Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение экстракции для исследования и анализа

    ПРИМЕНЕНИЕ ЭКСТРАКЦИИ ДЛЯ ИССЛЕДОВАНИЯ И АНАЛИЗА [c.110]

    Очевидно, что систематически изучать эти вопросы можно только сопоставлением данных по составу сырья й полученных из него гидрогенизатов. Такого рода исследования начались относительно недавно, когда были разработаны хроматографические методы анализа полукоксовых смол и сходных с ними по составу продуктов Широкое применение хроматографических методов в сочетании с экстракцией, ректификацией, спектральными и другими физико-химическими методами позволило идентифицировать в составе угольных, полукоксовых и сланцевых смол большое число индивидуальных соединений Так, например, только в углеводородных фракциях эстонской сланцевой смолы идентифицировано 288 индивидуальных углеводородов и 8 сопутствующих им соединений, содержащих серу [c.164]


    Математическое моделирование все более широко используется для исследования и проектирования различных процессов химической технологии. Анализ и моделирование таких сложных процессов, как разделение многокомпонентных смесей (методами ректификации, абсорбции, экстракции и др.), химические реакционные процессы, проведение которых в промышленных аппаратах осложнено гидродинамическими, диффузионными и тепловыми факторами, практически невозможны без применения современной электронно-вычислительной техники. [c.76]

    Материал учебника несколько шире рамок действующей программы. В него вошли такие разделы физической химии, как основы учения о строении вещества и химической связи, теория спектральных методов исследования. Несколько более широко, чем в обычных курсах физической химии, даны такие разделы, как свойства электролитов, электрохимия, экстракция, перегонка с водяным паром, адсорбция, катализ, получение и стабилизация золей и эмульсий, мицеллообразование и солюбилизация в растворах поверхностноактивных веществ (ПАВ), применение ПАВ в фармации. Рассмотрено влияние дисперсности на свойства порошков. Принимая во внимание аналитическую направленность специальности Фармация и важное значение методов молекулярной спектроскопии для исследования и анализа лекарственных веществ, авторы уделили большое внимание изложению теории физико-химических методов анализа (рефрактометрия, поляриметрия, фотометрия, спектрофо-тометрия, кондуктометрия, потенциометрия, полярография, хроматография, электрофорез и др.). [c.3]

    Особую и весьма специфическую область применения парофазного анализа представляет исследование запахов. Анализу ароматов пищевых продуктов, цветов, табака, табачных и парфюмерных изделий уделяется значительное и возрастающее внимание прежде всего в связи с проблемами технологии, хранения, улучшения качества и облагораживания этих продуктов [23]. Все большее значение приобретает исследование аромата для селекции и таксономии плодовых и эфиромасличных растений, а также для создания искусственной пищи и имитаторов запаха [24,25]. Для изучения ароматов предпочтительна техника именно парофазного анализа, так как восприятие запаха органами обоняния происходит через посредство газовой фазы и ее анализ может дать наиболее правильное представление о природе и составе соединений, образующих ощущаемый аромат. Состав и запах активных компонентов, выделенных иными способами — экстракцией, перегонкой, от гонкой с водяным паром, — существенно отличаются от [c.235]


    Для изолирования ДДТ из внутренних органов трупа и выделений человека рекомендован эфир как вещество, хорощо растворяющее ДДТ и не растворяющее неорганические галоидные соединения, всегда присутствующие в объектах судебно-химического исследования. Хроматография на бумаге и в тонком слое рекомендуется для очистки извлечений, обнаружения и количественного определения ДДТ. Все более широкое применение при анализах мочи, тканей животных и других объектов на ДДТ и его метаболиты приобретает газовая хроматография. Для экстракции при исследовании пищевых продуктов применяют бензол, четыреххлористый углерод, горячий спирт. Продукт экстрагирования отфильтровывают, органический растворитель удаляют выпариванием, а остаток подвергают качественному и количественному анализу. [c.252]

