Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидролиз с помощью ионообменных смол

    Специфические эффекты при кислотном катализе с помощью ионообменных смол. П. Гидролиз сложных эфиров в водных растворах [595]. [c.262]

    После окончания гидролиза серную кислоту можно удалить с помощью ионообменных смол амберлит Ш-45(ОН") или дуолит А-4(0Н ) [161, 202]. Кроме того, серную кислоту можно нейтрализовать па холоду чистым карбонатом бария, раствор отфильтровать и обработать фильтрат небольшим количеством смеси ионообменных смол амберлит Ш-120(Н ) и дуолит А-4(0Н") для удаления последних следов неорганических ионов. Гидролизат можно затем сконцентрировать выпариванием в вакууме при низкой температуре (30—35° С). [c.295]


    Гидролиз с помощью ионообменных смол [c.393]

    При проведении этой реакции с меченым цианидом можно определять [3] относительно небольшое число карбонильных групп в больших молекулах полисахаридов. Гидролиз приводит к образованию соединений, содержащих карбоксильную группу и легко поддающихся разделению и очистке с помощью ионообменных смол. [c.462]

    До недавнего времени очень сложной задачей являлось разделение смеси полученных при гидролизе нуклеозидов на индивидуальные вещества. В настоящее время этот вопрос удовлетворительно рещается с помощью хроматографии этой смеси на ионообменных смолах, которая была детально разработана Коном. Услугу в этой сложной операции может оказать и использование противоточного распределения. [c.190]

    Ионообменную хроматографию широко используют и для разделения неорганических соединений, а в органической химии — для разделения смесей кислот или оснований. Классическим примером является разделение смесей аминокислот, образующихся при гидролизе пептидов и белков [43]. Пептиды, белки и ферменты, содержащие кислотные и (или) основные группировки, также могут быть разделены с помощью ионообменной хроматографии. Интересные возможности открываются при использовании сильноосновных смол в бисульфитной форме [44]. Когда смесь альдегидов и кетонов пропускают через такую смолу, они обратимо связываются со смолой в виде бисульфитных комплексов это позволяет разделить компоненты смеси. [c.321]

    Расщепление рацематов А. на оптич. антиподы производят путем кристаллизации солей их ацильных производных с оптически активными основаниями или солей эфиров А. с оптически активными к-тами. Часто используют селективный ферментативный гидролиз ацилами-нокислот с помощью ацилаз или гидролиз эфиров А. ферментами, напр. папаином или химотрипсином, к-рые избирательно атакуют производные Ь-А. Перспективно расщепление рацематов А. с помощью диссимметрических ионообменных смол. [c.51]

    Первым этапом в изучении структуры нуклеиновых кислот является определение их нуклеотидного состава. С этой целью проводят гидролиз нуклеиновых кислот до мононуклеотидов или свободных азотистых оснований последующее разделение продуктов гидролиза производится с помощью хроматографии на бумаге, на ионообменных смолах, посредством электрофореза. [c.384]


    Наиболее полное и селективное извлечение обычно достигается для дистиллятов с узким интервалом температур кипения, в которых анализируемые компоненты представлены небольшим набором химических типов с ограниченным молекулярно-массовым распределением. Так, азотистые основания выделяют с помощью макропористых катионообменных смол [9—12] или импрегнированного соляной кислотой силикагеля [13]. Преимущество ионообменного процесса по сравнению с кислотно-экстракционным способом концентрирования оснований, ранее широко применявшимся с этой целью, состоит в преодолении барьера растворимости в присутствии неводных растворителей, используемых в качестве элюентов при этом исключается возможность гидролиза образующихся солей и повышается выход целевого продукта за счет включения в состав концентратов слабоосновных азотистых соединений. Эти же преимущества характерны и для способа [13]. [c.117]

