Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформация скорость реакции

    Аналогия с механизмом 5, 2 налагает определенные требования на пространственное расположение реакционных центров при 1,2-перегруппировках насыщенных углеводородов, причем кинетика и механизм перегруппировок цикланов оказываются тесно связанными конформационными особенностями молекул. Существует два типа влияний, оказываемых конформацией на направление и скорость реакций. Первое из них обусловлено доступностью реакционного центра (стерические факторы) и не нуждается в особых пояснениях. Более сложным является второе, связанное со специфическим пространственным расположением образующихся и разрушающихся связей (стерео-электронные требования) [34]. [c.163]


    Первый тип предполагает необходимость сближения функциональных групп данной макромолекулы, разделенных большим числом звеньев, для осуществления какой-либо реакции, так как вероятность протекания реакции зависит от вероятности реализации необходимой для этого конформации и от времени ее жизни . Эффекты такого рода вызывают изменение скорости реакций в 10 —10 и характерны для ферментативных процессов. Примером реакции, протекающей с конформационным эффектом, может служить гидролиз нитрофениловых эфиров под влиянием фермента — а-химотрипсина (ХТ)  [c.56]

    Электронодонорные заместители в диене способствуют ускорению реакции, электроноакцепторные замедляют ее. Для диенофила справедливо обратное электронодонорные группы снижают скорость реакции, а акцепторные группы повышают. Циклические диены, в которых двойные связи фиксированы в цисоидной конформации, обычно реагируют быстрее, чем соответствующие соединения с открытой цепью, которые приобретают цисоидную конформацию в результате вращения [660]. [c.242]

    В. Наличие —ОН-группы по соседству с —СНО-группой значительно повышает каталитическую активность. Поскольку ионы некоторых металлов, например Си + и АР+, увеличивают скорости реакций в модельных системах и, как известно, образуют хелаты (клешнеобразные аддукты) с шиффовыми основаниями, сходные с теми, которые получаются с PLP, был сделан вывод, что либо ион металла, либо протон образует хелатное кольцо и способствует стабилизации плоскостной конформации шиффова основания (рис. 8-5) [c.212]

    Любой фактор, влияющий на скорость реакции, участвующей в процессах биосинтеза или распада любого компонента клетки, должен оказывать прямое нли опосредованное воздействие на общую картину метаболизма. Таким образом, можно уверенно утверждать, что любая химическая реакция, которая вносит хотя бы незначительный вклад в метаболизм, может играть роль регулятора. Поскольку молекулы могут взаимодействовать друг с другом самыми разнообразными путями, число реакций, оказывающих регуляторное влияние на метаболизм, очень велико. Маленькие молекулы действуют на макромолекулы в качестве эффекторов, изменяющих конформацию и реакционную способность биополимеров. Ферменты взаимодействуют друг с другом, следствием чего может явиться их расщепление, окисление, а также образование агрегатов с поперечными связями. Трансферазы присоединяют фосфатную, гликозильную, метильную и другие группы к разным ак- [c.502]


    Реакция проходит вдоль цепи по механизму замок молнии и обрывается при взаимодействии промежуточного продукта с водой. Авторы отрицают автокаталитический характер реакции омыления ПВА. Небольшую скорость реакции вначале процесса они объясняют медленной диффузией катализатора к эфирным группам, находящимся в полимерном клубке. Подобное предположение о влиянии конформации макромолекулы ПВА на скорость реакции омыления ранее высказывалось и в работах [80, 81]. [c.78]

    Результаты исследования кинетики щелочного алкоголиза ПВА в смесях различных растворителей также не позволили установить какие-либо корреляции межДу конформацией макромолекул полимера и скоростью реакции омыления [83]. Вместе с тем природа растворителей, добавляемых в реакционную смесь, оказывает значительное влияние на структуру частично гидролизованного ПВА. [c.79]