    Органические реагенты приобретают все большее значение в химическом анализе в силу высокой чувствительности и избирательности их реакций с ионами металлов. Многие из ранее опубликованных в этой области работ носили чисто эмпирический характер, они в основном были направлены на поиски специфичных или, по крайней мере, высокоизбирательных реагентов на ионы отдельных металлов. За последние годы наметился более фундаментальный подход к изучению органических реагентов, основанный на изучении взаимосвязи между их структурой и избирательностью. Другим важным направлением в развитии этой области явилось количественное исследование различных равновесных систем, имеющих существенное значение. Достаточно высокой избирательности можно достичь в отдельных случаях путем подбора подходящих значений pH и концентрации реагента, а также посредством применения дополнительных комплексантов (маскирующих агентов), усиливающих разницу в поведении различных металлов. При разделениях с помощью экстракции большое значение имеет подбор растворителей немалое влияние на результаты разделения оказывает также скорость экстракции. [c.275]

    По принципу разделяющего эффекта аналитические и препаративные методы фракционирования можно разделить на группы, приведенные в табл. 6.1. В монографиях [1, 2] приводятся таблицы примеров применения указанных методов для фракционирования некоторых полимеров. В лабораторной практике используют комбинацию различных методов фракционирования, например, дробное осаждение и экстракцию, комбинацию этих методов с седиментационным анализом. Методы препаративного фракционирования могут использоваться в различных вариантах, зависящих от цели исследования и вида полимерного образца. Так, фракционирование из растворов может быть осуществлено методами дробного фракционирования и фракционирования на колонке с градиентом температуры дробное экстрагирование (как по изменению температуры, так и по скорости диффузии) может быть осуществлено из порошков, коацерватов, из тонких пленок, образованных нри нанесении полимера из растворов на инертные носители. Для олигомерных продуктов практически невозможно применение метода дробного осаждения. Часто удобно вместо дробной экстракции использовать метод непрерывной экстракции — с постепенной заменой осадителя растворителем. [c.205]

    В. М. Пешковой, П. К. Агасяна и др. знакомятся с методами фотометрии и спектрофотометрии, спектрального и атомно-абсорбционного анализа, люминесценции, полярографии и амперометрии, потенциометрии, кулонометрии, хроматографии, микрохимического анализа, разделения и концентрирования. По всем названным специальным курсам читаются лекции и проводятся практические занятия в лабораториях. Кроме того, читается еще несколько спецкурсов без практикума комплексные соединения в аналитической химии, органические аналитические реагенты, экстракция в аналитической химии, статистические методы исследования, кинетические методы анализа, рентгенофлуоресцентный анализ, применение электронного парамагнитного резонанса в аналитической химии. Всего на специальные курсы и соответствующие практикумы отводится 540 часов, кроме того, на преддипломную практику — 324 часа. Темпы дипломных работ, на подготовку которых отводится 10 семестр, обычно определяются научной тематикой кафедры. Примерно аналогично ведется преподавание в других университетах, например в Казанском (зав. кафедрой В. Ф. Торопова), Пермском (В. П. Живописцев) и др. [c.218]

    Одним из многообещающих аспектов применения органических растворителей в полярографии комплексов является возможность анализа металлов после экстракции их хелатов. Сочетание этой экстракции с последующим полярографированием неводного экстракта нри определенных условиях не только повышает селективность метода определения, но и его чувствительность [16]. Увеличение чувствительности можно достигнуть, переводя испытуемое вещество из большого объема водной фазы в небольшой объем органического растворителя для полярографирования. Этот метод успешно применяется для анализа следов металлов, например при определении свинца в виде диэтилдитиокарбамата, экстрагированного хлороформом, в тройной смеси растворителей хлороформ, метилцеллозольв и вода [17]. Последняя смесь очень часто применяется в подобных исследованиях. Метилцеллозольв выполняет в этом случае функцию гомогенизатора системы, где хлороформ служит экстрагентом, а вода создает условия для проводимости. Однако такая смесь дает сравнительно узкую область возможной поляризации р.к.э. — до 0,8 в (нас. к.э.). Рациональное использование экстракционно-полярографического метода основано на знании электрохимических свойств соответствующих комплексов, поэтому изучение последних в органических средах имеет значение и в этом отношении. До сих пор не делалось попыток обобщить накопленный материал по полярографии комплексов с органическими лигандами в органических и смешанных растворителях. [c.258]


