидратацию. Роль структурного состояния воды в явлениях гидратации ионов в растворах подчеркивает большое значение короткодействующих сил для свойств растворов. При гидратации ионов собственная структура воды изменяется, возникает новая структура, характерная для раствора. При этом обнаруживается большая устойчивость структуры воды, о вызвано, во-первых, тем, что каждая молекула в воде участвует приблизительно в четырех водородных связях, и, во-вторых, тем, что трансляционное движение молекул Н2О происходит в основном по пустотам структуры. С ростом температуры и давления собственная структура воды становится менее упорядоченной, ближняя гидратация ионов усиливается и затрудняет ассоциацию катионов и анионов и образование контактных ионных пар. [c.277]

    Книга состоит из трех больших глав. В первой рассмотрены солевые эффекты. Особый интерес представляет количественное описание влияния эффектов солей на коэффициенты активности электролитов и неэлектролитов, а также рассмотрение влияния на эти величины добавок неэлектролитов. Разобрана природа гидрофобных взаимодействий и дано описание влияния солевых эффектов на равновесия и скорости реакций различного типа. Вторая глава посвящена сольватации ионов в растворителях различной природы и ее роли в реакциях с участием анионов, ионов карбония, катионов металлов, амбидент-ных анионов, а также влиянию сольватации на кислотно-основные равновесия. В последней главе рассматриваются явления ассоциации ионов, включая мицеллообразование, теоретические модели для описания этого явления, экспериментальные методы его изучения, термодинамику ассоциации ионных пар, структуру ионных пар и более высоких ассоциатов и наиболее важный вопрос - влияние ионной ассоциации на различные химические процессы. Таким образом, даже краткое перечисление вопросов, рассмотренных в книге, показывает, сколь полно и всесторонне представлены в монографии многообразные аспекты процессов сольватации. [c.6]

    За 150 лет, прошедших со времени первых успешных экспериментов Вёлера, органический синтез дал в руки химика арсенал изощренных методик, приводящий даже в некоторое замешательство своим объемом. Однако наблюдая легкость, с которой живые организмы создают сложные структуры в практически водных средах и при температурах немного выше комнатной, химик убеждается, что его прогресс в этой области не столь уж велик. Действительно, химики-органики постоянно стараются создать более быстрые, более простые и более дешевые препаративные методы. Поэтому эта книга является попыткой собрать рассеянные в литературе примеры новой техники проведения органических реакций — техники, которая начала использоваться только в последнее десятилетие. Во многих случаях новая методика снимает обычное требование проведения органических реакций в гомогенных, часто абсолютных , т. е. тщательно высушенных, средах. При межфазном катализе (МФК) субстрат, находящийся в органической фазе, учат ствует в химической реакции с реагентом, который находится в другой фазе — жидкой или твердой. Реакция осуществляется при помощи агента-переносчика. Этот агент, или катализатор, способен солюбилизировать или экстрагировать в органическую среду неорганические и органические ионы в форме ионных пар. [c.9]

    Во многих случаях МФК состоит в экстракции ионных молекул органическим растворителем или их растворении в нем. В связи с этим полезно иметь необходимые данные о структуре и свойствах таких растворов. Полный обзор этого предмета выходит за рамки настоящей книги. Однако в данном разделе будет представлено его краткое качественное изложение. Для более глубокого ознакомления с физико-химическими концепциями, методами и полученными результатами читатель может воспользоваться учебниками по физической химии, физической органической химии (например, [21]) или последними монографиями [22, 23, 39]. Структура и реакционная способность карбанионов в ионных парах и карбанионоидных металлоорганических соединениях рассмотрены в обзоре [40] и специальных монографиях [41—43]. [c.16]