    Почти неисчерпаемые возможности варьирования как диена, так и диенофила делают реакцию диенового синтеза незаменимой в препаративном отношении для получения разнообразных моно-и полициклических систем. Диеновый синтез осуществляется в результате одновременного (или почти одновременного) образования двух новых а-связей в четырехцентровом переходном состоянии. Синхронный механизм предъявляет определенные стерические требования к стадии, определяющей скорость реакции. Все 4 реакционные центра должны иметь благоприятное расположение для успешного соударения. Для того чтобы могло осуществиться смешивание занятых и незанятых орбиталей диен должен иметь -цисоидную конформацию и лежать в плоскости, параллельной плоскости, занимаемой олефиновым фрагментом  [c.273]

    Реакция синтетического изопренового каучука марки СКИ-3 с хлористым водородом в растворе при температурах от О до 70°С протекает по уравнению второго порядка относительно каучука и хлористого водорода (рис. 1.1), а энергия активации реакции гидрохлорирования составляет 52,5 кДж/моль [117]. Второй порядок реакции по хлористому водороду, по-видимому, обусловлен тем, что взаимодействие молекул НС1 с каучуком идет ступенчато — вначале присоединяется ион Н+, а потом ион С1 . Большая зависимость скорости реакции от концентрации хлористого водорода, чем от концентрации каучука, объясняется, по-видимому, определяющей ролью процесса образования нейтральной ионной пары [117]. Как одно из доказательств участия протона в первой медленной стадии реакции можно рассматривать сильное влияние на скорость гидрохлорирования электрофильных растворителей, связывающих протон с образованием оксониевых солей (рис. 1.2). Растворитель не только ионизирует молекулы хлористого водорода, он влияет также на конформацию молекулярной цепи исход- [c.19]

    Структурные и стерические факторы довольно заметно сказываются на скорости реакции сахаров с боргидридами. Так, все альдозы, содержащие заместители у Сд, и кетозы с заместителем у С4 реагируют значительно медленнее, чем их незамещенные аналоги Например, для восстановления 3-0-метил-О-глюкозы требуется около 12 ч, тогда как глюкоза в тех же условиях восстанавливается за 1 ч. Этот эффект связан, вероятно, с экранированием карбонильной группы заместителем у Сд в зигзагообразной конформации ациклической формы как это видно из следующих формул  [c.80]

    В обоих случаях присоединение лиганда приводит к изменению конформации белковых субъединиц и изменению скорости реакции. [c.81]

    Электростатическое взаимодействие макромолекул с реагирующими катализирующими и другими активными частицами может иметь место и меняться с глубиной превращения, что приводит к изменению конформации макромолек> л и скорости реакции. [c.33]

    Значения барьеров вращения очень различны. Например, барьер внутреннего вращения этана равен 13 кДж/моль, а для некоторых переходов (например, для атропизомерии) они столь велики, что внутреннее вращение становится невозможным при комнатной температуре, но легко происходит при повышенной температуре. Вообще с повышением температуры растет ко, -центрация или, как говорят, заселенность энергетически более богатых конформаций. В ряде случаев скорость реакции зависит от энергии перехода обычной конформации в г-конформацию (высоты барьера между ними) и вероятности этого перехода. Иными словами, скорость реакции зависит от мгновенной концентрации г-кон-формации в веществе. (В следующее мгновение эта концентрация не изменится, но частично уже другие молекулы окажутся в г-конф рмз гии, а соответствую- [c.17]

    В 1,3-диметил-2-этилциклопентанах снова отчетливо проявляется влияние 1 ис-вицинального взаимодействия в исходных углеводородах на скорость реакции (стерическое содействие). Соотношение скорости расширения цикла в ряду траке, транс- транс, цис-жцис цис-жзомеров составляет 1 13 30. Среди полученных триметилциклогексанов несколько преобладает транс,транс-ъзомер, образующийся из наиболее пространственно незатрудненной конформации (типа А) исходного г г/с,г с-1,3-диметил-2-этилцикло-пентана  [c.177]