    Интерес к полярографии ацетилацетонатов объясняется главным образом широким применением их в экстракционных методах анализа и возможностью полярографировать их растворы в доступной области потенциалов непосредственно в органической фазе после экстракции. С этой целью проводили полярографическое исследование экстракции многих металлов ацетилацетоном [28] из растворов с различными pH. В качестве растворителя для ацетилацетона использовали толуол. Полярографирование экстрактов проводили в метаноле на фоне хлористого лития. [c.263]

    В любой аналитической работе наиболее ответственной операцией является отбор пробы. Много времени и труда тратится напрасно на тщательный анализ неудачно выбранных проб. Следует иметь в виду, что капельные реакции можно применять как для обнаружения различных включений, так и для установления среднего состава всей пробы. Если исследуют какие-то включения в анализируемом материале, то для отделения нужных частиц часто бывает полезным применение лупы или бинокуляра. В этих случаях для извлечения частиц можно пользоваться тонкой стеклянной нитью, натертой глицерином или другим вязким и инертным веществом, к которому прилипают извлекаемые частицы. При исследовании примесей в твердых объектах их лучше сначала выделить из раствора объекта соосаждением, пользуясь коллектором или применяя хроматографический метод или селективную экстракцию. В некоторых случаях можно обойтись без предварительного отделения примеси, применяя для ее обнаружения или грубой оценки ее количества чувствительные капельные реакции. [c.59]

    Однако в литературе, по-видимому, не имеется подробного описания ни теоретических расчетов процесса экстракции, не требующих применения сложных математических методов и термодинамики, ни способов проведения опытов по экстракции в лабораторном масштабе. Мы надеемся, что настоящая книга будет полезным дополнением к имеющейся литературе по экстракции в качестве учебника и пособия при экспериментальной работе. Но эта книга может быть использована не только при исследовании жидкостной экстракции в лаборатории. Она может оказаться весьма полезной и при анализе данных по экстракции в связи с проектированием экстракционных установок и разработкой технологических процессов, так как последствия любых изменений в процессе экстракции во многих случаях можно предвидеть на основании лабораторных опытов. Аналогичным путем часто определяют оптимальный режим работы промышленных установок. [c.10]

    Как и для галлия, наибольшее практическое значение при анализе минерального сырья приобрели за последнее время флуоресцентные методы определения индия посредством родаминов. Первой по времени была предложена фотометрическая реакция с родамином С [129], затем описан метод с применением родамина ЗВ [19] и исследован бутилродамин С [22а], а родамин 6Ж и родамин С использованы в анализе минерального сырья при употреблении последнего индий отделяют от многих мешающих элементов при помощи экстракции [42, 78], органических соосадителей или ионного обмена [78]. При визуальном флуориметрировании Б мл бензольного экстракта, извлеченного из 50 мл водной фазы с родамином С, можно определять 0,05 мкг индия и больше [12]. [c.160]

    При исследовании смесей неизвестного состава задачи идентификации упрощаются применением специфического концентрирования, позволяющего выделять отдельные классы органических соединений. Идентификация отдельных компонентов внутри класса более легко достигается нри использовании различных зависимостей, связывающих хроматографические характеристики (время, объемы удерживания) с физико-химическими свойствами веществ внутри ряда (температура кипения, молекулярный вес). Выделение отдельных классов при концентрировании часто связано с первоначальным более или менее селективным накоплением (перегонка, экстракция, вымораживание и т. д.). Поэтому разработка общих схем систематического анализа органических компонентов вод имеет существенное значение для выбора наиболее рационального пути концентрирования, с использованием элементов этих схем нри решении отдельных задач [34, 35]. Дополнительные возможности для идентификации дает метод аналитической реакционной хроматографии, который использует химические превращения анализируемых веществ в хроматографической схеме [36, 37]. [c.181]