    При получении целлюлозы сульфитной в кой древесины (обработкой р-рами сульфитов NH4, Na, Са или Mg, содержащими небольшое кол-во своб SOj) сульфогруппа присоединяется преим в а-положение боковой цепи Одновременно происходит частичный гидролиз Л по эфирным связям При этом одни звенья сульфируются легко (при любом pH), другие-только в сильнокис- / ри- лых средах В нейтральных и щелочньгх средах сульфирование осуществляется че-рез промежут хинонметид (IV) с послед присоединением к нему HjSOj, в кислых средах-через бензилкарбкатион с послед присоединением ЗОзН-группы В результате Л переходит в р-р в виде лигносульфонатов-солен т наз лигносульфоновых к-т. Последние - сильные минер к-ты (степень диссоциации в водных р-рах 60%), выделяемые из лигносульфонатов диализом и далее с помощью ионообменных смол Товарные лигносульфонаты получают упариванием обессахаренного сульфитного щелока и выпускают в виде жидких и твердых т наз концентратов сульфитно-спиртовой барды (мол м от 200 до 60 тыс ), содержащих 50-90% по массе сухого остатка Строение лигносульфоновых к-т и их солей окончательно не установлено [c.591]

    Реакцию чаще всего проводят в воде или в смеси воды и какого-либо органического растворителя спирта, тетрагидрофурана и т. п., что очень удобно, учитывая особенности растворимости моносахаридов. Значение pH 10—10,5 является оптимальным для протекания реакции поскольку боргидриды наиболее устойчивы в слабощелочной среде, а также потому, что гидроксил-ион катализирует превращение циклической полуацетальной формы в ациклическую, которая и подвергается восстановлению. Увеличение pH ведет к ускорению гидролиза боргидрид-иона и к усилению побочных реакций вследствие превращений моносахарида под действием основания (см. стр. 97 и сл.). Уменьшение pH вызывает усиление распада боргидрид-иона с выделением водорода. Восстановление моносахаридов протекает достаточно быстро уже при 20° С и заканчивается, в среднем, через 1—2 ч. Избыточный боргидрнд разрушают добавлением разбавленной соляной или уксусной кислоты борную кислоту удаляют, нагревая кислый раствор с метанолом и отгоняя образующийся метил-борат неорганические соли удаляют обычно с помощью ионообменных смол. Выходы полиолов очень высоки (около 90- о) .  [c.79]

    Окисленные перйодатом полисахариды, необходимые для проведения описанных выше структурных исследований, получают в условиях, при которых неизбирательное окисление сведено к минимуму. Перйодат удаляют из реакционной смеси перед дальнейшими операциями, либо нейтрализацией этиленглико-лем 1137] с последующим удалением ионных соединений диализом [58, 95], либо удалением ионных соединений с помощью ионообменных смол амберлит Ш-120(Н+) и дуолит А-4(0Н") [202], либо осаждением иодата и избытка перйодата гидроокисью бария [180], гидроокисью стронция [107] или ацетатом свинца 3]. Восстановленный после окисления перйодатом полисахарид можно расщепить до олигосахаридов в условиях, предложенных Смитом, пли полностью гидролизовать кипящей 1 п. Н2304 с последующей нейтрализацией ВаСОд и упариванием досуха отфильтрованного раствора. Продукты гидролиза могут быть исследованы и количественно определены хроматографически. [c.319]

    Изофосфорноватая к-та является основным продуктом разложения водных р-ров Ф. к. и в свою очередь в р-рах быстро гидролизуется до смеси Н3РО3 и HgPOj. Ф. к. выделяют из ее солей серной к-той или с помощью ионообменных смол. [c.257]

    При перегруппировке смеси стереоизомерных оксимов или оксимов, устойчивых в щелочной среде, получается, как правило, смесь изомерных замещенных амидов. В этом случае разделению обычно подвергают не сами замещенные амиды, а продукты их гидролиза, который производят продолжительным кипячением смеси амидов с 20%-ной серной кислотой или с разбавленной соляной кислотой. Аминокислоты, получающиеся при гидролизе лактамов, могут быть выделены по одному из описанных спосо-бов232, 333 например добавлением карбоната бария (в том случае, если гидролиз лактяма призводился нагреванием с разбавленной серной кислотой) или с помощью ионообменных смол б9  [c.166]