    Сопоставление этих уравнений показывает, что, во-первых, с увеличением вязкости значения А"р и уменьшаются, а во вторых, значительно более чувствительна к величине эффективной вязкости среды, чем Ар. Отношение с увеличе-. нием степени превращения растет, а следовательно, растет и скорость реакции полимеризации. Значения А р начинают существенно изменяться при > 0,5. Очевидно, что увеличение вязкости приводит к замедлению диффузионных процессов. В реакции роста макрорадикала принимают участие и макро-, и микрочастицы, т. е. макрорадикал и молекула мономера. Вместе с тем обрыв цепи происходит легче всего за счет рекомбинации двух макрорадикалов. Поэтому должна уменьшаться значительно медленнее, чем Л д, а вместе с тем их отношение должно расти, и, следовательно, должна возрастать скорость полимеризации в целом, что и наблюдается как гель-эффект. Диффузионные ограничения с ростом вязкости для малых молекул возрастают в значительно меньшей мере, чем для фомоздких макрорадикалов. Кроме того, макрорадикалы по мере увеличения степени полимеризации, находясь в растворенном состоянии, будут стремиться занять термодинамически наиболее выгодную конформацию статистического клубка. [c.233]

    Наиболее важная проблема в процессах переаминирования — выяснение стереохимии. В зависимости от типа реакции и фермента фермент-коферментный комплекс может удалять из аминокислоты-субстрата К-грунпу, карбоксильную группу или водород при -углероде. От каких именно структурных особенностей зависит место разрыва связи Это, так же как и скорость реакции, определяется ферментом. Рещающий фактор при этом заключается в выборе наименее энергоемкого пути образования переходного состояния, ковалентного промежуточного соединения, т. е. наибольшее влияние должна оказывать правильная конформация в ферменте связанного с коферментом субстрата [301]. [c.439]

    Согласно классификации, предложенной Н. А. Плата с сотр. [4], можно выделить следующие основные отличия реакций полимеров от реакций их низкомолекулярных аналогов в связи со спецификой полимерного состояния вещества I) реакции, присущие только полимерному состоянию вещества распад макромолекул на более мелкие образования или до исходных молекул мономеров и межмакромолекулярные реакции 2) конфигурационные эффекты, связанные с изменением механизма или скорости химической реакции вследствие присутствия в макромолекулах звеньев иной пространственной конфигурации ( эффект соседа ) 3) конформационные эффекты, связанные с изменением конформации макромолекулы в массе полимера или в растворе, после того как прошла химическая реакция 4) концентрационные эффекты, влияющие на изменение скорости реакции вследствие изменения концентрации реагирующих групп около макромолекулы в растворе 5) надмолекулярные эффекты, связанные с распадом или формированием новых надмолекулярных структур в массе или растворе полимера, способных изменить скорость реакции и структуру конечных продуктов. [c.220]

    Водородная связь, o ooeimo внутримолекулярная, меняет многие химические свойства. Например, именно водородной связью объясняется повышение концентрации енола в некоторых таутомерных равновесиях (разд. 2.20). Водородная связь влияет на конформацию молекул (см. гл. 4) и часто играет существенную роль в определении скоростей реакций [13]. Эта связь такл е важна для регулирования трехмерной структуры белков и нуклеиновых кислот. [c.116]

    Другим видом напряжения, которое может влиять на скорость реакций циклических соединений, является внутреннее, или -напряжение (internal strain) [7]. Оно возникает в результате изменений напряжения в цикле при переходе от тетраэдрического углерода к тригональному и наоборот. Например, как упоминалось выше, при сольволизе алкилгалогенидов по механизму SnI валентные углы центрального атома углерода меняются от 109,5 до 120°. В случае 1-хлоро-1-метилциклопентана такое изменение очень выгодно, так как оно ослабляет напряжение, вызываемое заслонением (разд. 4.24) в результате это соединение подвергается сольволизу в 80 %-ном эталоне при 25 °С в 43,7 раза быстрее, чем эталонное соединение, трет-бутилхлорид [8]. Для соответствующего производного циклогексана, не имеющего заслоненной конформации (разд. 4.24), скорость сольволиза в 3 раза меньше, чем для грег-бутилхлорида. [c.363]

