Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Упругость полимерной сетки

    Упругость полимерной сетки [c.76]

    Для количественного описания упругости полимерной сетки представим ее определенный объем в виде параллелепипеда, стороны которого ориентированы вдоль осей координат (рис. 2.25). [c.76]

Рис. 2.25. К упругости полимерной сетки (пояснения в тексте) Рис. 2.25. К упругости полимерной сетки (пояснения в тексте)

    Флори и Ренер провели теоретическое рассмотрение процесса набухания полимера сетчатого строения. Набухание такого полимера происходит до тех пор, пока осмотическая сила растворителя, проникающего в фазу полимера, не уравновесится упругой силой полимерной сетки. Поглощение растворителя набухающим поли- [c.85]

    Используемые в нефтедобыче гели могут подвергаться явлению синерезиса (отделение от геля растворителя в результате его усадки) либо набухать при длительном контакте с избыточным количеством воды. Синерезис геля может существенно уменьшать его объем, привести к разрушению межмолекулярных связей и, в конечном счете, к потере изолирующих свойств. К таким же негативным последствиям может привести и набухание геля, т.е. поглощение им воды. Исследовалось влияние на стабильность геля температуры окружающей среды, содержания ионов двухвалентных металлов и pH воды, контактирующей с гелем. Изучалась зависимость набухания и синерезиса, связанных между собой общим законом подобия, от структуры геля, представленной двумя параметрами плотностью хрома и плотностью эффективного сшивания. Плотность хрома является критерием количества сшивателя в геле и определяется числом грамм-молекул иона хрома, связанных с полимерной сеткой, на единицу объема полимера и характеризует химическую структуру гелевой сетки. Плотность эффективного сшивания является мерой числа сшивок в геле, отвечающих за упругость сетки, характеризует физическую структуру геля и определяется числом грамм-молекул упруго - эффективных сшивок в гелевой сетке на единицу объема полимера. [c.84]

    Первый тип связи - сшивание нескольких полимерных цепей -называется межмолекулярной или межцепной сшивкой. Сшивки этого типа удерживают полимерные цепи вместе и ответственны за образование полимерной сетки, являющейся основой геля. Когда к сетке прикладывается внешнее напряжение, межмолекулярные сшивки ограничивают деформацию геля и управляют упругостью сетки, поэтому называются упруго-эффективными. Плотность эффективного сшивания является критерием плотности таких сшивок в гелевой сетке. [c.85]

    Химическая релаксация напряжений (или ползучесть) вулканизатов, как и физическая, — это процессы установления равновесия в полимерных сетках. В случае физической релаксации (или ползучести) процесс контролируется вязко-упругим поведением макромолекул. [c.149]


    Высокоэластичность сшитых эластомеров (резин) по своей природе связана с броуновским движением отдельных участков цепи. Этот же механизм обусловливает упругость полимерных цепочек, не связанных в сетку химическими связями. Поэтому в обоих случаях модуль Gj пропорционален кинетическому фактору (кТ), где к — постоянная Больцмана, Т — абсолютная температура, и N— [c.242]

    Если температура стеклования (Гс) сетчатого полимера ниже температуры деструкции, то, определив модуль упругости или степень набухания в растворителе при температуре выше 7 с, можно с достаточной точностью определить степень отверждения связующего по частоте химических узлов в полимерной сетке (по плотности сетки) [45, 46]. Химические узлы полимерных сеток представляют собой точки разветвления цепей или точки, в которых цепи связаны между собой химическими (ковалентными) связями, устойчивыми к разрушению. Узлы полимерной сетки могут быть образованы также ионными, координационными, водородными и другими физическими связями, а также механическим зацеплением цепей. Такие узлы являются лабильными и обратимо разрушаются в определенных условиях. Плотность сетки характеризуют следующими параметрами  [c.94]

    Температура стеклования большинства отвержденных связующих выше температуры деструкции, что ограничивает возможность количественного определения частоты химических узлов в полимерной сетке с помощью модуля упругости. В этом случае используют зависимость между степенью набухания сетчатых полимеров [c.94]