    Обычно валентность всех этих элементов в растворе равна трем (церий может быть также четырехвалентмым, самарий и европий — двухвалентными). Их тенденция к гидролизу не велика, хлориды и нитраты трехвалентных лантаноидов и иттрия растворимы, сульфаты плохо растворимы и имеют отрицательный те.мпературный коэффициент растворимости (см. раздел 11.4). При добавлении в раствор фторидов или растворимых оснований осаждаются нерастворимые трифториды или гидроокиси. Сульфиды в растворе не образуются. При дробном осаждении гидроокисей этих элементов происходит их частичное разделение, так как основные свойства элементов уменьшаются с увеличением атомного веса (иттрий является исключением). Редкоземельные элементы образуют в растворе большое число комплексных ионов и соединений, из них особенно прочны комплексы с клешневидными агентами. Это свойство позволило разработать эффективный метод разделения с помощью ионообменных смол, который в значительной степени вытеснил старые методы, основанные на дробном осаждении или дробной кристаллизации двойных солей. Ионы редкоземельных элементов сорбируются катионообменной смолой и элюируются раствора- [c.94]

    Снятие изопропиленовой группировки проводится при действии разбавленных ёодных или спиртовых растворов органических и минеральных кислот, с помощью ионообменных смол (в Н+-форме) и т. д. В последнее время для снятия изопропилиденовой группировки в условиях, исключающих ацильную миграцию, используют гидролиз борной кислотой в 2-метоксиэтаноле или триалкилборатах с последующим разложением эфира ортоборной кислоты водой [66]. [c.237]

    Ацетаты углеводов являются идеальными производными для выделения и очистки сахаров, поскольку их легко можно выделить в индивидуальном состоянии и затем превратить в исходный углевод. Гидролиз сложноэфирных групп катализируется как кислотами, так и основаниями, однако основания — более мощные катализаторы, чем кислоты. Для снятия ацетамидных групп используются сильные кислоты [1—4] и основания [5], но в последнем случае реакция часто затрудняется из-за пространственных эффектов. Ацетатные группы можно снять избирательно, не затрагивая ацетамидной функции [5—8]. Дезацетилирование метанольным раствором, содержащим каталитические количества метилата натрия [9—12] или метилата бария [13], основано на реакции переэтери-фикации и протекает в условиях, мало затрагивающих свободные сахара. Метанольный раствор аммиака [14] снимает ацетильные группы с образованием ацетамида. Этот метод пригоден только для гликозидов и других производных сахаров с защищенной карбонильной группой. Вместо аммиака можно применять метанольные растворы диметиламина [15] и других аминов. Несмотря на то что сахара весьма неустойчивы в щелочных растворах, было показано, что охлажденный насыщенный раствор гидроокиси бария является эффективным 0-дезацетилирующим реагентом, особенно в случае кетоз [161, где, по-видимому, образуются комплексы, предохраняющие сахар. Выбор наиболее эффективного метода дезацетилирования определяется, как правило, чувствительностью продуктов реакции к действию кислот и щелочей, растворимостью и т. д. Ниже приводятся несколько типичных методик дезацетилирования, которые в зависимости от конкретных условий могут быть модифицированы. Удаление ионов из реакционной смеси легко осуществляется с помощью ионообменных смол [23]. [c.119]

    Образовавшийся высокомолекулярный полиол гидролизуют кипячением с 0,1 н. НСЛ в течение 10 час. Охлажденный раствор деионизуют с помощью ионообменных смол и упаривают в вакууме до сирона. Эритрит и глицерин в гидролизате разделяют хроматографией на бумаге. [c.485]

    Гидролиз тетрахлоргептана осуществляют, нагревая его с концентри-юванной серной кислотой при 90—100°С и атмосферном давлении. Чоследующий аммонолиз хлорэнантовой кислоты проводится нагреванием с водным раствором аммиака при 100 °С и давлении 0,5— 0,6 МПа. Очистку кислоты осуществляют с помощью ионообменных смол. Спутниками аминоэнантовой кислоты при проведении реакции теломеризации, выделяемыми по аналогичной схеме синтеза, являются аминопеларгоновая и аминоундекановая кислоты. Данный метод, несмотря на многие его достоинства, имеет принципиальный недостаток, заключающийся в том, что он требует очень большого расхода хлора, регенерация которого очень сложна. Учитывая также тот факт, что выход основного продукта невысок, можно предположить, что перспективность промышленного внедрения метода весьма проблематична. [c.33]

