Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь между химическим равновесием и химической кинетикой

    Существенной особенностью той трактовки кинетики реакций на поверхностях, которая была здесь вкратце представлена, является постулат о существовании определенного вида связи между кинетическими и адсорбционными характеристиками различных мест неоднородной поверхности, а именно связи, выражаемой уравнением [21]. Этот постулат устанавливает определенное соответствие между уравнениями, описывающими адсорбционное равновесие, и кинетическими уравнениями. Опирающаяся на него теория кинетики гетерогенных каталитических процессов дала возможность установить рациональные кинетические уравнения для важнейших контактных процессов химической технологии—синтеза аммиака, окисления сернистого газа, конверсии окиси углерода, чего не в состоянии была сделать прежняя теория Лэнгмюра — Хиншельвуда — Шваба. [c.65]


    Связь между химическим равновесием и химической кинетикой [c.56]

    Спектры поглощения растворов имеют большое практическое применение. Так как они имеют прямую связь со строением молекулы, то прежде всего спектры поглощения используются для качественного и количественного анализа. Качественный анализ производится сравнением спектра поглощения полученного вещества со спектрами поглощения, приведенными в таблицах. Количественный анализ производится на основании закона Беера. Кроме того, спектры поглощения используются для изучения химического равновесия, кинетики химических реакций, строения вещества, для изучения взаимодействия между частицами в растворах и для других целей. [c.23]

    Количественная оценка состояния равновесия позволяет узнать, является ли химическая реакция принципиально возможной, однако такая оценка ничего не говорит о скорости, с которой устанавливается это равновесие. Невозможно также решить в этом случае, какие из термодинамических процессов будут иметь место. Несмотря иа то что связь между химической термодинамикой и кинетикой учитывается константой равновесия, которую можно выразить как отношение констант скоростей прямой (к) [c.45]

    Связь между константой равновесия и суммами по состояниям на единицу объема, определенными (VI. 106) и имеющими размерность концентраций, также щироко используется в теории химической кинетики — теории абсолютных скоростей реакций. [c.219]

    В книге рассмотрены основные аспекты физической химии не-, водных растворов, классификация растворителей, строение неводных растворов и связь между физическими и химическими свойствами растворов. Отдельные разделы книги посвящены термодинамике, равновесиям в неводных растворах, электролитической диссоциации и электродным процессам, а также кинетике реакций в неводных средах. [c.448]

    Поскольку отклонения от стехиометрии обусловливаются переносом только одного из компонентов и появлением в кристалле одного доминирующего вида дефекта, всем компонентам всех реакций можно приписать определенные химические потенциалы. Равновесие между кристаллом и внешней средой свидетельствует о равенстве химических потенциалов всех компонентов в обеих фазах. Следовательно, можно определить химические потенциалы компонентов кристалла, установив их значения во внешней фазе, что особенно удобно сделать для паровой фазы, так как в этом случае химический потенциал компонента непосредственно связан с его парциальным давлением. Это позволяет установить однозначную связь между константами равновесия всех реакций и определить, таким образом, условия равновесия кристалла при данных внешних условиях. Необходимо помнить, что константы равновесий являются функциями температуры, и поэтому каждой температуре соответствует свое состояние равновесия. Кинетика реакций, происходящих в объеме кристалла, определяется медленными диффузионными процессами, которые легко замораживаются при понижении температуры. Практически нет возможности исследовать кристаллы, находящиеся при температуре измерения, в равновесии с внешней фазой. Тем не менее, для того чтобы установить общие закономерности изменений состава (концентраций нейтральных и заряженных дефектов) в зависимости от температуры и парциальных давлений компонентов кристалла, [c.205]


    Другие рассмотренные ниже виды адсорбции относят к физической адсорбции, которая протекает под действием сил Ван-дер-Ваальса адгезионного характера. Физическая адсорбция является обратимым экзотермическим процессом при повышении температуры адсорбция уменьшается, а десорбция усиливается. Теплоты физической адсорбции невелики и обычно составляют 8— 20 кДж/моль. Физическая адсорбция не носит специфического избирательного характера. Хемосорбция, напротив, специфична. Она зависит как от природы адсорбента, так и от природы адсорбата. Энергия связи адсорбент — адсорбат достаточно велика и примерно равна теплоте образования химических соединений (80—800 кДж/моль). С повышением температуры хемосорбция возрастает, подчиняясь законам химической кинетики и равновесия гетерогенных реакций. Хемосорбция часто необратима и приводит к образованию прочных поверхностных соединений между адсорбентом и адсорбатом. [c.328]