    В стероидах и других жестких системах функциональная группа в одной части молекулы может оказывать сильное влияние на скорость реакции, происходящей в удаленной части той же молекулы за счет изменения конформации всего скелета. Этот эффект, называемый конформационной трансмиссией, наблюдается, например при сравнении эргост-7-ен-З-она (5) и холест-6-ен-З Она (6) последний конденсируется с бензальдеги-дом в 15 раз быстрее первого [12.] В обоих случаях реакционным центром является карбонильная группа, и при изменении ее конформации, вызываемом перемещением двойной связи из положения 7 в положение 6, скорость реакции возрастает [различие боковых цепей при С (17) не влияет на скорость]. [c.365]

    Скорость реакции значительно возрастает при замещении положения 6 атакуемого кольца, что связано со стерическими причинами. Например, при наличии в положении 6 соединения 25 метильной группы, хлора или брома скорость реакции почти в 10 > раз больше по сравнению со скоростью реакции тех же соединений, замещенных по положению 4 [219], несмотря на то что электронные эффекты в этих положениях должны быть одинаковы. Наблюдаемое возрастание скорости объясняется тем, что наиболее выгодная конфо]шация, которую принимает молекула, имеющая в положении б объемный заместитель, в то же время является той конформацией, которая требуется для перегруппировки. Таким образом, для реакции нужна меньшая энтропия активации. [c.44]

    В соединениях с открытой цепью молекула обычно может принять такую конформацию, при которой Н и X анги-пери-планарны. Однако в циклических системах это не всегда возможно. 1,2,3,4,5,6-Гексахлороциклогексан имеет девять стереоизомеров семь лгезо-форм и /-пару (см. т. 1, разд. 4.14). Четыре жезо-соединения и /-пару (все известные ко времени проведения эксперимента стереоизомеры) подвергали элиминированию с отщеплением НС1. Только один из стереоизомеров (1) не содержит С1 в транс-положении к Н. Среди остальных изомеров самая высокая скорость реакции превышала самую [c.8]

    Производные пергидроциклопентанофенантрена — стероиды — помимо биохимического приобрели большое значение и в развитии теоретических основ органической химии и прежде всего основных положений конформационного анализа. Это связано в особенности с тем, что циклическая система циклопентанопергидрофенантрена обладает жесткостью, в ней полностью исключена конформационная подвижность. Поэтому заместитель, имеющий определенную конфигурацию (а- или р-) относительно циклической системы, имеет в то же время определенную конформацию (экваториальную или аксиальную) его положение относительно кольца и относительно соседних заместителей строго фиксировано. Это позволяет на примере стероидных соединений особенно наглядно видеть влияние стереохимических факторов на устойчивость соединений, на направление и скорость реакций, спектральные и другие характеристики. [c.400]

    Взаимодействие, обусловливающее небольшое различие в энергии между крайними конформационными положениями этана, становится более ощутимым для молекул с объемными заместителями у атома углерода. Так, 1,2-дибромоэтан имеет три заторможенные конформации, одна из которых с максимальным разделением объемных атомов брома имеет самую изкую энергию, и три заслоненные конформации, где наиболь-щей энергией обладает та структура, у которой две связи С—Вг находятся в заслоненном положении, что приводит к самому тесному сближению больших атомов брома. В каждый момент времени в образце этого соединения наиболее существенная часть молекул находится в конформационных состояниях, близких к конформациям с самой низкой энергией, и только мельчайшая доля молекул имеет структуру заслоненных конформаций с высокой энергией. Точно такие же рассуждения применимы для любой системы с простыми связями, где может осуществляться свободное вращение. Выбор предпочтительной конформации, сделанный на примере молекул дибромоэтана, также хорошо можно использовать для конформеров, образующихся при вращении вокруг центральной связи бутана. В тех случаях, когда химические свойства этих или других соединений зависят от точной формы молекулы, конформационный выбор может оказаться очень важным для определения направления или скорости реакции. [c.210]