    Ч1ротеииы с помощью кислотного, основного или ферментативного гидролиза могут расщепляться на простейшие составляющие — а-ами-нокарбоновые кислоты, обычно называемые просто а-аминокислотами. Ка.чественный анализ получающихся при этом смесей аминокислот связан с относительно большими трудностями. Э. Фишер (1901 г.) обрабатывал такие смеси спиртом и разделял образующиеся в результате смеси сложных эфиров а-аминокислот дробной перегонкой. В настоящее время эти соединения разделяют и идентифицируют методами газовой хроматографии. Использование ионообменной хроматографии позволяет разделить подобные смеси без предварительной этерификации. Существуют приборы, которые автоматически проводят качественный и количественный анализ смесей такого рода. При этом первоначально а-аминокислоты разделяются на ионообменных смолах, элюаты обрабатываются нингидрином, а образующиеся синие окрашенные вещества анализируются колориметрически, кривые поглощения записываются с помоп ью самописца. [c.647]

    Определение моносахаридного состава проводится анализом продуктов кислотного гидролиза или. чаще, мета-нолиза сахарида. Состав продуктов кислотного гидролизата анализируется с помощью хроматографии или электрофореза на бумаге. Нередко используется коммерческий углеводный анализатор, разделение осуществляется на ионообменных смолах методом распределительной хроматографии в водно-спиртовой смеси или в виде боратных комплексов сахаров. Скорость гидролиза гликозидных связей, образованных остатками нейтральных, амино- и дезокси-сахаров, различна. Легче всего отщепляются остатки сиаловых (N-ацетилнейраминовой, N-гликолилнейраминовой) кислот, труднее всего расщепляются свяэи, образованные остатками амино-сахаров и уроновых кислот. Фуранозиды гидролизуются значительно быстрее пиранозидов. В итоге при гидролизе олигосахарида может иметь место неполное расщепление связей или кислотная деструкция образующихся моносахаридов, что искажает результаты анализа. Лучшие результаты дает метанолиз в присутствии газообразного хлористого водорода (1.7 н. H l, 80 С, 18 ч) — в этом случае образуются метилгликозиды, устойчивые к кислотной деструкции. Качественный и количественный состав продуктов метанолиза определяется методом газожидкостной хроматографии в виде триметилсилильных или трифторацетильных производных. [c.463]

    Часто образец должен быть очищен перед разделением путем удаления из него воды и нелипидных загрязнений, например с помощью хроматографии на колонке, заполненной сефадексом 0-25 [6], особенно если он был получен экстракцией хлороформом и метанолом. Смеси липидов и белков, которые также могут присутствовать в образце, разделяют путем хроматографирования на гелях сщнтого полистирола [7]. Разделение сильно ненасыщенных липидов желательно проводить в атмосфере азота, так как в противном случае они окисляются в колонке [8]. Силикагель предохраняет полиненасыщенные жирные кислоты и их производные от автоокисления [9]. Фосфолипиды могут гидролизоваться до лизофосфолипидов при хроматографировании на силикагеле [10, 11]. Пропускание через слой амберлита ШЛ-400 приводит к потере некоторых компонентов природных липидов и неполному извлечению свободных жирных кислот из ионообменной смолы [12], Липиды, даже триацилглицерины, могут быть частично метанолизированы и переэтерифицированы [13]. [c.197]

    TOB, уменьшить стоимость сырья и облегчает отделение лродукта реак-ции от катализатора. В 1961 г. в этой области было израсходовано 220 смол. Применение ионообменных смол в качестве катализаторов открывает много новых возможностей, так как они имеют большую удель- ную поверхность, практически нерастворимы, расходуются в небольших, количествах, могут регенерироваться, легко отделяются от продукта и не загрязняют его. С их помощью удается осуществить ib ряде случаев, непрерывный процесс. Действие этих смол отличается высокой избирательностью. Катиониты катализируют реакции этерификации, гидролиза сложных эфиров, алкоголиза, конденсации ацеталей и инверсии сахара.. Однако в промышленности ионообменные смолы применяются пока I лишь для осуществления некоторых реакций этерификации и инверсии j [c.216]