    Более низкой теплостойкостью обладает большинство отвержденных связующих на основе ненасыщенных эфиров и эпоксидные связующие, содержащие гибкие эфирные звенья. Увеличение частоты химических узлов полимерной сетки отвержденных связующих, достигаемое уменьшением длины цепей между химическими узлами за счет увеличения функциональности олигомеров и (или) отвердителей, оптимизацией их соотношения или увеличением степени конверсии реакционноспособных групп (степени отверждения), сопровождается увеличением теплостойкости в значительно большей степени, чем показателей упругих свойств при нормальной температуре. [c.107]

    Едва ли не единственным предсказанием существенно качественной модели ММП, поддающимся количественной проверке, является представление о полном разворачивании макромолекул в составе ММП, в результате которого расстояние между концами отдельных цепочек должно быть сопоставимым с их контурной длиной. Это предсказание, однако, встречается с почти непреодолимыми трудностями при количественном анализе всей совокупности физических свойств полимеров в аморфном состоянии. Наглядным примером такой ситуации служит доказательство энтропийной природы упругости каучуков в рамках молекулярной модели, основанной на представлении об аддитивности вкладов отдельных активных макромолекул, сохраняющих свою конформационную индивидуальность, в общую упругую силу сетки. Более того, учет вклада внутримолекулярной (конформационной) энергии цепей в упругую силу каучука позволил установить совпадание температурных коэффициентов размеров макромолекул в сетчатом каучукоподобном полимере и в идеальном растворителе не только по знаку, но и по абсолютной величине. Эти результаты подтверждают высказанную более 25 лет назад гипотезу Флори об идентичности конформаций полимерных молекул в идеальных растворителях и в блочном аморфном состоянии. [c.30]

    Здесь уместно заметить, что вследствие уже упоминавшейся полной неопределенности количественных предсказаний модели ММП некоторые авторы без достаточных оснований считали возможным трактовать перечисленные выше экспериментальные доказательства наличия ближнего порядка в аморфных полимерах с позиций пачечной модели, несмотря на то что размеры областей ближнего порядка оказались намного меньшими предполагаемых [2, 4, 5] размеров ММП. Еще большие трудности возникают в случае применения модели ММП, предполагающей полное разворачивание макромолекул и потерю ими своей индивидуальности в составе пачек, для количественного описания всей совокупности физических свойств полимеров в аморфном состоянии. Наглядным примером этому служит доказательство энтропийной природы упругости каучуков в рамках молекулярной модели, основанной на представлении об аддитивности вкладов отдельных активных макромолекул, сохраняющих свою индивидуальность, в общую упругую силу сетки [46—49]. Более того, учет вклада внутримолекулярной ( конформацион-ной ) энергии цепей в упругую силу каучука [50—52] позволил установить совпадение температурных коэффициентов размеров макромолекул в сетчатом каучукоподобном полимере и в идеальном растворителе не только по знаку, но и по абсолютной величине [51—56]. Эти результаты подтверждают высказанную еще 25 лет назад гипотезу П. Флори [57] об идентичности конформаций полимерных молекул в идеальных растворителях и в блочном аморфном состоянии. Как известно [57, 58, в идеальных растворителях взаимодействие сегментов макромолекулы с молекулами растворителя энергетически менее выгодно, чем с другими сегментами этой же макромолекулы. По этой причине в разбавленном идеальном растворе силы притяжения между сегментами одной и той же макромолекулы полностью компенсируют эффект физически исключенного объема, благодаря чему полимерная цепочка приобретает компактную невозмущенную конформацию. По мнению П. Флори [57], в блочном аморфном состоянии, в котором сегменты данной макромолекулы окружены энергетически неразличимыми сегментами соседних цепей, объемные эффекты также должны исчезать, поскольку нет оснований считать, что какая-либо конформация макромолекулы, отличная от невозмущенной, окажется энергетически более выгодной. [c.6]


    С увеличением дозы облучения сначала наблюдается резкое снижение прочности, модуля упругости и температуры плавления полимера, вызванное уменьшением степени кристалличности. Затем, по мере увеличения плотности полимерной сетки (при дозе около 250—300 Мрад), происходит стремительное возрастание жесткости, прочности и деформационной устойчивости полимера вплоть до перехода его в хрупкий неплавкий и нерастворимый [c.258]

    В кинетической теории высокоэластичности трактовка упругой силы как величины, зависящей только от разности энтропий исходного и деформированного (до полного равновесия) состояний, сочетается со статистическими методами расчета параметров полимерной сетки. Основными выводами теории являются  [c.58]