    Количество публикаций по экстракционно-фотометрическим мето-тодам анализа с основными красителями быстро возрастает. Описаны методы определения галлия с семью красителями, таллия — с восемью и т. д. Для извлечения многих пар Ме — Р предложены различные экстрагенты и условия экстракции некоторые элементы могут быть экстрагированы в разных валентных состояниях и с различными аддендами. Работы В. И. Кузнецова, А. И. Бусева и других исследователей показывают примеры сознательного синтеза основных красителей, обладающих нужными для применения в экстракционно-фотометрических методах свойствами. Таким образом, число возможных сочетаний адденд-краситель — экстрагент, пригодных для экстракционно-фотометрического определения каждого из элементов (а тем более — сочетаний параметров экстракционного процесса), практически неограниченно. Насколько полезен результат того или иного исследования Какой из опубликованных методов определения элемента или их вариантов следует предпочесть Эти вопросы, возникающие в практической работе аналитика, настойчиво требуют разработки способа объективной сравнительной оценки аналитических методов. Целью последующего изложения является решение этой общей задачи применительно к ЭФМ-ОК. [c.74]

    Применение какого-либо аналитического прибора для контроля непрерывных процессов является целью исследования во многих лабораториях. Более чем десятилетний опыт применения метода искровой масс-спектрометрии дает возможность использовать его для характеристики некоторых промышленно важных процессов. Однако чтобы реализовать в этих условиях все возможности метода, необходимо свести к минимуму время между отбором пробы и выдачей результатов анализа. Этому будет способствовать разработка многоканальных систем регистрации При соответствующем контроле параметров разряда высокочастотная искра может обеспечить стопроцентную ионизацию атомов образца. По мере того как будет достигаться повышение доли ионов, достигающих детектора (в современных приборах один из 10 ), будет сокращаться и время анализа. Улучшение условий возбуждения образца, экстракции ионов и эффективности переноса обеспечит уменьшение разброса КОЧ (в идеальном случае до 1). [c.341]

    Однако исследование в этой области не ограничивалось только усовершенствованием первоначального кольцевого анализа . Более подробное изучение этого вопроса вызвало применение ряда физических методов разделения с целью концентрирования групп более или менее похожих углеводородов. Улучшение методов разделения в аналитических целях,—таких методов, как фракционированная перегонка, экстракция, селективная адсорбция и термодиффузия,—дало возможность разделять сложные смеси углеводородов согласно размеру молекул, содержанию ароматических и нафтеновых колец. Из последней главы настоящей книги ясно видно, что эти методы могут в значительной степени расширить наши знания. В дополнение к сказанному следует отметить. [c.15]

    Второй метод — титрование индия комплексоном HI оказался весьма удобным благодаря высокой устойчивости комплексоната индия в кислой среде. Таким образом, индий можно титровать почти без предварительного отделения от других элементов. Трейндл применял для этого титрования ртутный капельный электрод и среду с pH 2, охлаждая раствор до 4° С, однако дальнейшие исследования показали, что титровать можно при обычной комнатной температуре. В. М. Владимирова установила, что титрование на ртутном капельном электроде по току восстановления индия лучше всего проводить при —0,7 в (Нас. КЭ) и при pH 1. В этих условиях метод обладает наилучшей избирательностью и индий можно титровать в присутствии очень многих элементов — магния, кальция, стронция, бария, цинка, кадмия, кобальта, марганца, хрома, алюминия. Железо (HI), также образующее весьма прочный комплексонат, надо восстанавливать до железа (II) аскорбиновой кислотой. Медь, свинец, мышьяк восстанавливаются на ртутном электроде при потенциале титрования индия и поэтому могут мешать, если будут присутствовать в относительно больших количествах. Однако при обычном разложении проб и подготовке раствора к анализу мышьяк и свинец удаляются при обработке соляной и серной кислотами, а медь переходит в комплексный аммиакат При осаждении полуторных окислов (вместе с которыми осаждается и индий). Этот метод был затем применен для определения индия в продуктах металлургического производства и в сфалери-товых концентратах с малым содержанием индия. В последнем случае индий приходится отделять экстракцией, при анализе же более богатых индием материалов отделять его обычно не требуется. [c.214]

    В прошлом главное применение экстракции в неорганическо.м анализе состояло в разделении и определении металлов, однако недавние исследования показывают, что этот метод может быть выгодно использован и при анализе анионов. Одно из таких применений состоит в измерении мешающего действия аниона на экстракцию комплексов металлов. Так, небольшие количества [c.28]