    Э т и л е п д и а м и н т е т р а а ц е т а т н ы е комплексы Ри (III). Формэн и Смит [48] провели исследование комплексообразования Ри (III) в этилендиаминтетраацетатных [ЭДТА] растворах с помощью различных физико-химиче-ских методов. При ионообменном исследовании изучалось распределение плутония между раствором и ионообменной смолой при постоянном значении pH 3,3 и изменяющейся концентрации комплексообразователя. Найдено, что в этих условиях Рп (III) образует комплексный ион Риу" с константой нестойкости 7,7-10 1 . При значениях pH среды > 5 комплексный ион Pu f частично гидролизуется по уравнению [c.59]

    Фракционирование пептидов на ионообменных смолах основано на целом ряде принципов, о которых уже говорилось выше (гл. I и II). Сюда входят и различия в электрохимических свойствах разделяемых фрагментов, и различное сродство неполярных радикалов к бензольным кольцам матрицы смолы, и изменение концентрации конкурирующих ионов в буферном растворе. Поэтому элюция пептидов со смолы достигается путем пропускания через колонку буферных растворов изменяющейся ионной силы и pH. Это изменение концентрации ионов и pH может осуществляться линейно или ступенчато. Элюируемые компоненты идентифицируют нингидриновой колориметрией, лиофилизуют (высушивают из замороженного состояния) и проверяют на гомогенность с помощью хроматографии на бумаге и методом пептидных карт. Негомогенные пики фракционируют дополнительно. В качестве примера можно привести разделение пептидов, полученных триптическим гидролизом окисленной (т. е. лишенной дисульфидных мостиков) рибонуклеазы (рис. 11). [c.84]

    Дейель [20] показал наличие абсолютной избирательности при гидролизе некоторых сложных эфиров при помощи ионообмен ных смол самым важным фактором в этих реакциях оказалась пористость. Его результаты приведены в табл. 5. [c.281]

    При производстве декстрозы ионообменный прццесс дает высококачественный сахар. Однако с помощью ионного обмена еще нельзя экономически выгодно удалять продукты разложения, получающиеся при гидролизе крахмала, — органические кислоты и окрашенные вещества. Кроме того, производственники считают, что с ионообменными смолами слишком много хлопот и что успешный процесс должен включать в себя такие стадии, как извлечение золы, удаление окраски, извлечение органических кислот, и хотят иметь смолы или другие очистители, вполне удовлетворяющие этим требованиям. [c.534]

    Конденсацию фрагментов (D 3—6) и (D 7—10) осуществляли с помощью N, N -дициклогексилкарбодиимида. Полученный таким образом защищенный октапептид (Е 3—10) очищали противоточным распределением (54 переноса) и далее декарбобензоксилировали обработкой бромистым водородом в ледяной уксусной кислоте (100 мин). Из образовавшегося бромгидрата действием водного раствора карбоната калия удалось выделить свободный эфир октапептида (F 3—10) в достаточно чистом состоянии для использования в дальнейшем синтезе. При конденсации эфира октапептида (F 3—10) с bo-Asp(NH2)-Arg(N02)-0H (F 1—2).применяли карбодиимидный метод. Защищенный декапептид (G 1—10) очищали противоточным распределением. Гидрогенолиз пептида (G 1—10) в смеси метанола с 1,4 н. соляной кислотой при 35° и последующий гидролиз образовавшегося эфира декапептида (И 1—10) (без отделения получающегося в качестве побочного продукта хлористого аммония) действием 37%-ной соляной кислоты в течение 90 мин при 40° привели после обработки основной ионообменной смолой к смеси двух декапептидов (К 1—10) и соответствующего А5р(ЫН2-Р) -производного (I 1—10), которые удалось разделить противоточным распределением К —0,8 и 2,5 соответственно). Содержание этих двух веществ в смеси отвечает соотношению 1 1 оба они выделены в виде моноацетатов. Изоэлектрические точки декапёптндов (К 1—10) и (I 1—10) различны (7,4 и 7,9). При щелочном гидролизе в основном образуется декапептид (I 1—10) и лишь немного пептида с двумя свободными карбоксильными группами (К 1—10). [c.55]