    Как отмечалось ))ыше, простейшее описалие кинетики химических реакций дается уравнениями, содержащими только концентрации реагирующих молекул и константы скорости. В состоянии термодинамического равновесия полные скорости реакций равны пулю, что позволяет установить связь между константами скорости и равновесными концентрациями реагирующих веществ. Отношения последних определяются однозначно через термодинамические константы равновесия К, величины которых не записят от механизма реакции и которые выражаются через статистические суммы молекул, участвующих в реакции. Таким образом, устанавливается связь между константами равновесия и константами скорости реакции, позволяющая выразить константы скорости обратных реакций через константы прямых реакций (см. 2). Хотя это не вызывает сомнения для равновесных реакций, на любой стадии 1 оторых нарушение максвелл-больцмановского распределения мало, для неравновесных реакций указанная связь пе является строго обос1гова1[ной. [c.51]

    Между индикаторными реакциями, применяемыми для анализа и изучения равновесий реакций комплексообразования, существует известное сходство. Подавляющее больщинство реакций, описанных в гл. IV, может быть применено для изучения комплексообразования. Недостаточное число индикаторных реакций, уже использованных для-исследования комплексообразования, объясняется отсутствием надлежащей связи между двумя близкими направлениями применения химической кинетики в анализе и в исследовании комплексообразования. [c.94]

    В курсе физической химии рассматривается большой комплекс физических и химических явлений в их взаимной связи. Излагается учение о растворах, термохимия, химическое равновесие и химическая кинетика, электрохимия, строение атома, взаимодействие между элементарными частицами и условия распада ядер атомов тяжелых элементов. Каждый из названных разделов представляет собой специальную область физической химии с обширной литературой, в которой освещается теория вопроса и приводятся многочисленные опытные данные. [c.3]

    Статистический метод основан на учении о молекулярной природе веществ, позволяющем установить связь макроскопических свойств веществ с микроскопическими свойствами молекул. Для этих целей широко применяется теория вероятностей. Так, кинетическая теория газов, исходя из допущения полной беспорядочности движения отдельных молекул газа в системе из большого числа молекул, на основе законов вероятностей установила важные соотношения между различными свойствами газа давлением, объемом, температурой и др. Представление о веществе, как о большом коллективе частиц, подчиняющихся законам механики, позволило объяснить ряд вопросов в учении об агрегатных состояниях веществ, в химической кинетике, в учении о химическом равновесии, обосновать понятия и законы термодинамики и значительно расширить область их применения. [c.5]

    Электронные спектры поглощения являются важнейшей характеристикой органических соединений. Они тесно связаны со строением, физико-химическими свойствами и реакционной спО собностью органических молекул. Накоплен огромный экспериментальный материал и установлены определенные эмпирические закономерности между строением и электронными спектрами поглощения различных классов органических соединений. Электронные спектры широко используются при исследовании строения индивидуальных соединений, изучении кинетики и равновесия многочисленных реакций с их участием, идентификации и анализе органических и других химических веществ. Ими пользуются также как одним из наиболее удобных и обоснованных свойств в физико-химическом анализе. Разработана и широка применяется разнообразная спектральная аппаратура, с помощью которой получают надежные данные об электронных спектрах поглощения органических соединений. [c.3]


    В первой главе при анализе закрытых химических систем дается наиболее общая (из разумных) форма записи кинетического закона отдельной стадии. Исходя из энтропии идеального газа, в явном виде выписаны термодинамические функции Ляпунова для различных классических условий осуществления процесса. Наличие последних гарантирует термодинамическую корректность уравнений химической кинетики — при заданных балансах положительное равновесие единственно и устойчиво внутри многогранника реакции и имеет тип узел . Аппарат термодинамических функций Ляпунова позволяет получить ряд конкретных результатов исследовать линейную окрестность равновесия, построить термодинамические ограничения на динамику системы, дать термодинамический критерий значимости отдельных стадий химического превращения, выявить особенности перехода от закрытых к открытым системам. В частности, при анализе задачи линеаризации установлена связь между временами релаксации и равновесными потоками — величинами, измеряемыми в экспериментах разного типа. [c.15]