    В присутствии этилендиаминтетрауксусиой кислоты при pH 9,7 хлороформ экстрагирует бутираты бериллия, но не экстрагирует бутираты желе-за(1Н) и алюминия Экстракция микроколичеств бериллия не изучена, но упомянутый здесь метод заслуживает дальнейшего исследования для применения его в анализе следов металлов. [c.275]

    Анализу физико-химических и термодинамических свойств компонентов и условий фазового равновесия отводится при синтезе схем первостепенная роль. По существу, на него возложены функции генерации эвристических правил на основе исследования свойств реальных смесей. На этапе анализа выявляется, во-первых, принципиальная возможность применения того или иного способа получения целевых продуктов и, во-вторых, область принципиально возможных вариантов схем (см. гл. 4). Может оказаться, что отдельные компоненты смеси образуют азеотропы, и тогда для разделения последних необходимо применять процессы типа азеотропной ректификации, экстракции и т. п. Аналогичная ситуация возникает и при наличии близкокипящих смесей, разделение которых неэффективно обычной ректификацией. С другой стороны, анализ позволяет выявить такие характеристики компонентов (склонность к полимеризации, коррозиоиность и т. п.), которые будут определять начало технологической схемы. Выявление азеотропных смесей и их составов, определение границ областей непрерывной ректификации, а также других особенностей исходной смеси есть формирование эвристических правил, исходящее из физико-химических и термодинамических особенностей смеси, и их учет приводит к значительному сокращению размерности задачи синтеза. [c.489]

    Определению содержания антиоксидантов фенольного и аминного типа методом ГХ ib каучуках и резинах [116, 118, 122, 179—187]i и других объектах [167—178] посвящены работы отечественных и зарубежных авторов. Общим для этих работ является применение типовой аппаратуры для экстракции антиоксиданта и анализа, что позволяет применять методики для определения как MOHO-, так и бисфенольных антиоксидантов в каучуках и резинах, а также при их санитарно-химическом исследовании. Замена колонок из нержавеющей стали на стеклянные [180] позволяет проводить анализ термически и каталитически неустойчивых аминных антиоксидантов. Интересен и перспективен разработанный метод определения типа антиоксиданта в микрообразце каучука или резины (навеска 1—5 мг, продолжительность анализа около 30 мин). В методе используется ввод твердой пробы в испаритель и программирование температуры колонки. [c.71]

    В то время, как исследование экстракции шестивалентного молибдена из солянокислых растворов, особенно ди-этиловым эфиром, было начато еш,е в 1882 г. и нашло практическое применение, литературные данные относительно экстракции пятивалентного молибдена нз солянокислых растворов отсутствуют. Экстракция же молибдена именно в этом валентном состоянии могла бы представлять определенный интерес как метод отделения молибдена от со-путствуюш,их элементов при анализе различных объектов. Нами систематически изучалась экстракция пятивалентного молибдена из солянокислых растворов различными органическими растворителями для выяснения механизма экстракции. [c.98]

    Развитие экстракционных методов достигло такой ступени, что в настоящее время можно экстрагировать любой элемент или разделить любук пару элементов путем применения тех или других экстракционных систем или выбора условий. Соответственно этому состоя-ншо развития изменяются и задачи исследования. Ранее целью исследовательской работы были главным образом поиски новых экстрагентов, новых групп комплексных соединений, новых экстракционных систем. Такие работы продолжаются, однако становится весьма актуальным вопрос о критическом сравнении ряда методов, о выборе критериев сравнения и объективной оценки методов. Отсутствие таких критериев задерживает развитие, так как наиболее важно искать пути улучшения качества методов, а не просто увеличивать их число. Много внимания уделяется также исследованию механизма экстракции (см., например [8, 9], поискам более совершенных экстракционных систем. Изучаются различные химические и термодинамические характеристики экстрагирующихся комплексов кроме теоретического интереса, это дает возможность рассчитывать и оценивать влияние кислотности, маскирующих веществ и др. Для фотометрического анализа, очевидно, главными критериями являются прочность окрашенного комплекса, степень извлечения, интенсивность поглощения света, а также избирательность отделения. [c.219]