    Брендстрём [46, 112] определил большое число кажущихся констант экстракции между водой и различными растворителями для стандартной четвертичной аммониевой соли — бромида тетра -н-бутиламмония (табл. 1.1). Растворитель, используемый в работе по МФК, должен быть не смешивающимся с водой так как в противном случае будут образовываться сильно гидратированные экранированные ионные пары с низкой реакционной способностью. Чтобы избежать образования водородных связей с анионами ионных пар, растворитель, кроме того, должен быть апротонным. Приведенные в табл. 1.1 данные показывают, что величины констант экстракции очень сильно изменяются. Растворители из последней колонки таблицы в целом не подходят для МФК некоторые из них частично смешиваются с водой, другие слишком активны и могут мешать многим процессам. Однако для рассматриваемой стандартной соли, которая обладает средней липофильностью, все эти растворители являются хорошими или отличными экстрагентами. Родственные по структуре, несколько более полярные соединения (например, гомологи) должны иметь сходную способность к экстрагированию ионных пар. Это позволяет сделать важный вывод если в качестве реагентов в реакциях в условиях МФК, например в алкилировании, используются соединения типа приведенных в последней колонке табл. 1.1, то органический растворитель не требуется, так как экстракция ионных пар в чистую органическую фазу будет вполне удовлетворительной. [c.24]

    Хорошо известно, что высокомолекулярные амины могут экстрагироваться в виде ионных пар аммониевых солей с различными противоионами из водных растворов в среду, подобную хлороформу. Недавно селективная экстракция такого типа была положена в основу ряда аналитических методов [44, 47—51, 54, 58] и способов разделения [7, 52, 53]. Как уже упоминалось в разд. 1.3.1 и хорошо описано в обзорах Брендстрёма [11, 112], могут существовать чрезвычайно сложные равновесные системы с несколькими константами, которые зависят от структуры аниона, катиона и растворителя, а также от pH, ионной силы и концентраций. В результате физико-химических и аналитических исследований подобного равновесия установлено, что существует взаимосвязь между размером катиона и константой экстракции. Этот факт очень важен для МФК. [c.27]

    Когда такие факторы, как природа субстрата, нуклеофила и уходящей группы, постоянны, активация аниона зависит от растворителя, а также от природы и концентрации лиганда. Бициклические криптанды, такие, как 5, оказывают более сильное влияние, так как они в большей степени охватывают катион, образуя тем самым более стабильные комплексы. В полярных апротонных растворителях крауны обусловливают усиление диссоциации. В других системах (например, грег-бутоксид натрия в ДМСО) ионные агрегаты разрушаются в результате комплексообразования с краунами, что приводит к увеличению основности алкоксида, измеряемой скоростью отщепления протона [101]. В менее полярной среде, такой, как ТГФ или диоксан, доминирующими частицами являются ионные пары. В этом случае краун-эфиры могут благоприятствовать образованию разделенных растворителем более свободных (рыхлых) ионных пар [38, 81] с более высокой реакционной способностью [102]. Даже в гидроксилсодержащих растворителях при добавлении краунов наблюдаются удивительные эффекты, так как изменяются структура и состав сольватной оболочки вокруг ионной пары и ионные агрегаты частично разрушаются. Например, сильно изменяется соотношение син1 анти-изомеров при элиминировании, катализируемом основаниями [103]. [c.40]

    Эрссон [108] использовал этот метод для газохроматографического определения карбоновых кислот и фенолов. Метод включает экстракцию кислоты в форме ионной пары в метиленхлорид и получение производного с пентафторбензилбромидом. Скорость реакции увеличивается в зависимости от структуры противоиона и при увеличении его концентрации. Для повышения скорости реакции гораздо лучше использовать вместо тетрабутиламмониевых солей более липофильные соли тетра-н-пен-тиламмония. Имеется обзор, посвященный применению экстрактивного алкилирования для анализа фармацевтических препаратов [1052], а недавно описана микромодификация этого метода с твердофазной системой МФК и использованием в каче- стве щелочи карбоната натрия [1053]. [c.128]

    Необходимо добавить, что момент изомеризации алкилирующего агента может быть установлен лишь при детальном изучении механизма реакции алкилирования. По-видимому, образование прочных ионных пар или других комплексов подобных структур предшествует изомеризационным превращениям. Если же отрыв функциональной группы от алкилирующего агента протекает легко и приводит к образованию карбокатиона в объеме — это является наиболее благоприятным условием для изомеризации алкильной группы. [c.118]