    Какой из заместителей легче замещается — экваториальный или аксиаль-ный Чтобы ответить на этот вопрос, мы рассмотрим строение соответствующих активированных комплексов для реакции аксиального и экваториального циклогексилиодида с 1 . Очевидно, что строение активированного комплекса для обеих реакций одинаково. Следовательно, любое различие в скоростях реакций должно быть вызвано различием в энергиях исходных соединений. Поскольку экваториальная конформация циклогексилиодида устойчивее аксиальной (табл. 7-3), экваториальный конформер должен обладать более низкой энергией. Согласно определению, энергия активации процесса равна разности энергий активированного комплекса и исходного соединения поэтому энергия активации ( акт) реакции аксиального конформера долнша быть меньше, чем экваториального. Другими словами, аксиальный конформер должен обладать большей реакционной способностью. Это можно рассматривать как пример стерического ускорения. В случае когда нуклеофил и уходящая группа неодинаковы, аргументация подобного рода сильно усложняется и в дальнейшем рассматриваться не будет. [c.284]

    Относительно небольшие заместители при С-2 и С-3 диена оказывают незначительное стерическое влияние па скорость реакции. Дильса — Альдера, 2,3-Днметилбутадиен реагирует с малеиновым ангидридом приблизительно в 10 раз быстрее, чем бута/щен, вероятно, в результате преобладания электронного влияния. Йз-эа оредпочтительности 5-цис-кои формации по сравнению с -гранг-конформацией 2-гр г-бутнлбутаднеН , 3 в 27 раз реакционноспособнее бутадиена. [c.188]

    Реакц. способность М., как и низкомол. радикалов (см Радикалы свободные), определяется их хим. строением и конформацией. Скорости р-ций М. (рекомбинация, замещение, присоединение, изомеризация, диспропорционирование, диссоциация) зависят от типа М., хим. строения макромолекул, структуры полимерной матрицы (локальной, надмолекулярной), характера пространств, распределения М, внеш условий (т-ры, давления, мех. напряжений) и др. факторов. Принято считать, что реакц. способиость М. практически не зависит от их мол. массы (принцип Флори). [c.638]

    Эффекты, связанные с электростатн еским взаимодействием заряженной макромолекулы с реагирующими частицами оно может изменяться с глубиной конверснн, привод к изменению конформации макромолекулы и скорости реакции. [c.159]

    Таким образом, при постоянной концентрации солянокислой соли хитозана в водных растворах эффективная константа скорости реакции озона с хитозаном уменьшается с повьшгением концентрации электролита в реакционной среде, что связано с влиянием ионной силы раствора на конформацию макромолекул полисахарида. [c.501]

    Рассмотренные выще механизмы способны описывать многие сложные эффекты, и кинетическое уравнение может иметь очень сложную форму. Но в общем случае концентрация [ЕЗ] не может возрастать быстрее, чем растет [3]. Однако при некоторых экспериментальных условиях субстраты или ингибиторы оказывают большее влияние на концентрацию комплекса. Другими словами, получаются 3-образные кривые типа кривой связывания кислорода гемоглобином (разд. 7.13). В особенности это относится к ферментам, играющим важную роль в регулировании обмена веществ. Подобные кооперативные эффекты встречаются в случае ферментов с несколькими активными центрами, поскольку кооперативный эффект подразумевает возрастание сродства второго активного центра к субстрату, когда первый центр занят. Как и в случае гемоглобина, взаимодействия такого типа сопровождаются структурными изменениями. Согласно модели Моно — Шанжо — Ваймана, фермент с несколькими активными центрами может находиться по крайней мере в двух состояниях. Это, вероятно, слишком упрощенная картина, но два является минимальным числом состояний, необходимым для объяснения наблюдаемых эффектов. Предполагается, что в обоих состояниях конформации всех субъединиц одинаковы. Воздействующая на систему молекула (эффектор), которая может быть молекулой субстрата, смещает равновесие в сторону одного или другого из этих двух состояний. Если эффектор смещает равновесие в направлении увеличения скорости реакции, то такой эффектор называется активатором. Если же его действие приводит к снижению скорости реакции, то он называется ингибитором. Как и в случае гемоглобина, воздействие усиливается тем, что одна молекула эффектора оказывает влияние на несколько каталити-21  [c.323]