    Для углубленного исследования состава конечных композиций присадок к смазочным маслам предложен ряд схем многоступенчатого препаратного разделения и анализа [533,543—545], в основу которых входяг препаративные методы — диализ, жидкостная адсорбционная хроматография, экстракция и гидролиз, а также препаративная и аналитическая тонкослойная хроматография, аналитическая газо-жидкостная и гель-хроматография, ИК-спектроскопия и т. д. Образцы композиций присадок неизвестного и по данным, качественного анализа сложного состава исследуют с применением [c.316]

    Ранее использовались экстракции порфиринов из нефти и других геоорганических объектов этиловым спиртом [44], ацетоном [36, 91], ацетонитрилом [79], метанолом [80], водным пиридином [78], а также метод противоточного распределения с применением следующих пар растворителей анилин — керосин, оксидипропионитрилпетролейный эфир [99], диметилформамид (ДМФА) —декалин [83]. Однако все исследования осуществлялись на разрозненных объектах, как правило, с высокой концентрацией порфиринов. Сопоставительный анализ эффективности различных растворителей в процессах экстракции отсутствовал. Объемы экстрагентов были, как правило, необоснованно высокими, во много раз превышающими объем экстрагируемой нeфтиJ что затрудняло выработку необходимого для всесторонних исследований количества порфиринового концентрата. [c.329]

    Множество реакций, которые нри традиционном термическом нагреве идут в течение нескольких часов, в условиях микроволнового нагрева завершаются в течение нескольких минут, часто при одинаковых величинах температуры реакции. Воздействие микроволнового излучения приводит к быстрому и объемному нагреву реакционной смеси, вызывает пульсацию по.пярных молекул реагентов и растворителя, что приводит к увеличению частоты столкновений реагирующих молекул. Применение высокополярных растворителей, герметичных реакционных сосудов и непрерывных систем для проведения реакций в ус.ловиях повышенного давления, химически инертных носителей и силикагеля, использование приемлемых к условиям микроволнового ноля средств контроля и измерения параметров процесса (волоконная оптика) все это способствует повышению эффективности и надежности микроволнового синтеза и исключает недостатки первых опытов применения микроволн, когда случа.,тись взрывы и поломки реакционных сосудов. В течение последнего десятилетия рядом фирм-нроизводителей лабораторного оборудования (Prolabo, Milestone, СЕМ сотр. и др.) для лабораторных исследований химических реакций, пробоподготовки и анализа, экстракции, минерализации, органического и неорганического синтеза создана высоконадежная микроволновая техника. [c.201]

    Особенно примечательной в этом отношении представляется работа Снорека и Дании (1962), посвященная быстрому и простому методу превращения алкоксильных групп в соответствующие алкилиодиды с последующим их газохроматографическим определением. Навеску пробы, предназначенной для исследования, кипятят 15 мин в колбе с иодистоводородной кислотой. После экстракции реакционной смеси четыреххлористым углеродом можно определять алкилиодиды прямо в растворе методом газовой хроматографии. Общая продолжительность анализа составляет всего 30 мин. В противоположность этому при анализе по методу Цейзеля требуется гораздо больше времени и нужна сравнительно более сложная аппаратура для адсорбции или выделения алкилиодидов. Этот метод, пригодный также для идентификации спиртов в водных растворах, был успешно применен авторами для определения алкоксильных групп в лигнине, древесине, продуктах бумажного производства, волокнах и для идентификации спиртов. Аналогичное определению алкоксильных групп по Цейзелю определение ацильных групп (т. е. титрование кислот, образующихся при омылении) также не позволяет выяснить химическую структуру ацильных групп. Между тем газохроматографический анализ образующихся кислот дает возможность качественного и количественного определения ацильных групп (Шнннглер и Маркерт, [c.254]

    Метод экстракции соединений молибдена органическими растворителями пока исследован в большей мере в применении к анализу молибдена [75, 146]. Молибден, как известно, образует комплексы с большим числом органических соединений и радикалов [13, 67а]. Поэтому исследования по экстракции молибдена органическими соединениями могут быть перспективными для технологических целей. Известно, что возможна экстракция молибдена из растворов алкил- или ариламинами, в частности анилином. Но в этом случае-молибден соэкстрагируется с вольфрамом [67а]. Были попытки экстрагировать молибден н-дибутилфосфатом, эфиром (в шестивалентном [676] и пятивалентном [147] состояниях) из солянокислых растворов. [c.567]