    Криптанды образуют комплексы включения криптатного типа криптаты) с пикратамн щелочных металлов (Ма+, К+ или С8+). Криптанды функционируют как переносчики катионов, растворяя пикрат щелочного металла в жидкой хлороформной мембране в виде ионной пары криптат — пикрат (1 1), а затем освобождая его в ннтерфазу наружного водного слоя [149]. Путем сравнения установлено, например, что 5-4 переносит К а+ и К+ гораздо быстрее, чем 5-1. Это означает, что в результате удаления двух кислородсодержащих связывающих центров криптанд превращается из специфического рецептора К (5-1) в специфический переносчик. К+ (5-4). Работа Лена по криптатам позволила создать лиганды, которые в зависимости от структуры могут быть либо рецепторами, либо переносчиками катионов. Наиример, для 5-1 как переносчика эффективность [c.280]

    На основании этих результатов сделан вывод, что дейтерий отщепляется амином и образующийся аммоний-ион остается спаренным с карбанионом ионной связью. Катион необязательно должен оставаться в исходном положении, так как резонанс кольцевой системы обеспечивает делокализацию отрицательного заряда по всем атомам вплоть до кислорода заместителя. В таком случае ионная пара, которая теперь лежит в плоскости кольца, может скюльзить вдоль планарной структуры или возвращаться в исходное положение, не обменивая дейтерий на протоны растворителя. Для данного процесса Крам предложил название механизм направленной миграции (основание мигрирует вдоль молекулы), чтобы объяснить явление изоинверсии. Заметим, что в метаноле (более сильная кислота, чем трет-бутанол) карбанион гораздо легче протонируется и поэтому его период полупревращения не достаточно продолжителен, чтобы обеспечить процесс направленной миграции. [c.446]

    Применение метода резонанса, а также метода молекулярных орбит, показывает, что связывающая электронная пара локализована лишь в предельном случае. В образовании основного состояния принимают небольшое участие и ионные структуры, благодаря чему этЬ состояние устойчивее, чем можно было бы ожидать на основании классической структурной формулы Таким образом, на языке теории резонанса полярность двухэлектронной связи описывается участием ионных предельных структур, что эквивалентно толкованию, данному ранее на стр. 52. Нитрометан и карбоксилат-ион имеют полностью делокализо-ванную электронную пару, облако которой распределено в первом случае между атомами О, N и О, а во втором — между О, С и О. [c.57]

    Бромциклогептатриен (10) существует не как ковалентное соединение, а как ионная пара, так как при вытеснении из него бромид-иона образуется ароматическая структура тропилий-катиона, что связано с выигрышем энергии. Интересно, что циклогептатриенон (тропон) (11) имеет более высокий, чем у обычных кетонов, дипольный момент (4,3 Д). Это означает, [c.309]

    Карбанионы — отрицательно заряженные органические ионы, содержащие углерод с неподеленной парой электронов. Карбанион может иметь плоскую структуру (трифенилметилкарбанион) или форму трехгранной пирамиды. Карбанионы обнаруживают в растворе по спектрам и по электрической проводимости раствора. Они образуются из металл-органических соединений и при воздействии на молекулу сильных оснований. В растворе карбанионы могут находиться в виде отдельных сольватированных ионов и в виде тесных или неразделенных (катион и анион находятся рядом) и рыхлых или разделенных (между катионом и анионом находится одна или несколько молекул растворителя) ионных пар  [c.143]

    Для ионной полимеризации характерно существование устойчивых ионных пар (растущий карбкатион или карбанион и соответственно противоанион или противокатион катализатора). Стабильность и структура таких ионных нар зависит от сольватирующей способности растворителя. При сильной сольватации ионы могут быть изолированы друг от друга. [c.36]

    Таким образом, на конце растущей цепи всегда находится карбка-тиок с противоанионом. Благодаря поляризации молекулы мономера обеспечивается регулярное присоединение звеньев по типу голова к хвосту , так как другой тип присоединения здесь просто невозможен. Поэтому цепь полимера имеет химически регулярную структуру. Невысокая диэлектрическая постоянная среды (хлорированные углеводороды) способствует сохранению ионной пары в процессе роста цепи. [c.38]

