Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вероятности энергетических переходов

    Большую вероятность передачи энергии от бензола к пиридину в смеси бензол — пиридин по сравнению со смесью бензол — бензальдегид, несмотря на почти равные расстояния между энергетическими уровнями взаимодействующих молекул, по-видимому, можно объяснить большей вероятностью энергетических переходов в молекуле пиридина, чем в молекуле бензальдегида [524]. [c.254]


    В случае, если в системе содержится более одного РЗЭ, то могут возникнуть неаддитивные свойства, являющиеся результатом их взаимодействия. Особенно ярко проявляется взаимодействие РЗЭ в кристаллофосфорах при больших концентрациях (10 % и более). Вследствие перестройки системы энергетических уровней взаимодействие может проявляться в изменении спектров поглощения и излучения, длительности возбужденного состояния и вероятности энергетических переходов и ряда других свойств. Наиболее известным примером взаимодействия активаторов можно считать сенсибилизацию и тушение люминесценции одного активатора другим, а также концентрационное тушение. [c.92]

    W — вероятность энергетического перехода W — вероятность прыжка X — обозначение металлоида Xi — обобщенная сила [c.4]

    ВЕРОЯТНОСТИ ЭНЕРГЕТИЧЕСКИХ ПЕРЕХОДОВ [c.36]

    Рассмотренные в предыдущем параграфе вероятности энергетических переходов характеризуют единичные переходы молекулы с какого-либо уровня энергии Е на уровень Е . Если же поток фотонов бомбардирует некоторое количество молекул и при этом возможны активные столкновения, приводящие к поглощению фотонов, то общее количество поглотившихся фотонов зависит не только от вероятностей соответствующих переходов, но также и от числа фотонов и молекул вещества, взаимодействующих друг с другом. Когда поток фотонов проходит через толщу вещества, то [c.40]

    Временная эволюция системы (рис. 12.2), в принципе, может быть рассмотрена как однородной марковский процесс с непрерывным временем t [549]. Из соответствующих уравнении могут быть получены оценки для вероятностей взаимного перехода а- и -пленок на основании вида функции P t). Такой подход является целесообразным для количественной характеристики устойчивости. Однако для того чтобы найденные оценки можно было сопоставить с высотами энергетического барьера и глубиной минимумов, необходима теория прорыва смачивающих пленок, которая в настоящее время еще не развита в достаточной степени [45]. [c.208]

    По квантовой теории возможны лишь те изменения между энергетическими уровнями, которые удовлетворяют правилам отбора Паули. Последние устанавливают наибольшую вероятность определенных переходов по сравнению с другими. [c.65]

    Обратный переход из метастабильного в возбужденное состояние затрудняется необходимостью обращения спина и затраты энергии, равной разности энергетических уровней E2- =E2 — E . Последняя может производиться только из запаса тепловой энергии твердого вещества. Не удивительно, что глубокое охлаждение замораживает этот переход (переход 4—2, рис. 40). Более вероятным становится переход 3—4 (рис. 40), в результате которого испускается квант /lvз, наблюдается фосфоресценция, длящаяся секундами. Хотя число возбужденных атомов крайне мало (10 % от общего числа атомов) и лишь около 1% их переходит в метастабильное состояние, благодаря тому, что время жизни последнего в 10 раз больше, чем время жизни возбужденного состояния, число атомов, находящихся в метастабильном состоянии, в 10 раз превышает число возбужденных атомов, т. е. достигает величину порядка 10- % от общего числа атомов. А. Н. Теренин обратил внимание на то, что метастабильное состояние во многих случаях может и не проявляться путем фосфоресценции, поскольку последняя связана с особыми, не всегда реализуемыми условиями. Представляя собой состояние валентной ненасыщенности, метастабильное состояние имеет существенное значение для фотохимического и, вообще, химического поведения вещества, в том числе, вероятно,и каталитического. [c.128]