    Таким образом, в данном случае мы имеем дело с коллапсом полимерной сетки слабого полиэлектролита. Наличие даже небольшой доли заряженных звеньев приводит к более ярко выраженному явлению коллапса полимерных сеток, как с точки зрения относительной величины изменения объема, так и с точки зрения дискретности перехода. Усиление эффекта связано с существованием облака противоионов внутри слабо заряженной набухшей полимерной сетки. Осмотическое давление противоионов придает дополнительную упругость сетке, подобно тому, как некоторое избыточное давление придает упругость надутому резиновому мячу. При ухудшении качества растворителя происходит поджатие субцепей, расположенных между узлами сетки, вследствие чего объем сетки в целом уменьшается. Но не этот эффект определяет явление коллапса. Как указывалось выше, при ухудшении качества растворителя происходит прилипание противоионов к цепям, в результате чего облако противоионов конденсируется и вместе с ним исчезает обусловленное ими осмотическое давление. [c.129]

    Реакция сшивания - реакция, в результате которой образуется сетка макромолекул, соединенных межцепными ковалентными мостиками. Придает полимерным материалам нерастворимость, неплавкость, увеличение упругости, прочности. Частные случаи вулканизация, отверждение, радиационное сшивание. [c.404]

    Наконец, если некристаллический полимер является сеточным (или пространственно-сшитым) эластомером, то он характеризуется термомеханической кривой типа 2. Узлы пространственной сетки препятствуют относительному перемещению полимерных цепей. Поэтому при высоких температурах вязкое течение не наступает и эластомер не замечает температуры Гф.т. Температурная область высокой эластичности расширяется, и ее верхней границей становится граница химического разложения полимера. Такими деформационными свойствами обладают и сеточные полимерные материалы типа резин, которые необычны по сочетанию ряда свойств. Они способны восстанавливать свою форму после разгрузки, как и упругие твердые тела, но по другим свойствам близки к жидкостям и газам. Так, низкомолекулярные жидкости и резины по структуре — некристаллические тела. Их коэффициенты теплового расширения и сжимаемости близки между собой, но намного больше (на один-два порядка), чем у низкомолекулярных твердых тел. Коэффициенты их объемного термического расширения равны 3,6-10- К для газов, (Зч-5) 10 К для металлов, а для жидкостей и резины они имеют промежуточные значения и практически совпадают между собой и близки к (ЗЧ-б) 10 К . Коэффициенты сжимаемости равны 10 МПа- для воздуха при давлении 0,1 МПа (1 атм), 10 Па для металлов, а для жидкостей и резин они близки и на два десятичных порядка отличаются от металлов (10 3 МПа- ). [c.33]

    Друг другу (увеличение упругой энергии цепей, образующих сетку, уравновешивает уменьшение свободной энергии при смешении полимерных сегментов с молекулами растворителя). Это приводит к хорошо известному уравнению набухания Флори  [c.66]

    Следует подчеркнуть, что для полимеров в любом релаксационном состоянии характерно сосуществование всех трех видов деформаций - упругой, высокоэластической и вязкого течения - с преобладанием одного из них. Например, у линейных эластомеров (каучуков) на обратимую высокоэластическую деформацию накладывается необратимая деформация течения, причем та и другая развиваются во времени (ползучесть). Вулканизация каучука с образованием редкой сетки не мешает проявлению высокоэластических свойств, но предотвращает процессы течения. Наоборот, деформация вязкого течения расплава полимера сопровождается высокоэластической и упругой деформациями, что способствует распрямлению полимерных цепей, их ориентации и обусловливает способность полимера к волокнообразованию. [c.156]

    В классической статистической теории считалось, что упругие силы суть результат изменения энтропии сетки из независимых гауссовых цепей, которые испытывают аффинную деформацию, как и весь образец в целом. Теорию уточняли как относительно статистики отдельных полимерных цепей, поскольку сразу стало ясным, что гауссова статистика не применима для коротких цепей и при больших деформациях [94], так и введением более реального представления о сетке, включая учет [c.164]

    Здесь учтено, что для несжимаемых веществ модуль сдвиговой упругости С равен 1/3 модуля упругости Е на растяжение (сжатие). Оценку числа п звеньев полимерной цепи между узловыми точками трехмерной структурной сетки можно сделать на основе формулы Щукина [2]  [c.818]