    Цитохром с из сердечной мышцы лошади был первым цитохромом, для которого установили полную аминокислотную последовательность. Гидролиз цитохрома с химотрипсином дал тринадцать больших пептидов, которые были разделены хроматографией на ионообменных смолах и очищены далее при помощи электрофореза и хроматографии на бумаге. Аминокислотная последовательность пептидов была установлена при помощи химических и ферментативных методов. Химические методы включали динитрофенилирование по Сэнджеру и деградацию по Эд-ману для идентификации N-концевых аминокислот, ферментативные — гидролиз лейцинаминопептидазой для определения N-концевых и карбоксипептидазой А для определения С-концевых аминокислот оба фермента использовались также для определения коротких аминокислотных последовательностей. [c.160]

    Для разделения катионов Fe(III), Mn(II), Zn(II) и u(II) в экстрактах из растений было предложено использовать смесь растворителей к-бутанол — НС1 — вода (100 23 17) [ 97]. С помощью ионообменной хроматографии необходимо предварительно отделить примеси, мешающие анализу, а именно катионы К(1), Са(П), Mg(II) и фосфаты. Пирофосфаты гидролизовали кипячением растительных проб в 0,1 н. НС1 в течение 10 мин. После высушивания образец растворяли в смеси ацетон — НС1 — вода (6 4 1) и вводили раствор в колонку с ионообменной смолой Dowex (100/200 меш), пропитанной элюентом. Через колонку пропускали три последовательные порции элюента для удаления катионов К(1), Са(П), Mg(II), затем следы этих элементов элюировали четырьмя порциями воды. Элюат из ионообменной колонки упаривали досуха в тарированной пробирке и растворяли в разбавленной НС1 (1 1). Восстановленное железо окисляли добавлением одной капли Н2О2. Для количественного определения взвешивали пробу (по разности масс пустой и заполненной пробирок). Перед нанесением образца бумагу Ватман № 1 пропитывали 2 и. раствором НС1 в течение 30 мин, отмывали водой и высушивали. После нанесения пробы лист выдерживали в парах элюента 1 ч и затем проводили разделение нисходящим методом до тех пор, пока фронт растворителя не перемещался на расстояние 30 см. Положение разделенных компонентов стандартной смеси на хроматограмме определяли по заранее известным величинам Rf или опрыскивая бумагу реактивом, состоявш.им из 0,5%-ного раствора 2-нитрозо-1-нафтол-4-сульфокислоты в 50%-ном этаноле, содержащем 4% безводного ацетата натрия. Марганец не образует окрашенного комплекса с этим реагентом, но при добавлении в стандартную смесь катиона Со(II), который имеет, такое же значение R/, зону Мп(П) можно локализовать. Полосу с разделенной стандартной смесью отрезали от листа бумаги, нейтрализовали в парах аммиака и опрыскивали проявляющим реагентом. Зоны катионов окрашивались в следующие цвета красный — Мп(И) и Со(П) (J / = 0,16) коричневый — u(II) (0,29) зеленый—Fe(III) (0,84), оранжевый — Zn(II) (0,96). -Компоненты пробы, разделенные вместе со стандартной смесью, определяли сравнением с хроматограммой стандартной смеси. Более точно местоположение зон [c.335]

    Ионообменный катализ представляет собой частный случай гетерогенного катализа, в котором реакция ускоряется противоионами активных групп ионообмениваюших смол. Принципиально с помощью ионообменивающих смол в соответствующих ионных формах можно ускорить любые реакции, в гомогенных средах катализируемые тем или другим ионом. Однако наиболее широкое применение получил ионообменный катализ сильнокислыми сульфокатионитами или сильноосновными анионитами, который по природе катализирующих ионов можно считать разновидностью кислотно-основного кв1а-лиза. Ионообменивающие смолы широко применяются в качестве катализаторов реакций этерификации, гидролиза, омыления, конденсации, алкоголиза, присоединения и отщепления воды, перевода амидов в амины. Поскольку многие из этих реакций выполняются при повышенной температуре [4, 5], важно углубить наши, пока еще весьма ограниченные познания о термической устойчивости ионитов, используемых в качестве катализаторов. [c.242]

    Полученные эфиры не удалось разделить методами распределительной и ионообменной хроматографии. Однако при обработке смеси трифенилхлорметаном образуется исключительно тритильаое производное 2 -тетра-гидропиранилнуклеозид-З -фосфата IV, которое легко отделяется хроматографически от неизмененного эфира III. Тетрагидропиранильная защита удаляется при кислотном гидролизе и с помощью сильнокислых ионообменных смол типа дауэкс 50 [c.373]