    Когда скорость реакции очень мала по сравнению со скоростью массопередачи J, состав фазы / равномерен и находится в равновесии с другой фазой. Если известно уравнение, описывающее кинетику реакции, то легко вычислить (см. стр. 160). В случае относительно быстрой реакции на распределение концентрации сильно влияет соотношение между скоростями массопередачи и гомогенной химической реакции может быть найдено только на основании экспериментального исследования связи указанных факторов со степенью дисперсности (см. стр. 160). [c.157]

    В результате контакта твердое тело (фаза) —среда (газ, жидкость) формируется продукт взаимодействия двух фаз — межфаз-иый продукт (МФП). Природа и прочность связей в МФП и в объеме твердого тела, а также внешние условия (температура, длительность, давление) определяют равновесие, кинетику процессов, осуществляемых на межфазной границе, и свойства всей системы в целом. Баланс сил взаимодействия между адсорбентом и средой зависит от поверхностной энергии адсорбента и растворяющей силы среды, обусловливающих физические или химические явления на межфазной границе. [c.56]

    Гоффа. В 1883 г. Аррениус, а через год Оствальд ввели представление об определяющей роли в жидкофазных органических реакциях активных молекул [1J. Но только после того, как Вант-Гофф в классической монографии Очерки по химической динамике (1884 г.) воспользовался связью, которую равновесие устанавливает между изучением хода превращения и термодинамикой, чтобы получить при ее посредстве соотношение между температурой и константой скорости [355, стр. 108—109 , стало возможным окончательное постулирование нового основополагающего понятия в кинетике. [c.149]

    Уже на ранних стадиях изучения газовых реакций, происходящих на поверхности твердых тел, было найдено, что их первой стадией является адсорбция реагентов, а по завершении процесса десорбция продуктов. Поэтому при рассмотрении кинетики гетерогенных каталитических реакций используют различные изотермы адсорбции, которые позволяют определять связь между концентрациями реагирующих веществ па поверхности твердого тела и в объеме. Так, уравнение изотермы Лангмюра (гл. XV) применяют для рассмотрения кинетики мономолекулярной реакции Аг- Вг, происходящей на поверхностн твердого тела. Так как обычно адсорбционное равновесие устанавливается существенно быстрее, чем протекает химическое превращение, то скорость реакции пропорциональна поверхностной концентрации газа в адсорбированном слое или, что то же, доле занятых активных центров 0 на поверхности катализатора  [c.525]

    Химическая кинетика, изучающая реакции в их движении, может быть противопоставлена термодинамике, которая ограничивается лишь рассмотрением статики химических реакций — равновесий. Термодинамика в принципе при наличии некоторых исходных данных может предсказывать эти равновесные состояния. Однако между величиной изменения свободной энергии при реакции и ее скоростью не существует прямой связи. Так, реакция образовання воды из На и Оа идет с меньшей скоростью, чем реакция между ионами Н" и ОН , хотя первая сопровождается значительно большей убылью свободной энергии. Таким образом, вопросы о том, в течение какого времени и каким путем совершаются те или иные процессы, находятся вне рамок термодинамики и время не входит в термодинамические уравнения. [c.318]

    Чтобы такой переход осуществился, в каждом полимерном теле н зависимо от химического строения макромолекул должно образоваться опр деленное число иежмолеку Л5фных связей. Обозначим это число через х. Ко центрацию активных групп в полимере, способных к образованию мс5 молекулярных связей, обозначим через N. Учитывая, что межмолекулярнь связи непрерывно распадаются и возникают в других местах, и что сущ ствует равновесие между числом образовавшихся и распавшихся связей, мо> но в данном случае для описания этого процесса применить обычное уравн ние химической кинетики, описывающее равновесный процесс  [c.122]