    Рассматриваются выполненные в Институте химии силикатов исследования по оптическому эмиссионному спектральному анализу чистых веществ и перспективы их развития пути совершенствования и применения источников света, методов предварительного концентрирования примесей и конечного их определения, некоторые актуальные метрологические и технические вопросы спектрального анализа чистых материалов. Указаны возможности совершенствования нейтронного активационного анализа чистых веществ путем разработки универсальных схем разделения активированных примесей с помощью экстракции и ионного обмена. Предложена ионообменная схема разделения 28 примесей, обеспечивающая высокую чувствите,т1ьность, точность и скорость их определения в ряде чистых материалов. Библ. — 18 назв., рис. — 1. [c.317]

    Наибольшее число исследований посвящено определению бериллия с самым чувствительным для него реактивом — морином. В первых работах по его использованию в анализе минерального сырья бериллий выделяли путем осаждения и сплавления, а флуориметрирование производили в присутствии пирофосфата и цианида [326, 327]. Позднее для разделения были применены электролиз с ртутным катодом и соосаждение с пирофосфатом алюминия [150, 154], хроматографирование на силикагеле [340, 341], соосаждение с фосфатом титана [147], экстракция посредством ацетилацетона [334] или масляной кислоты [46]. Исследована возможность маскировки элементов, мешающих определению бериллия, хлоридом олова, аскорбиновой, лимонной и другими оксикарбоновыми кислотами, комплек-соном 111 [125, 334]. Проведена работа по установлению состава бериллий-моринового комплекса [196, 280, 336]. Применение пиперидинового буферного раствора с pH 11,5, замена этилен-диаминтетрауксусной кислоты на диэтилтриаминопентауксус-ную и введение в раствор алюминия для снижения адсорбции бериллия на стекле позволили повысить избирательность и воспроизводимость определений [280, 336]. [c.145]

    Теоретические обоснования и расчета ионных равновесий выполняют на основе различных химических и физических законов. Некоторые из этих законов используют при расчете равновесий применительно лишь к отдельным или комбинированным мето- дам анализа и исследования, например, закон светопоглощения — при рассмотрении равновесий в фотометрическом анализе, закон распределения вещества -между двумя иесмешивающимися жидкостями— в экстракции и т. д.. Применение этих законов более подробно будет рассмотрено в соответствующих разделах книги, а здесь мы отметим лишь те, которые имеют общий характер п пригодны для расчетов равновесий применительно к любым методам и разделам аналитической химии. [c.9]

    Особенно большое практическое значение имеет применение рефрактометрии для исследования сложных систем, каковыми являются биопродукты (эфирные масла, жиры, молоко, кровь) и многие промышленные материалы (жидкое топливо, смазочные масла, стекло, каучук). Любая сложная система строго определенного состава характеризуется соответствующими значениями показателя пре.чомления и дисперсии, которые могут быть использованы для идентификации смесей совершенно так же, как и для индивидуальных соединений. Идентификация сложных смесей по рефрактометрическим данным часто применяется при исследовании жиров и эфирных масел. Таблицы показателей преломления жиров и эфирных масел различного происхождения имеются во всех подробных руководствах по анализу этих веществ. Изменение состава сложной смеси влечет за собой более или менее значительное изменение показателя преломления. Это позволяет контролировать изменение состава самых различных материалов при их технологической обработке (перегонке, экстракции, гидрировании и т. д.). [c.50]

    Книга посвящена вопросам теории и практлки экстракции органических веществ, особое внимание уделено закономерностям этого процесса. Описаны принципы применения экстрак ции для исследования и анализа органических веществ (определение ряда физико-химических констант, идентификация, концентрирование, разделение смесей и т. д.). [c.2]


Смотреть страницы где упоминается термин Применение экстракции для исследования и анализа: [c.824]    [c.221]    [c.80]    [c.38]    [c.10]    [c.254]    [c.61]    [c.76]    [c.2]    [c.278]    [c.59]    [c.36]    [c.46]    [c.53]   
Смотреть главы в:

Экстракция в анализе органических веществ -> Применение экстракции для исследования и анализа




ПОИСК





Смотрите так же термины и статьи:

Анализ применение

Экстракция применение



© 2025 chem21.info Реклама на сайте