    Определение химической структуры белка следует начинать с количественного анализа аминокислотного состава его полипептидных цепей. Для этого чистый и, если это возможно, кристаллический белок подпер-гают обычно кислотному гидролизу, чтобы гидролизовать все имеющиеся в белке пептидные связи, которые соединяют аминокислоты, входящие в состав этого белка. Затем определяют относительные количества высвобождающихся при таком гидролизе двадцати стандартных аминокислот. Определение количества аминокислот проводят с помощью метода хроматографии на ионообменных смолах, разработанного в начале 50-х годов У. Штейном и С. Муром (фиг. 39, 40). Результаты такого анализа аминокислотного состава двух ферментов Е. oli (Р-галактозидазы и триптофан-синтазы) приведены в табл. 2. (Триптофан-синтаза Е. соН, как скоро будет показано, состоит из двух различных полипептидных цепей, названных А-белком и В-белком. Данные, приведенные в табл. 2, касаются только А-белка.) [c.83]

    Попытки идентифицировать N-концевой аминокислотный остаток в -кислом гликопротеине из плазмы человека оказались безуспешными [130]. Нативные препараты гликоиротеина и препараты, денатурированные спиртом и эфиром, подвергали динитрофенилированию по методу Портера и Сэнджера [131] и последующему гидролизу кислотой или сульфированной ионообменной смолой, однако при этом динитрофенильные производные аминокислот выделить не удалось. Этот отрицательный результат был подтвержден также с помощью фенилизотиоцианатного метода Эдмана в модификации Френкель-Конрата и Зингера [132]. [c.91]

    В последнее время появилась возможность определять аминокислотный состав белков с помощью автоматических аминокислотных анализаторов. Когда в 1948 г. Мур и Стейн [551 в дополнение к классическим методам органической химии, а также манометрическому и бактериологическому анализу ввели ионообменную хроматографию, наступил поворотный момент в развитии химии аминокислот. В основу работы созданных сотрудниками Рокфеллеровского института современных автоматических аминокислотных анализаторов была положена ионообменная хроматография. Принцип работы этих приборов заключается в следующем. Исследуемый белок гидролизуют, затем гидролизат подвергают хроматографии на смоле типа дауэкс 50 х8 в Na-форме. Элюирование производят с помощью непрерывной подачи буферного раствора. Выходящий из колонки элюат попадает в пластмассовую ячейку особой формы, где он смешивается с раствором нингидрина. Подачу нингидрина осуществляет специальный насос, работающий синхронно с насосом, подающим буферный раствор на колонку. Затем смесь элюата с нингидрином проходит через тефлоновый капилляр, который погружен в кипящую баню. В этих условиях в растворах происходит нингидриновое окрашивание, интенсивность которого измеряется в проточной кювете спектрофотометрически. Поглощение света регистрируется самописцем. Применение сферических смол [80] позволило сократить время исследования одного образца примерно в четыре раза, а использование особых ячеек сделало вполне допустимыми для анализа очень малые количества исследуемого вещества — порядка 0,01—0,05 мкмоля [38]. Введение одноколоночной процедуры значительно упрощает метод [9, 29, 43, 60]. С помощью этой методики в одной и той же пробе можно определить кислые, нейтральные и основные аминокислоты, что не только экономит исследуемый материал, но и повышает точность и сокращает время исследования. Работая на стандартном аминокислотном анализаторе и пользуясь некоторыми модификациями известных методов, можно полностью закончить анализ одного вещества в течение 3 ч [91. [c.32]


Смотреть страницы где упоминается термин Гидролиз с помощью ионообменных смол: [c.131]    [c.330]    [c.118]    [c.95]    [c.316]    [c.54]    [c.119]    [c.322]    [c.172]    [c.257]    [c.99]    [c.179]    [c.96]   
Смотреть главы в:

Установление структуры органических соединений физическими и химическими методами том 2 -> Гидролиз с помощью ионообменных смол




ПОИСК





Смотрите так же термины и статьи:

Ионообменные смолы



© 2025 chem21.info Реклама на сайте