    Хотя в теории и не постулируется необходимость связывания всех молекул раствора в сплошную сетку, однако возможное гидродинамическое действие потока на отдельные свободные цепи и вызванное этим участие их в явлении двойного лучепреломления теория не учитывает. При этом направление оптической оси анизотропиого вещества, так же как при простом растяже 1ип упругой полимерной сетки, принимается совпадающим с направлением главного (максимального) растягивающего напряжения. [c.572]

    Имеется и другое объяснение этому эффекту, вытекающее из термодинамического анализа, приведенного в 3.5 этой главы. Из термодинамического анализа следует, что для идеальной полимерной сетки с чисто энтропийной упругостью из двух составляющих внутренней энергии /7= 6 1-Ь /г производная первой составляющей должна быть равна нулю, т. е. ( 71/(9Я)р,т = 0, а производная второй составляющей (ди21дХ) — не равна пулю (вследствие наличия теплового расширения). Значение этой составляющей практически не зависит от деформации растяжения. Если температурный коэффициент линейного расширения для эластомеров 0 2-10 К и коэффициент линейной сжимаемости 10 м МН, то при Я = 2, например, (диг/ дк)р,т= (ди21дХ)р,т составляет примерно 18% от значения высокоэластической силы /. [c.75]

    Резины — это сшитые полимеры с гибкими цепями, имеющие температуру стеклования ниже 273 С. Поперечные химические связи (узлы сетки) не позволяют цепям при деформации скользить относительно друг друга. Поэтому необратимые (вязкие) деформации у резины практически не возникают. При деформации такой полимерной сетки возникают высокоупругие напряжения, которые обычно называют высокоэластическими. Кроме того, возникают и напряжения, вызываемые силами внутреннего трения. В связи с этим прн деформациях на диаграмме растяжение — сокращение возникает петля гистерезиса. Однако, если деформацию проводить медленно, то петля гистерезиса уменьшается, и при очень медленных процессах деформации (в пределе при равновесной деформации) она практически исчезает, и резина ведет себя как упругое тело. Именно для этого режима деформации применимы соотношения термодинамики. [c.141]

    Некоторые из неподвижных фаз, которые стали использоваться первыми, заметно набухают при погружении в хроматографический растворитель, например, сшитые декстраны набухают в воде, резины-в различных органических растворителях. Такое набухание вызывается тем, что осмотическое давление, производимое молекулами полимеров, уравновешивается упругим сокращением полимерной сетки. Гинсберг и Коен /4/ предположили, что осмотическое давление ответственно за исключение неэлектролитов из сшитых декстранов. В гелях могут возникать высокие давления, что вызывает уменьшение растворимости молекул растворенного вещества. Кроме того, растворимость падает с увеличением размеров молекул. Согласно этой теории, растворенное вешество распределяется между двумя частями подвижной фазы, одна из которых нахйдится под давлением. [c.112]

    Свойства Т. п. выше Гс, особенно редкосетчатых, эксплуатируемых при этих темп-рах, в решающей степени определяются частотой узлов полимерной сетки и в меньшей степени ее химич. природой. Упругие свойства и набухание Т. п. в низкомолекулярных жидкостях или парах при темп-рах выше Гс удовлетворительно описываются ур-ниями (15—19), предложенными для идеальных сеток, причем несоответствие структур учитывают при помощи поправочных коэффициентов, т. наз. фронт-факторов. Для описания деформапионных [c.329]

    В своей первоначальной теории Ф. Бики показал, что при рассмотрении временной зависимости прочностных свойств при одноосном растяжении должны приниматься во внимание вязко-упругие свойства сетки полимера. В полимерной сетке, содержащей V цепей в единице объема, каждая из которых состоит из N сегментов, скорость разрыва сегментов в ненапряженном состоянии принимается равной [c.346]

    Исследовалась атомная подвижность полимерной сетки и молекул волы, включенных в полимер или сорбент. В качестве объектов исследования использовались акрилатный катионит СГК-7 на основе полиакриловой кислоты сшитой дивинилбензолом со степенью сшивки 2 мае. % и полимерный сорбент Поролас ТМ (ВНИИХТ) на основе сополимера дивинилбензола (70%) и этилстирола (30%). Акриловый катионит сильно набухает при гидратации, что приводит к увеличению атомной подвижности полимерной сетки. На рис. 3.29 а приведены данные РРМИ для СГК-7 при увеличении гидратации. Для дегидратированного слабосшито-го образца найденная величина упругой доли РРМИ /д = 0,77 достаточно велика и характерна для полимера в стеклообразном или кристаллическом состоянии. При гидратации сорбента интегральная величина /д резко снижается (рис. 3.29а). [c.143]