    Вероятность перехода можно рассматривать как число энергетических переходов в единицу времени. Коэффициент Эйнштейна В01 характеризует вероятность возбуждения соответствующей системы. [c.180]

    Основные характеристики спектра — частота и интенсивность составляющих его линий. Для их расчета используется теория квантовых переходов. Частота определяется как разность энергетических уровней, между которыми происходит переход, интенсивность — с помощью формул вероятности квантового перехода под влиянием световой волны. [c.131]

    Изменение энергии молекулы при поглощении (энергетические переходы) представлено на рис. 73, где изображены электронные и колебательные уровни (каждому колебательному уровню сопутствует также ряд вращательных уровней, что на схеме не отражено). Максимумы в спектрах поглощения соответствуют наиболее вероятным переходам между энергетическими уровнями молекул. Каждый максимум относится к определенному виду электронного или колебательного возбуждения молекулы. [c.611]

    Определение вероятностей атомных переходов Ац или соответствующих значений сил осцилляторов /и является более сложной задачей, чем измерения длин волн и определение положения энергетических уров- [c.355]

    Интенсивность спектральной линии или мощность излучения при переходе атомов из одного энергетического состояния в другое определяется числом излучающих атомов Ni (числом атомов, находящихся в возбужденном состоянии I) и вероятностью Ац, перехода атомов из состояния / в состояние к  [c.359]

    Предполагается, что элементарный акт разрушения материала осуществляется путем перехода двух соседних атомов одной молекулы в энергетически возбужденное состояние, которое заканчивается разрывом химической связи. Это типичный активационный процесс. Отсюда следует, что повышение температуры и снижение скорости приложения усилия ведут к увеличению вероятности энергетической флюктуации, приводящей к разрушению материала. [c.532]

    Для анализа спектров с относительно большими значениями //Дv (соответствующие спин-системы называют сильно связанными , хотя абсолютное значение / может быть и не очень большим) не требуется конкретная физическая модель — нам нужно знать не тип молекулы, а число спинов в системе. Анализ спектра сводится к вычислению с помощью квантовомеханических методов уровней энергии и волновых функций стационарных состояний системы связанных спинов, находящихся в статическом внешнем магнитном поле, и затем к нахождению переходов между этими уровнями под действием приложенного ВЧ-поля, для чего используются методы теории возмущений и правила отбора. При этом положения линий в спектре будут функциями расстояний между энергетическими уровнями, а их относительные интенсивности будут определяться вероятностями соответствующих переходов. При удачном выборе параметров расчетные спектры, как правило, будут очень хорошо согласовываться с экспериментальными. По найденным таким образом значениям химических сдвигов и констант спин-спинового взаимодействия можно попытаться воспроизвести структуру изучаемой молекулы или полимерной цепи. Если же строение цепи известно (а так оно обычно и бывает при иссле- [c.43]

    Для реализации определенного энергетического перехода в атоме или молекуле совпадения энергий перехода и поглощенного фотона недостаточно. Для этого необходимо еще выполнение некоторых других условий, которые объединяются под общим названием правила отбора. Переходы, возможные или невозможные согласно этим правилам, называют разрешенными или запрещенными. В действительности эти переходы следует рассматривать не как категорические, абсолютные понятия, а как вероятностные. Это означает, что вероятность запрещенного перехода много меньше вероятности разрешенного перехода, но в любом случае всегда не равна нулю. Меньшая вероятность запрещенного перехода связана [c.154]

    Абсорбционный спектр соединения в ультрафиолетовой и видимой областях спектра состоит из нескольких полос, число которых определяется возможными электронными переходами в молекуле. Место каждой полосы, являющейся одной из важнейших ее характеристик, определяется энергией соответствующего перехода. Полосы поглощения, представленные в координатах е/у, обычно обладают нормальной Гауссовой формой. Ё тех случаях, когда симметрия полосы нарушена, это обычно касается сложных полос, образованных в результате наложения двух или более близко расположенных друг к другу полос. С.точки зрения количественного анализа наиболее существенной характеристикой полосы является ее интенсивность, которая отражает вероятность реализации соответствующего энергетического перехода. Наиболее интенсивные полосы поглощения в данном спектре соответствуют наибольшей вероятности их осуществления. .  [c.387]