    Под изотопным эффектом растворителей обычно понимают изменение кинетики (или смещение равновесия) химических реакций при переходе от обычного растворителя к соответствующему растворителю, содержащему неприродный изотоп одного или нескольких атомов. Поскольку наибольшее относительное изменение массы, а следовательно, и наибольшее (и легче всего измеряемое) изменение того или иного зависимого от молекулярной массы параметра- системы, происходит при замещении водорода на дейтерий, то обычно изотопным эффектом растворителя называют отношение какого-либо параметра X в обычной воде (НгО) к тому же параметру в тяжелой воде (ВзО), т. е. Хн о/Хо о [446—449, 760, 761]. Об изотопных эффектах других растворителей (например, СНзОВ относительно СНзОН или СНзСОгВ относительно СНзСОгН) известно сравнительно мало [447]. Кинетический изотопный эффект растворителя, т. е. отношение кн о1ко о изменяется в диапазоне от 0,5 до примерно 6, а чаще всего равен 1,5—2,8 [447]. С помощью изотопного эффекта растворителя можно выяснить, принимает ли последний прямое или только косвенное участие в данной реакции. К сожалению, интерпретация наблюдаемых экспериментально эффектов затруднена в силу того, что они обусловлены сочетанием трех факторов. Во-первых, растворитель может быть одним из реагентов. Так, если на скоростьопределяющей стадии происходит расщепление связи О—Н или О—В растворителя, то соответствующий изотопный эффект называют первичным. Во-вторых, в результате быстрого обмена Н О молекулы реагента могут включить атомы дейтерия, так что позднее на скоростьопределяющей стадии будет происходить расщепление этих вновь образовавшихся дейтерированных молекул. В-третьих, могут различаться и межмолекулярные взаимодействия между растворителем и растворенным веществом (т. е. сольва- [c.400]

    Связь между параметрами хроматографических зон и физикохимическими свойствами сорбатов и неподвижных фаз является основой неаналктического применения газовой хроматографии. которое включает изучение характеристик сорбционного равновесия, неидеальности газовых смесей, диффузионных характеристик, изучение химических реакций (включая кинетику и константы равновесия), а также определение различных других физико-химических свойств газов, жидкостей и твердых тел. [c.281]

    Самоподдерживающие колебания в кинетике химических реакций реализуются, только когда 1) система является открытой и далекой от равновесия 2) система имеет больше чем одну кинетическую степень свободы, т. е. описание ее временного поведения требует соответствующую систему дифференциальных уравнений 3) имеют место крайне нелинейные отношения между движущилш силами и потоками или реакциями соответственно 4) колеблющаяся система всегда содержит неустойчивые состояния 5) колебания являются результатом взаимной кинетической связи между процессами, которые в других отношениях независимы друг от друга 6) временные колебания в физико-химических системах всегда сопровождаются периодически образующимися процессами распространения в пространстве, Следовательно, они являются и временными и пространственными явлениями в одно и то же время. [c.54]

    Образующееся кольцо содержит теперь шесть атомов (не считая подвижного протона), и два угла в нем близки к 120°, как в молекуле бензола. Большая скорость рассматриваемых процессов по сравнению с межмолекулярным катализом частично связана с тем, что они не сопровождаются потерей трансляционной энтропии, которая характеризует образование химической связи между двумя растворенными частицами [130]. Однако до сих пор неизвестно, как соотносятся между собой энергии активации аналогичных внутри- и меж-молекулярных каталитических процессов разность в энергиях активации сопоставляемых механизмов также может быть существенной. Выше предполагалось, что взаимодействие галогена с енолом или с енолят-ионом протекает очень быстро и поэтому не вносит существенного вклада в наблюдаемую скорость процесса (хотя, как мы уже видели, такая кинетика не характерна для реакций галогенирования кетонов гипохлоритом). Предположение, о котором идет речь, несомненно, выполняется для систем, содержащих молекулярный галоген в заметной концентрации (например, 10 М или больше). Между тем, если концентрация галогена последовательно уменьшается в процессе реакции, должен наступить момент, начиная с которого наблюдаемая константа скорости будет, по крайней мере частично, зависеть от скорости процесса галогенирования. Не трудно получить выражение для наблюдаемой константы скорости реакции в каждом конкретном случае. Однако мы приведем здесь результат для общего случая катализируемых основанием реакций галогенирования кето-соединеинй НЗ, протекающих в буферном растворе А—В в условиях, когда можно пренебречь катализом гидроксил-ионами. При выводе формулы принимается во внимание, что как енол 5Н, так и енолят-ион 5 могут реагировать с галогеном. Кроме того, предполагается, что равновесие 5Нч ь5-- -Н+ между енолом и его ионом можно рас- [c.211]