    Чрезвычайно важное в практическом отношении свойство эластичности материально реализуется в резинах, т. е. сшитых каучуках, которые мы далее будем называть полимерными сетками. При теоретическом рассмотрении свойств полимерных сеток в условиях, когда реализуется подвижность сегментов (концентрированные растворы, гели, эластомеры), исходят из того, что отрезок цепи между двумя соседними сшивками, называемый субцепью, сворачивается в клубок, называемый субклубком, свойства которого аналогичны свойствам невозмущенного гауссового клубка. Такая модель позволяет качественно объяснить природу упругости резин аналогично тому, как это было сделано в предыдущем случае, т. е. как энтропийную. При действии приложенного напряжения, например растягивающего, размеры субклубка увеличиваются, что вызывает возникновение упругой силы, стремящейся вернуть клубки к исходному состоянию. По прекращении воздействия субклубки возвращаются к исходным размерам, при этом энтропия достигает максимально возможного значения. [c.76]

    Сдвиговые деформации могут вызвать временные или постоянные изменения свойств полимеров. Если усилия при сдвиге превосходят силы межмолекулярного и внутримолекулярного взаимодействия, то имеет место разрушение надмолекулярной структуры полимеров. Мы рассматриваем реакции, происходящие под действием механических сил преимущественно в линейных полимерах. Течение сетчатых полимеров может быть достигнуто путем механохимических реакций, но у линейных полимеров предел текучести обычно значительно ниже усилий, необходимых для разрыва связей. К более слабым взаимодействиям в полимерных системах относятся ионные и водородные связи. Физические зацепления, прочность которых зависит от скорости деформации, могут оказаться причиной еще более высокого уровня накопления упругой энергии в деформированной полимерной сетке. Примером этого случая служит обычный поливинилхлорид. И, наконец, если сдвиговые усилия достаточны для накопления упругой энергии, равной прочности основной цепи макромолекул, и в итоге происходит разрушение молекул. Процесс можно представить как последовательное накопление упругой энергии, в результате чего развиваются химические реакции и происходит рассеяние этой энергии. Механохимическое разрушение связей протекает путем гомолити-ческого разрыва молекул с уничтожением образующихся радикалов. В литературе описано несколько типов ионных реакций, происходящих под действием механических сил. [c.16]

    Последующее молекулярное описание одноосного деформирования неориентированного частично кристаллического полиэтилена характеризует пластическую деформацию волокон, образующих термопласты со сферолитной структурой. Оно может служить иллюстрацией большого разнообразия механизмов деформирования. При деформациях менее 1 % выявляют анизотропные упругие свойства кристаллов (орторомбического) полиэтилена [57] и аморфного материала [53]. При тех же самых условиях имеют место неупругие деформации СНг-групп и сегментов цепей, которые обусловливают низкотемпературные Р-, у- и б-релаксационные механизмы [10, 56]. При больших деформациях (1—5%) происходит дополнительное изменение сегментов цепи, их относительного положения и конформационные изменения (поворот связей). Подробное исследование поведения цепей в аморфных областях было выполнено Петракконе и др. [53]. В кристаллических областях под действием деформаций такого же порядка возникают дислокации и дислокационные сетки (наблюдаемые в ламеллярных кристаллах в виде муаровых узоров). В зависимости от условий внешнего нагружения и типа дислокаций их движение вызывает пластическую деформацию кристалла путем двойникования, смещения плоскостей или фазового перехода орторомбической ячейки в моноклинную. Обширный обзор деформирования полимерных монокристаллов был дан Зауэром и др. [57] и в книге Вундерлиха [3]. Детальный расчет вклада различных структурных элементов и дефектов в деформирование частично-кристаллических полимеров можно найти во многих статьях, из которых здесь приводятся только некоторые [47—62]. Хотя упомянутые выше эффекты обусловливают нелинейность зависимости напряжение—деформация, первоначально существовавшая надмолекулярная организация все еще сохраняется. Подобная деформация называется однородной. [c.41]