    Рассмотрение структуры спектров атомов и методики определения энергий возбуждения их электронных состояний выходит за рамки наших задач (см., например, [150]). Следует, однако, отметить, что несмотря на многолетние исследования спектров атомов, для большинства атомов и ионов до настоящего времени изучены переходы только между ограниченным числом состояний, что обусловлено малой вероятностью многих переходов или тем, что соответствующие переходы расположены в труднодоступных для исследований областях спектра. Наиболее подробные данные об электронных состояниях атомов собраны в трехтомном справочнике Энергетические уровни атомов [2941], подготовленном Мур в Бюро стандартов США в 1950—1957 гг. Тем не менее даже в этом справочнике, основанном не только на данных, опубликованных в периодической литературе, но и на результатах многочисленных специальных исследований, выполненных в, Бюро стандартов и других организациях, для многих атомов отсутствуют сведения о состояниях с Ь 3, а также о состояниях, связанных с одновременным возбуждением двух или более электронов. [c.38]

    Зонная теория ( 50) показывает, что изоляторы и полупроводники в отличие от металлов не содержат частично заполненных энергетических зон. В изоляторах и полупроводниках (при отсутствии теплового или другого возбуждения) зоны, следующие за валентными (заполненными) зонами, являются пустыми, т. е. не содержат электронов. Проводимость может возникнуть в них только в результате частичного перехода электронов из валентной зоны в ближайшую пустую зону. Возможность и вероятность такого перехода зависит прежде всего от того, насколько эта зона находится выше (по энергетическому уровню), чем валентная зона, т. е. какова затрата энергии, необходимая для такого перехода. Электрический интервал между этими зонами называют запрещенной зоной, так как в этом интервале энергии электроны не могут находиться. Количество энергии, необходимой для указан- [c.146]

    При более чем одном ядре ситуация быстро становится весьма запутанной.На рис. 188 показана схема энергетических уровней при двух протонах. Здесь расщепление, вызванное первым протоном, со спином 11, приводит к четырем уровням, которые должны иметь два разрешенных перехода, упоминавшихся выше. Второй протон, со спином /г, расщепляет эти четыре уровня, давая восемь линий. Диаграмма показана для случая двух неэквивалентных протонов, т. е. второе расщепление составляет 0,6 первого расщепления. Для восьми различных уровней, образованных таким образом, существуют четыре разрешенных перехода и, следовательно, четыре линии в спектре (см. а, рис. 188). Интенсивности всех четырех линий одинаковы, так как различия в заселенности четырех нижних и четырех верхних состояний незначительны но сравнению с различием между верхним и нижним уровнями. Отсюда вероятности разрешенных переходов почти одинаковы. [c.433]

    Набор линий характеристического излучения, испускаемого возбужденным атомом, определяется, с одной стороны, энергией, затраченной на возбуждение, а с другой — числом различных возможных переходов-между энергетическими уровнями вероятность этих переходов определяется правилами отбора. [c.76]

    Из этого уравнения следует, что вероятность туннельного прохождения барьера возрастает при уменьшении разницы между высотой барьера и уровнем энергии частицы. Кроме того, коэффициент трансмиссии увеличивается с уменьшением массы частицы и ширины барьера. При достаточно узком энергетическом барьере и малой величине разности и—Щ величина приближается к единице, т. е. вероятность туннельного перехода становится очень большой. [c.211]