    Ниже мы получим условия, когда кинетические модели тина (1) — (7) являются НМНР. А нока условимся неединственность решения обратной задачи химической кинетики, обусловленную тем, что соответствующие модели есть НМНР, называть неоднозначностью I вида. Последняя имеет место только тогда, когда модель является локально неидентифицируемой. Под локально неидентифицируемой моделью в точке к понимается модель, для которой в сколь угодно малой окрестности к задаваемой числом е, всегда существуют точки к , к , причем к = к , такие, что к —к <е, к —к 1<е, нри этом во всей области возможных измерений и равны между собой измеряемые отклики х (и, к ) = х (и, к )=хЧи, к ). Отсюда следует, что в параметрическом пространстве существует некая непрерывная область равноценных значений параметров, во всех точках которой хЧи, к) имеет одинаковые значения для всех и. Размерность такой области равна числу линейно-независимых связей, существующих между вектор-столбцами матрицы Якоби. Заметим, что в [4] для стационарной химической кинетики, а в [5] для сложных химических равновесий изучались как раз вопросы, связанные с неоднозначностью I вида. [c.143]

    Разработанный Ферштом эмпирический подход к изучению термодинамических и кинетических аспектов свертывания белковой цепи с привлечением сайт-направленного мутагенеза позволил автору и сотрудникам проанализировать все этапы формирования трехмерной структуры белка (барназы), не содержащего дисульфидных связей [31-33]. Изучение обратимой денатурации начинается с тщательного визуального анализа трехмерной структуры белка с целью выявления остатков, которые предположительно могут играть важную роль в структурной стабилизации и кинетике свертывания. Следующий этап заключается в модификации потенциально важных для сборки межостаточных взаимодействий путем специальных химических изменений белковых цепей актуальных остатков и сайт-направленного мутагенеза. Завершается этап составлением оптимального набора и его синтеза методами генной инженерии. Далее проводятся термодинамические и кинетические экспериментальные исследования механизма ренатурации (денатурации) нативного белка и мутантов, определения констант равновесия, констант скорости и величин изменений свободной энергии Гиббса стабильных структур, промежуточных и переходных состояний. Найденные значения используются для построения энергетических профилей путей свертывания белковых цепей дикого и мутантного типов. На их основе определяются разностные энергетические диаграммы, которые показывают различия в уровнях энергии всех состояний на пути свертывания белка и мутантов. Реализация описанной процедуры приводит к эмпирическим зависимостям между важными для свертывания белковой цепи взаимодействиями боковых цепей и параметрами, по мысли Фершта, характеризующими кинетику, равновесное состояние и механизм ренатурации [И]. Каждая мутация, которая в [c.87]

    СТИ стекла в результате гидрофобизации ее алкилхлорсиланами. Известно, что в результате подобной обработки на поверхности стекла образуется тонкая пленка кремнийорганического соединения, которая очень прочно связывается с поверхностью стекла и может быть удалена только механически или с помощью плавиковой кислоты. Поверхность стекла взаимодействует с алкилхлорсиланами путем химической реакции между активным водородом поверхности стекла и галоидом алкилгалоидсилана с образованием связи 81—О—81. При этом поверхность метилируется и приобретает водоотталкивающие свойства. Из рассмотрения рис. 4 следует, что концентрация гидроксилов поверхности резко уменьшается и в спектрах проявляется полоса поглощения метильных групп. Исследование кинетики процесса модифицирования алкилхлорсиланами показывает, что состояние равновесия наступает через 2 часа. Однако на поверхности сохраняется еще какое-то количество гидроксильных групп. Характерная полоса поглощения этих групп сохраняется, но в несколько смещенном виде. Отсюда можно сделать вывод о возмущении этих групп. [c.512]

    Книга Р. Кремана и М. Пестемера о зависимости между физическими свойствами и [химическим строением представляет особый интерес и для лиц, специально работающих в области органической химии. В этой книге рассмотрены разнообразные свойства материи, тесно-связанные с строением и тем Или иным аггрегатным ее состоянием.-Хотя строение органических соединений в историческом развитинг этого вопроса устанавливалось на целом ряде примеров классическими методами экспериментального исследования, что давало возможность связать строение вещества с некоторыми физическими его свойствами, тем не менее научный интерес требует более глубокого изучения химической и физической природы веществ, уделяя особое внимание таким проявлениям их свойств, как явления равновесия, кинетика, катализ, фазовое состояние, внутреннее трение, изменение объема, теплота растворения и смешения, поглощение и излучение электромагнитных колебаний, электрическая поляризация, магнитная проницаемость и проч. Нельзя забывать, что только точное и внимательное изучение и сопоставление всех свойств вещества может расширить до возможной полноты нашн-сведения о действительном его строении. [c.3]