    Какова структура активных центров Благодаря кристаллографическим исследованиям мы можем неиосредственно увидеть , как устроено все большее и большее их число. Однако рентгеноструктурный анализ обычно не позволяет получить четкого представления о конформацион-ных изменениях, обеспечиваюш их индуцированное соответствие. Кроме того, кристаллографические исследования с высоким разрешением проведены лишь для относительно небольшого числа ферментов. Поэтому для выяснения структуры активного центра энзимологи продолжают широко использовать традиционные химические методы картирования , измеряя константы связывания ингибиторов, структуру которых последовательно изменяют, и исследуя, как влияют изменения структуры субстратов на связывание и скорость реакции. Хорошим примером исследования такого рода может служить работа Мейстера (Meister) и его сотрудников, исследовавших глутаминсинтетазу из мозга овцы. Субстратами фермента являются как D- и L-глутаминовая кислоты, так и а-аминоадипиновая кислота. В то же время из десяти монометильных производных D- и L-глутаминовой кислот субстратами глутаминсинте-тазы могут служить только три. Если допустить, что субстраты связываются в полностью вытянутой конформации, то все атомы водорода, замена которых не приводит к исчезновению активности, лежат с одной стороны остова молекулы (за плоскостью рисунка на следующих двух схемах)  [c.43]

    Выше мы полагали, что скорости конкурирующих реакций — миграции анизиль-иой группы и миграции фенильной группы — определяются относительным содержанием двух конформационных изомеров. Это допущение справедливо, если, как в данном случае, миграция осуществляется относительно легко и происходит быстрее, чем взаимопревращение двух конформаций карбониевого иоиа. Однако еслн миграция осуществляется с трудом и происходит медленнее, чем взаимопревращение конформаций, то тогда относительные скорости реакций будут определяться относительной устойчивостью двух переходных состояний. И в этом случае мы получим тот же результат. Это справедливо и в общем случае, поскольку те же структурные факторы, которые определяют предпочтительность одной конформации по сравнению с другой, определяют предпочтительность переходного состояния, соответствующего одной из конформации, по сравнению с переходным состоянием, соответствующим другой конформации (ср. разд. 4.32 и 7.8). [c.840]

    Общая скорость реакции определяется, как всегда, скоростью, с которой образуются радикалы. Однако относительная скорость образования леезо-формы или рацемата зависит от того, каким образом выгоднее этим радикалам соединиться друг с другом, иными словами от энергии переходных состояний к конформациям I и II. Какая конформация обладает меньшей энергией, можно решить, даже не зная сравнительного объема групп СООСНз и СН,СООСНз. Важно, что одна из них более объемиста и, следовательно, более сильное взаимодействие характеризует конформацию II, где в скошенном положении находятся одинаковые заместители. Одно из общих правил конформационного анализа заключается в том, что энергию конформации в первую очередь определяет наибольшее взаимодействие. Например, если СООСНз-группа больше других, то конформация II мепее выгодна, так как в ней такие группы находятся в скошенном положении, тогда как в конформации I они удалены одна от другой. Если более объемиста группа СНзСООСНз, то в отношении этой группы применимо то же рассуждение. Итак, преимущественно должна образовываться конформация I, т. е. л4 зо-форма, что и наблюдается в действительности образуется 98% л езо-формы и лишь 2% рацемической смеси. [c.519]