    В третьем случае, соответствующем кривой (Ь), определенная часть образующихся ионов стабильна, хотя и колебательно возбуждена. Поскольку область, в которой должны находиться ионы в конечном состоянии, включает сплошной спектр энергий, лежащих выше асимптоты диссоциации, определенная часть переходов приводит к диссоциации. Кривые, характеризующие равновесные межъядерные расстояния, различные для молекулы и молекулярного иона, следовательно, вероятность адиабатического перехода незначительна. Ширина области Франка — Кондона обычно меньше 0,2А и в этом случае величина вертикального перехода соответствует только верхнему пределу адиабатического потенциала ионизации. Тем не менее вероятность адиабатических переходов является достаточно определенной. Это указывает на то, что в некоторых случаях измеренное значение ионизационного потенциала может зависеть от чувствительности измерительной аппаратуры. Действительно, увеличение чувствительности эквивалентно расширению области Франка — Кондона. Форма ионизационной кривой (рассматриваемая ниже) указывает, в каком случае могут быть достигнуты условия (6). Четвертый случай (кривая с) иллюстрирует переход в высшее, отталкивательное энергетическое состояние конечное состояние всегда лежит в области сплошного спектра все такие переходы сопровождаются диссоциацией, и избыточная энергия образующихся осколков определяется высотой области перехода выше асимптоты диссоциации. [c.475]

    В работе [414] рассчитаны величины энергии, передаваемой за одно столкновение, в системах трехатомных молекул О, и Hj О с атомами инертных газов. Показано, что средняя величина энергии передаваемой за одно столкновение, меньше к Г во всем интервале исследованных температур (для системы Од—Аг — от 500 до 2500 К, для системы Н2О—Аг — от 2500 до 10 000 К). Предполагалась экспоненциальная зависимость вероятностей энергетических переходов от величины средней передаваемой за одно столкновение энергии, предложенная в [422—424]. Существенным недостатком рассматриваемой модели вероятностей переходов является постулируемая а priori независимость величины передаваемой энергии от внутренней энергии молекулы до столкновения. Эффективность столкновений /3, в этом случае может быть определена из соотношения [c.105]

    Значения барьеров вращения очень различны. Например, барьер внутреннего вращения этана равен 13 кДж/моль, а для некоторых переходов (например, для атропизомерии) они столь велики, что внутреннее вращение становится невозможным при комнатной температуре, но легко происходит при повышенной температуре. Вообще с повышением температуры растет ко, -центрация или, как говорят, заселенность энергетически более богатых конформаций. В ряде случаев скорость реакции зависит от энергии перехода обычной конформации в г-конформацию (высоты барьера между ними) и вероятности этого перехода. Иными словами, скорость реакции зависит от мгновенной концентрации г-кон-формации в веществе. (В следующее мгновение эта концентрация не изменится, но частично уже другие молекулы окажутся в г-конф рмз гии, а соответствую- [c.17]

    Различие между а и а обусловлено тем, что в действительности имеется не один электронный терм начального состояния, как это показано на рис. 157, а множество термов, каждому из которых соответствует свой энергетический уровень электрона в металле. С каждого из этих уровней в принципе возможен переход электрона на реагирующую частицу. Вероятность такого перехода определяется как энергией активации и а (е), являющейся функцией от энергии электронного уровня е, так и функцией распределения электронов по уровням п (е) 1см. уравнение (55.4)]. В самом деле, чем ниже уровень е, тем с большей вероятностью там можно найти электрон, но одновременно тем больше энергия активации и а, затрудняют,ая достижение точки пересечения термов. С другой стороны, чем выше уровень е, тем меньше и А, но тем меньше вероятность нахождения на этом уровне электрона. Таким образом, в зависимости от е произведение п(е) ехр [—и а (е)/ /кТ, определяющее общую вероятность перехода электрона с уровня е в металле на реагирующую частицу, проходит через максимум при некотором значении е=е. Именно с уровня е и будет совершаться электронный переход, составляющий элементарный акт процесса разряда — ионизации. Так как максимуму произведения п(е) ехр [— /д/ /кТ] отвечает также максимум его логарифма, т. е. величины 1п л(е)— [c.287]