    Соверщенно очевидно, что перечисленные реакции не имеют столь большого влияния, как реакции (е), (/) и ( ), в которых образуются новые химические связи с выделением энергии. С точки зрения получения стехиометрического состава в соответствии с реакцией (I) можно сказать, что роль бимолекулярных реакций заключается в образовании промежуточных частиц типа атомов водорода, которые затем удаляются в стадиях (е), (/) и ( ) Первоначально цепной разветвленный механизм необратимо переводит исходные реагенты в промежуточные вещества. После воспламенения, когда в результате расходования исходных веществ образуются большие концентрации активных центров, бимолекулярные реакции влияют только на конечные стадии воспламенения и на кинетику протекания рекомбинацион ных реакций благодаря тому, что поддерживаются определенные соотношения между концентрациями реагирующих частиц. Выполнение этих соотношений обеспечено тем, что каждая реакция, в которой не происходит изменения числа частиц, протекает в соответствии с собственной константой термодинамического равновесия независимо от других диссоциативно-рекомбинационных стадий полной реакции. [c.153]

    Горловском ГАТЗ небольшая опытная установка в связи с началом войны была разобрана. В 50—60-е годы было выполнено большое число исследований по прямому синтезу азотной кислоты. Кроме того, проводились работы, посвященные вопросам интенсификации процессов, протекающих при прямом синтезе крепкой азотной кислоты и при образовании слабой кислоты. Отметим следующие из этих исследований абсорбция окислов азота концентрированной азотной кислотой, окисление окиси азота азотной кислотой, поглощение окислов азота в колоннах с ситчатыми тарелками, интенсификация процесса окисления окиси азота, определение условий образования азотной кислоты, процесс непрерывного автоклавиров ания крепкой азотной кислоты, физико-химические свойства растворов азотной кислоты, содержащих окислы азота, равновесие между окислами азота и раствором азотной кислоты, кинетика абсорбции окислов азота и др. [c.47]

    КИМИ СИЛОВЫМИ ПОСТОЯННЫМИ ДЛЯ связи типа X—Н приводит к значениям частот колебаний этих связей, намного превышающим соответствующие величины для любых других типов связей. Если бы классическая механика была приложима к молекулярным явлениям, данный факт не имел бы существенного значения, но на языке квантовой теории он означает большое значение энергии колебательного кванта (5—10 ккал/моль) для связей, содержащих водород. Поэтому любые неклассические явления особенно ярко проявляются в соединениях водорода. Различия между изотопами— протием, дейтерием и тритием — замечательный тому пример. Это различие определяется в основном разницей нулевых энергий (V2hv), которые в свою очередь зависят от частот колебаний и, следовательно, от отношения масс изотопов. Для большинства элементов частоты низки, а отношения масс изотопов близки к единице и поэтому их отличия в химическом поведении незначительны. Для водорода же характерны высокие частоты, а массы изотопов находятся в соотношении 1 2 3. Это приводит к высоким значениям водородного изотопного эффекта, который проявляется как в кинетике, так и в равновесиях. Результаты многочисленных исследований изотопных эффектов в кинетике и равновесиях реакций переноса протона служат серьезной проверкой теории изотопных эффектов и дают существенную информацию [c.11]

    В гл. IV отмечалось, что при термообработках, как и в процессах выращивания, между кристаллом и граничащими с ним фазами устанавливается равновесие, которое в общем случае нарушается при охлаждении кристалла. При этом может происходить изменение состояний равновесия между содержащимися в кристаллах дефектами и соответствующее изменение его свойств. Кинетика процессов, происходящих в кристаллах, зависит не только от внешних воздействий, но и от всех их структурных и химических особенностей. Поэтому изготовление кристаллов с требуемым комплексом свойств связано с решением ряда задач охарактеризование полученного материала (определение природы и концентраций содержащихся в нем дефектов и его физических и физико-химических свойств), установление причин, вследствие которых возникли дефекты, и разработка технологии выращивания кристаллов, позволяющая управлять природой и концентрацией дефектов. [c.239]


Смотреть страницы где упоминается термин Связь между химическим равновесием и химической кинетикой: [c.317]    [c.286]    [c.7]    [c.126]    [c.376]    [c.28]    [c.126]    [c.286]    [c.209]   
Смотреть главы в:

Химия в центре наук. Ч.2 -> Связь между химическим равновесием и химической кинетикой




ПОИСК





Смотрите так же термины и статьи:

Кинетика химическая

Равновесие между М.АТР

Химическая связь

Химическая связь связь

Химический связь Связь химическая

Химическое равновесие



© 2025 chem21.info Реклама на сайте