    Второй тип связи называют дальнодействующей внутримолекулярной сшивкой, при нем происходит сшивание двух полимерных сегментов, находящихся на некотором расстоянии друг от друга, но на одной макромолекуле полимера. Сшивки этого типа мало влияют на упругость геля и не ведут к образованию сетки, но заставляют гибкую полимерную цепь принимать более компактную конформацию. Когда гель, полученный на основе полимера с гибкими цепеобразными макромолекулами, подвергается воздействию внешних напряжений, то могут быть разрушены межмолекулярные упруго-эффективные сшивки, но не внутримолекулярные, которые не чувствуют внешнего напряжения. После снятия внешнего механического воздействия возможно повторное образование межмолеку лярной сшивки разрушенного геля. После каждого последовательного цикла вероятность восстановления геля снижается, так как в этом случае внутримолекулярные связи приводят к образованию разрозненных, меньшего размера и более компактных участков геля, которые не соединяются между собой. При использовании полимера с жесткой макромолекулой (например, ксантановые смолы) влияние внутримолекулярных сшивок невелико, видимо, в этом причина способности ксантанового геля восстанавливаться после механической деструкции. [c.85]

    Св-ва С. п. зависят не только от хим. природы полимерного звена, но и от топологич. структуры сетки, в частности от концентрации и функциональности узлов. Наиб, ярко топологич. структура проявляется в высокоэластич. состоянии (в к-ром, в частности, находятся и эксплуатируются изделия на основе рез1ш). В соответствии с кинетич. теорией высокоэластичности величина равновесного модуля упругости пропорциональна концентрации цепей сетки  [c.335]

    С. второго типа отличаются от С. первого типа отчетливо выраженным двухфазным состоянием. Они возникают в результате распада однофазных р-ров полимеров на две фазы, первая из к-рых, содержащая большое кол-во полимера, образует преим. непрерывный каркас, а вторая фаза с очень низкой концентрацией полимера включена в этот каркас в виде дисперсии. Мех. св-ва этой системы определяются каркасной полимерной фазой, к-рая во мн. случаях приближается по св-вам к твердому телу и поэтому способна к частичному упругому изгибу. При этом общая относительно высокая деформация системы складьтается из суммы малых деформаций отдельных элементов пространств. сетки, образующей эту структуру. Кроме того, вклад в обратимую деформацию вносит изменение формы и протяженности межфазной границы (межфазная энергия имеет небольшое, но все-таки конечное значение). [c.448]

    Большое практическое значение имеют студни (структурированные, обладающие упругостью растворы полимеров), особенно термически и реологически обратимые, в которых полимерные цепи связаны в структурную сетку физическими силами. Обычно они возникают в растворителях низкого термодинамического качества.  [c.822]

    С точки зрения динамики концентрированные полимерные системы обладают рядом удивительных особенностей, которые проявляются прежде всего в уникальной комбинации вязких и упругих свойств (эти свойства были изучены в тщательных экспериментах и проанализированы в классической книге Ферри [1 ]). С теоретической точки зрения ситуация менее удовлетворительная динамика системы зацепленных цепей (которые могут скользить относительно друг друга, но не могут проходить друг сквозь друга) все еще слабо понята. Основные идеи описаны в обзоре Грессли [2]. В этой главе мы вначале суммируем представления, которые можно сформулировать на основе анализа экспериментальных механических данных, полученных при изучении полимерных расплавов. Затем мы перейдем к более простой проблеме одной цепи, движущейся внутри сшитой сетки. В этом случае может быть предложена относительно правдоподобная картина движений, известная как "модель рептаций . Наконец, мы вернемся к расплавам и обсудим некоторые обобщения представления о рептаци-ях для этих систем. Однако эта третья часть главы в большой степени основана на не до конца проверенных предположениях. [c.247]


Смотреть страницы где упоминается термин Упругость полимерной сетки: [c.78]    [c.78]    [c.564]    [c.493]    [c.47]    [c.745]    [c.564]    [c.8]    [c.66]   
Смотреть главы в:

Высокомолекулярные соединения -> Упругость полимерной сетки




ПОИСК





Смотрите так же термины и статьи:

Сетки



© 2025 chem21.info Реклама на сайте