    Максимум полосы поглощения отвечает наиболее вероятному электронному переходу в данной области длин волн. В спектрах многоатомных молекул интенсивные полосы поглощения обычно имеют коэффициент погашения порядка 10 и больше. На рис. 21 представлено относительное расположение энергетических уровней связывающих МО (ст и л), несвязывающей орбитали п и разрыхляющих МО(ст и л ). В основном состоянии СТ-, я- и -орбитали обычно заняты электронами, а а - и л -М0 остаются свободными. Здесь же пока- [c.52]

    При расчете молекул, содержащих несколько атомов, решение векового уравнения позволяет найти энергетические уровни электронов, разности которых приблизительно определяют частоту электронного спектра. Число таких энергетических уровней сравнительно велико. Если учесть, что оптические переходы возможны не только между основным и возбужденными, но и между двумя возбужденными состояниями, можно ожидать появления большого числа спектральных линий. Однако в спектре даже сравнительно сложных молекул (бензол, хинолин и т. п.) наблюдается всего несколько линий, характерных для -соответствующего я-электронного фрагмента. Например, в спектре бензола отмечается три линии вблизи частоты 3600 см- одна интенсивная и две слабые. Причина этого заключается в том, что далеко не между всеми энергетическими уровнями оптический переход разрешен. Как известно из теории квантовых переходов под влиянием световой волны, вероятность дипольного перехода между уровнями Ея и Ем пропорциональна матричному элементу Окм= < к1г1 м>, значение которого при наличии разной пространственной симметрии функций и Ч м становится равным нулю (см. 7 гл. IV). Если симметрия молекулы нарушается (например, вследствие движения ядер, влияния полей, действующих [c.135]

    Сказанное имеет отношение к электронной компоненте вероятности отдельных типов безызлучательных переходов. Экспериментальные наблюдения (о некоторых из них речь пойдет в дальнейшем) показывают, что вероятность переноса связана обратной зависимостью с разностью энергий двух состояний для данного типа электронного перехода. Этот результат может быть поясней с помощью принципа Франка — Кондона для безызлучательных переходов, обсуждавшегося для случая излс/-чательных переходов в разд. 2.7. Согласно этому принципу, ядра в молекуле неподвижны в течение всего электронного перехода, т. е. переходы вертикальны на энергетической диаграмме (см. рис. 2.3, а и б). При внутримолекулярных безызлучательных переходах сумма электронной и колебательной энергий должна оставаться постоянной в отличие от излучательного перехода, когда рождение фотона приводит к возникновению или изменению разности энергий начального и конечного состояний. Таким образом, в безызлучательном случае переход горизонтальный в той же мере, что и вертикальный , поэтому он ограничивается очень малой областью на энергетической кривой или поверхности. Перекрывание в этой области колебательных вероятностных функций для начального и конечного состояний будет определять эффективность переноса энергии при определенной фиксированной вероятности электронного перехода. На рис. 4.7 представлены три возможных случая данные кривые могут рассматриваться как кривые потенциальной энергии для двухатомной молекулы или как линии- пересечения энергетических поверхностей для более сложных молекул. На рис. 4.7, а показаны два состояния, X и У, сходной геометрии, но обладающие сильно различающейся энергией. Нижний колебательный уровень = 0 в состоянии X имеет то же значение энергии, что и верхний уровень V" в V. Вследствие характерного распределения колебательных вероятностных функций их перекрывание мало. На рис. 4.7,6 представлен случай, когда и разность энергий двух состояний, и разность квантовых чисел V и V" существенно меньше, что приводит к большему перекрыванию колебательных вероятностных функций. Таким образом, эффективность пересечения будет возрастать по мере того, как т. е. заселение уровня вблизи v" = Q благоприятст- [c.102]