    Итак, ионная полимеризация также является видом цепных процессов синтеза полимеров. Она может быть катионной и анионной, причем последняя более распространена. Стабильность карбаниона нозрасгает с увеличением электроотрицательиости заместителя при двойной связи мономера. Для ионной полимеризации характерно наличие ионных пар каталитического комплекса, стабильность которых определяет ход реакции полимеризации. Существенно влияет на эти реакции среда, в которой они проводятся. Структура получаемого полимера, как правило, более регулярная, чем при свобод-норадикальпой полимеризации, причем в ряде случаев со строго упорядоченным расположением заместителей в пространстве. В связи с наличием одинаковых по знаку зарядов на концах растущих цепей часто происходит не обрыв реакционной цепи, а либо передача цепи на мономер, либо образование макроионов ( живые полимеры). Эти виды полимеризации открывают большие возможности для регулирования структуры, а следовательно, и свойств полимеров. [c.47]

    В подобных системах пятым атомом может быть и углерод, если он нмеет неподеленную пару электронов. Циклопентадиен проявляет неожиданные кислотные свойства (рКа 16), так как образующийся при потере протона карбаннон сильно стабилизирован резонансом, хотя он довольно реакционноспособен. Циклопентадиенильный ион представляют структурой 31. [c.69]

    Однако представление о механизме Е2С подвергалось критике высказывалось утверждение, что все экспериментальные результаты можно объяснить с помощью обычного механизма Е2 [66]. МакЛеннан предложил для описания переходного состояния структуру 17 [67]. Предлагался также механизм с образованием ионной пары [68]. Несмотря на противоречивые представления о том, какой механизм истинный, несомненно, что существует класс реакций элиминирования, для которых характерна атака слабыми основаниями по кинетике второго порядка [69]. Помимо этого для указанных реакций характерны следующие общие признаки [70] 1) протеканию реакции благоприятствуют подвижные уходящие группы 2) реакции способствуют полярные апротонные растворители 3) реакционная способность субстратов уменьшается в ряду третичный>вто-ричный>первичный, что обратно порядку реакционной способности в обычных реакциях Е2 (разд. 17.8) 4) реакции син-элиминирования для рассматриваемого класса не известны, всегда происходит анти-элиминирование однако в случае производных циклогексана диэкваториальное анга-элиминирова-ние наблюдается так же часто, как и диаксиальное анги-эли-минирование (в отличие от обычных реакций Е2, см. разд. 17.1)  [c.25]

    Природа эффектов памяти, несмотря на широкое обсуждение, к настоящему времени не ясна. СЗдной из причин может быть различная сольватация, по-видимому, идентичных ионов 25 и 29. Другими причинами могут быть следующие 1) ионы 25 и 28 имеют геометрические структуры, скрученные в разные стороны (например, скрученный 29 может иметь положительно заряженный атом углерода ближе к двойной связи, чем скрученный 25) 2) образование ионных пар [39] 3) образование [c.121]

    Как отмечалось в гл. III, 8, в кристалле поваренной соли нет молекул Na l. При растворении кристаллическая структура разрушается, гидратированные ионы переходят в раствор (см. рис. 56). Молекулы в растворе отсутствуют. Таким образом, для растворов сильных электролитов лишь условно можно говорить о недиссоции-рованных молекулах. Их скорее можно представлять как ионные пары Na+ I-, т. е. находящиеся близко друг около друга противоположно заряженные ионы (сблизившиеся до расстояния, равного сумме радиусов ионов). Их называют квазимолекулы. Тогда приведенное выше уравнение следовало бы писать  [c.159]

    Как отмечалось выше, в кристалле хлорида натрия отсутствуют молекулы Na l. При растворении кристаллическая структура разрушается, гидратированные ионы переходят в раствор. Молекулы в растворе также отсутствуют. Поэтому о недиссоциированных молекулах в растворах сильных электролитов можно говорить лишь условно. Их скорее можно представлять как ионные пары (Ка СГ), т.е. находящиеся близко друг около друга противоположно заряженные ионы (сблизившиеся до расстояния, равного сумме радиусов ионов). Это якобы недиссоциированные молекулы или, как их называют, квазимолекулы. Тогда уравнение реакции (а) следовало бы записать так  [c.128]


Смотреть страницы где упоминается термин Ионные пары структура: [c.81]    [c.188]    [c.72]    [c.73]    [c.75]    [c.141]    [c.299]    [c.144]    [c.101]    [c.56]    [c.184]    [c.207]    [c.39]    [c.78]    [c.56]    [c.110]   
Анионная полимеризация (1971) -- [ c.250 , c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная пара

Структура ионов



© 2025 chem21.info Реклама на сайте