    Высказывалось предположение, что протонироваиие разных гидроксилов кси-лопиранозного цикла (преобладающего в равновесной смеси) равновероятно и возможность отщепления первой молекулы годы из всех трех положений в молекуле пентозы (2,3 3,4 и 4,5) также равновероятна. Однако более поздние исследования показали, что на скорость реакции влияют стереохимические эффекты и конформационные превращения. Поэтому элиминирование первой молекулы воды подчиняется определенным закономерностям. Считают, что ксилопираноза в условиях проведения реакции дегидратации переходит из более устойчивой конформации кресла С1 в менее устойчивую конформацию 1С. Для D-ксилозы можно предположить, что первая молекула воды легче всего элиминируется из положения 4,5 (днаксиальное элиминирование ОН и Н), тогда как элиминирование 2,3 (как аксиально-экваториальное) маловероятно. Дегидратация при этом сопровождается раскрытием пиранозного цикла, а на последней стадии отщепление третьей молекулы воды приводит к образованию фурано-вого цикла. Следовательно образование фурфурола можно представить схемой 11.6, б. Теоретические исследования процесса превращения пентозанов в фурфурол имеют важное значение не только для анализа древесины, но главным образом и для совершенствования технологии производства фурфурола. [c.301]

    Теория орбитального управления была выдвинута на основании данных, приведенных в табл. 10.5. Различия в скоростях, между внутримолекулярной у-лактонизацией и соответствующей межмолекулярной этерификацией остаются очень большими даже после введения всех возможных поправок. Эти поправка учитывают эффект перевода реакции во внутримолекулярный режим (эффект сближения), эффект торсионного напряжения, появляющийся при циклизации, и наличие ряда конформацион ных изомеров при образовании цикла в ходе внутримолекулярной реакции. Наибольшее различие в скоростях наблюдается, в случае соединения 10.22 (2-10 -кратное). На основании этих данных был сделан вывод о том, что для протекания этой реакции простого соответствия реагирующих атомов недостаточно, а необходима точная подгонка молекулярных орбиталей взаимодействующих центров. Для того чтобы объяснить большие различия в скоростях, приведенных в табл. 10.5, следует допустить, что НЗО всех возможных конформаций в реакцию может вступать только та группа атомов, орбитали которых ориенти-рованы строго необходимым образом. Внутримолекулярные реакции представляются более выгодными , чем реакции межмолекулярные, в частности также потому, что ориентация реагирующих атомов в первых из них (в некоторых случаях) благоприятна для реакции, а доля продуктивных конформаций реагирующих атомов достаточно велика. Поэтому легко по нять при чины ВЫС0К1ИХ скоростей ферментативных реакций, в которых реагенты и функциональные группы катализатора ориентируются наиболее благоприятным для реакции образом. [c.275]

    Особенности на кривых у( ), v I) могут возникать и в отсутствие кооперативных взаимодействий вследствие неравновесных конформационных свойств фермента. Допустим, что молекула фермента, переработавшая субстрат в продукт, выходит из реакции в активном конформационпом состоянии. Если время релаксации, т. е. время возвращения в исходное певозмущепное состояние, больше времени между встречами фермента с субстратом или того же порядка, то кинетика может имитировать кооперативную. Схема такого процесса показана на рис. 6.17. Здесь Ра — свободная от субстрата молекула фермента в исход-лой конформации, Р1 — неактивный ФСК, Р — активный ФСК, Ра — свободный фермент в активной конформации. Решая соответствующие уравнения стационарной кинетики, получаем скорость реакции [c.204]


Смотреть страницы где упоминается термин Конформация скорость реакции: [c.211]    [c.100]    [c.101]    [c.299]    [c.333]    [c.694]    [c.143]    [c.89]    [c.148]    [c.319]   
Пространственные эффекты в органической химии (1960) -- [ c.49 ]




ПОИСК





Смотрите так же термины и статьи:

Конформации реакции

Реакции, скорости которых зависят от конформаций



© 2025 chem21.info Реклама на сайте