    В соответствии с хюккелевской моделью 4п-системы два электрона находятся на вырожденных несвязывающих орбиталях и имеют неспаренные спины (см. разд. 2.4.2). Чтобы устранить вырождение, молекула претерпевает перестройку так, что одна из орбиталей увеличивает, а другая понижает энергию (псевдоэффект Яна—Теллера), и электроны спариваются на орбитали с более низкой энергией. Поскольку орбитали были вырожденными, магнитные переходы между ними разрешены, а поскольку разница в энергиях мала, то вероятность такого перехода велика. В соответствии с этим, при введении молекулы в магнитное поле происходит смешение возбужденного и основного состояний. Это приводит к возникновению парамагнитного поля, действие которого противоположно действию диамагнитных полей, обсужденных ранее. Парамагнетизм в бензоле будет небольшим, так как магнитные переходы между занятой и незанятыми орбиталями запрещены и энергетическая разница велика [54]. [c.301]

    Совокупность радиационных переходов с нижележащих энергетических уровней молекулы на выщеле-жащие (в частности, с основного на возбужденные) образует спектр поглощения, а совокупность переходов с вышележащих уровней на нижележащие — спектр испускания. Интенсивность спектров поглощения и испускания определяется вероятностью соответствующих переходов. Согласно Эйнштейну, вероятность перехода с поглощением (Оу) между - и ]- уровнями записывается в виде [c.219]

    Люминесценция, в отличие от теплового свечения, является неравновесным излучением. Для того чтобы вызвать люминесценцию вещества, к нему необходимо подвести извне определенное количество энергии. Частицы вещества (атомы, молекулы), поглощая поступающую извне энергию, переходят в возбужденное энергетическое состояние. Возбужденные частицы довольно быстро теряют избыточную энергию и переходят в основное состояние. Такой переход может совершаться с излучением фотонов люминесценции или безызлучательно, путем передачи энергии окружающим частицам в виде тепла. Для возникновения люминесценции необходимо, чтобы вероятность излучательных переходов превышала вероятность безызлучательных переходов. Таким образом, явление люминесценции связано с преобразованием поглощенной частицами вещества энергии внешнего источника в энергию их собственного излучения. [c.498]

    Решение уравнения (6.22) дает набор собственных значений энергии Вг, соответствующих уровням крутильных колебаний метильной группы, имеющей потенциал с трехкратной симметрией. Расщепление энергетических уровней приводит к тому, что метильная группа может одновременно находиться в двух соседних потенциальных ямах. Вследствие этого часть метильных групп с отличной от нуля вероятностью может переходить из одной потенциальной ямы в другую, на тот же энергетический уровень. В результате оказывается возмол<ны1М реориентационное движение метильных групп вокруг оси Сз путем туннелирования через потенциальный барьер. Частота туннелирования зависит от высоты потенциального барьера /7о и энергии , метильной группы. Величина расщепления Д является мерой скорости, [c.228]

    Уравнение (47) дает 4-4 матриц, зависимость собственных значений (энергетических уровней) которых от отношения GID(G = g N) и угла 0 между осью симметрии и направлением приложенного магнитного поля была получена решением этих матриц на электронной счетной машине. На рис. 32 значения G/D, необходимые д я резонанса, отложены против os S при фиксированном значении D для различных возможных переходов. Как показано в разделе III,В, 1, форма линии порошкообразных образцов пропорциональна d os QidH. Однако, в обсуждаемом случае следует рассмотреть вероятность данного перехода, поскольку эта вероятность зависит от ориентации иона Сг в отношении приложенного поля. Вероятности переходов для выбранных ориентаций даны Девисом и Стрендбер-гом [148]. [c.93]

    Одной из первых стереоизомерных систем, изученных кинетически, явилась термическая изомеризация 1 ие-2-бутена. Кистяковский и Смит [12] получили аномальную величину энергии активации, что впоследствии было отнесено за счет несовершенства метода анализа продуктов [13]. При дальнейшем исследоваппи этой реакции [13, 14] было найдено, что она протекает по первому порядку с обычным предэкспоненциаль-ным множителем и с энергией активации, типичной для синглетного механизма. Реакция в газовой фазе активируется добавками, которые, вероятно, активируют переход в триплетное состояние, нанример окисью азота, которая снижает энергию активации до 50%. В подобных случаях, а также при катализе тяжелыми элементами каталитическое действие, вероятно, следует объяснить тем, что магнитное поле около частиц катализатора вызывает возмущение энергетических уровней олефина, что повышает частоту синглет-триплетных переходов. В других случаях действие катализатора осуществляется через химическое связывание. [c.209]

    Известны также и простые олефины с ис-конфигурацией всех двойных связей, и вопреки правилу Цехмайстера [66] их максимумы поглощения лежат при ббльших длинах волн, чем у соответствующих трамс-соединений, в которых, благодаря копла-нарности двойных связей, ожидается большее перекрывание соседних р-орбиталей и связанное с этим понижение энергии фотовозбуждения. Однако известные примеры таких ис-олефинов, например декатетраен с 1 мс-конфигурацией всех кратных связей [67], относятся к неразветвленным соединениям, в которых стерические эффекты играют незначительную роль. Обращение правила Цехмайстера в этом случае относится только к положению максимумов их интенсивности, как и ожидается, понижены уменьшение различий между энергетическими уровнями сопровождается снижением вероятности электронных переходов  [c.219]

    Переход в невозбужденное состояние может сопровождатьс испусканием не фотона, а электрона. Этот безизлучательный переход называется вторичным фотоэффектом или Оже-эффектом, а соответствующие электроны—Оже-электронами. Так как энергетический спектр этих электронов определяется разностью энергий разных энергетических состояний атома, он также является паспортом данного сорта атомов, как и характеристическое рентгеновское излучение. Интересно, что вероятность Оже-эффекта для атомов с 2<33 даже выше, чем вероятность излучательных переходов. [c.147]

    Этот механизм можно представить следующим образом ксгда решетка колеблется, расстояния между ПЦ изменяются с частотами этих колебаний, что приводит к возникновению осциллирующего магнитного поля. Те колебания решетки, частота которых равна частоте лар-мороЕской прецессии па> = g Ho, имеют конечную вероятность вызвать переход магнитного момента из верхнего энергетического состояния в нижнее. Этот процесс, в котором поглсщение зеемановского кванта сопровождается испусканием фонона с энергией рЯо, называется прямым. [c.103]

    В типичном эксперименте по ЯМР возбуждающая радиочастота V разворачивается (или свипируется ) в диапазоне частот, охватывающем все возможные резонансные частоты. Когда частота V достигает резонансного значения, происходит поглощение или испускание энергии ядром при этом возбуждаются переходы Уо между уровнями. Вероятности этих переходов пропорциональны населенностям уровней, так что вероятность перехода вверх немного больше вероятности перехода вниз . Если изменение поля Я] при прохождении через резонансную область происходит очень быстро, то населенности энергетических уровней существенно не изменяются. Однако в большинстве экспериментов по ЯМР [c.18]

    После пересечения энергетического барьера реагирующей системой атомов она в течение некоторого времени обладает полной энергией, превышающей нулевую энергию активированного комплекса, и может тювторно пересечь энергетический барьер в обратном направлении, т. е. вернуться в область реагентов. Вероятность такого перехода мала, если в реакции образуются две или более частицы, поскольку они разлетаются и их повторная встреча мaJтoвepoятнa. Если же в реакции образуется одна частица, то вероятность ее превращения в исходные частицы сохраняется до тех пор, пока она не потеряет часть своей энергии либо путем испускания фотона — т. е. происходит радиационная стабилизация, либо передаст часть энергии какой-либо другой частице реакционной смеси при соударении, — ударная стабилизация. [c.530]


Смотреть страницы где упоминается термин Вероятности энергетических переходов: [c.69]    [c.63]    [c.165]    [c.88]    [c.107]    [c.151]   
Смотреть главы в:

Электронные спектры поглощения органических соединений и их измерение -> Вероятности энергетических переходов




ПОИСК





Смотрите так же термины и статьи:

Вероятность

Энергетические переходы



© 2024 chem21.info Реклама на сайте