Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия растворения молекул и растворимость

    Положительное отклонение от закона Рауля означает, что парциальное давление над раствором больше, чем это следует из идеального соотношения, что возможно при плохой растворимости. В этом случае энергия взаимодействия молекул растворенного вещества с молекулами растворителя меньше, чем энергия взаимодействия молекул растворителя друг с другом. При отрицательном отклонении от закона Рауля, наоборот, энергия взаимодействия молекул растворенного вещества с молекулами растворителя больше, чем энергия взаимодействия молекул растворителя друг а другом. В газовой хроматографии молекулы разделяемых веществ обычно значительно меньше по молекулярным весам молекул растворителей, поэтому в газовой хроматографии преобладают положительные отклонения от закона Рауля. При положительном отклонении коэффициент активности больше единицы, при отрицательном отклонении — меньше. [c.28]


    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]

    Большинство из перечисленных в табл. 6 методов фракционирования основано на различии в растворимости молекул с разным молекулярным весом. Как известно, в данном гомологическом ряду потенциальная энергия растворенных молекул изменяется пропорционально молеку лярному весу. Большие молекулы обладают меньшей потенциальной энергией (большая теплота растворения). Поэтому при изменении условий (повышение концентрации раствора, понижение температуры, изменение соотношения растворитель—осадитель и т. п.) большие молекулы переходят в осадок, а молекулы с меньшим молекулярным весом остаются в растворе. [c.23]

    Изменение свойств одного и того же электролита под влиянием растворителей определяется разностью в химических энергиях сольватации ионов и молекул. Растворимость вещества, находящегося только в виде ионов в разных растворителях, определяется разностью химических энергий сольватации ионов. Изменение растворимости неэлектролитов определяется разностью в энергиях растворения молекул. Наконец, растворимость слабого электролита при переходе от одного растворителя к другому зависит от разности в химических энергиях сольватации ионов и разности энергий сольватации молекул. Различие силы электролитов определяется разностью в химических энергиях сольватации ионов и соответственно молекул. Изменение э. д. с. определяется изменением химической энергии сольватации ионов. [c.212]


    Проанализируем процесс адсорбции, в котором алифатическая цепь молекулы ПАВ переходит из водной фазы в органическую, а полярная группа остается в воде. Изменение энергетического состояния при этом можно оценить на основе данных о растворимости углеводородов в воде. Свободная энергия растворения. углеводородов аддитивна и равна на атом водорода 0,42 ккал [37]. Следовательно, работа адсорбции пз водной фазы в системе вода — [c.430]

    Температура различно влияет на ограниченную растворимость жидкостей. Это объясняется тем, что жидкости или вступают в химическое взаимодействие, или нет. Если жидкости химически не взаимодействуют, то повышение температуры влияет на растворимость лишь постольку, поскольку оно вызывает перераспределение энергии поступательного движения молекул. С ростом температуры увеличивается доля молекул с повышенной энергией. Такие молекулы способны осуществить работу перехода, а следовательно, взаимная растворимость жидкостей будет увеличиваться. При этом составы сопряженных растворов будут все более и более сближаться и при некоторой температуре станут тождественными. Начиная с этой температуры и выше наблюдается неограниченная растворимость жидкостей друг в друге. Это явление было впервые изучено В. Ф. Алексеевым. Температура, выше которой жидкости неограниченно смешиваются друг с другом, называется верхней критической температурой растворения. Когда ограниченно растворимые жидкости образуют молекулярные соединения, повышение температуры уменьшает их взаимную растворимость. Повышение температуры способствует диссоциации сложных молекул на более про- [c.202]

    Вторая стадия растворения, обусловленная силами межмолекулярного взаимодействия, зависит от строения молекул растворяемого вещества и растворителя. В табл. 7.2 были приведены некоторые данные по растворимости различных газов в воде. Растворимость неполярных газов Ид, Nj, Oj ( х = 0) в воде очень мала, так как между ними и полярными молекулами воды могут возникать лишь дисперсионные силы взаимодействия, что приводит к малой энергии связи. Молекулы диоксида углерода Oj (ц = 0) обладают полярными связями и при взаимодействии с молекулами воды могут приобрести большой индуцированный электрический момент — растворимость Oj в воде значительная. Полярные газы НС (ц = 0,35. 10 Кл. м) и NHa (ц = 0,482 10- Кл м) в воде растворяются очень хорошо и ориентационные силы межмолекулярного взаимодействия не только создают условия для растворения, но и меняют строение молекул газов, растворенных в воде (диссоциация). [c.185]

    Так, уменьшение энергии адсорбции бензола на угле КАД-иодный нз водных растворов по сравнению с энергией адсорбции пара бензола составляет 9,65 кДж/моль [20] Энергия взаимодействия молекул растворенного вещества с молекулами воды 3 значительной степени определяется структурой самой жидкой воды и темн изменениями ее структуры, которые возникают при растворении в воде органических веществ. Связь молекул растворенного вещества с растворителем прежде всего проявляется в величине растворимости."  [c.85]

    В связи со сказанным приобретает большое значение прямое определение величин АА т. е. определение энергии (изменения изобарного потенциала) переноса ионов вещества и его молекул из одного растворителя в другой. Определение энергии переноса может быть произведено на основании измерения любого свойства растворенных электролитов растворимости, давления пара, эд.с. и т. д. [c.352]

    Учитывая роль энергетических факторов при растворении полимеров, в качестве ориентировочных характеристик, коррелируемых с растворимостью, можно использовать различные величины, характеризующие энергию взаимодействия молекул растворителя внутреннее давление жидкостей, поверхностное натяжение, дипольные моменты или комбинацию двух последних величин [9, 13]. [c.11]

    Полимер всегда набухает, когда его молекулы еще связаны в отдельных точках силами диполей (вторичные связи) или первичными связями (например, в полимере сетчатой структуры), а остальные части молекул разъединены проникающими в них молекулами растворителя. Если молекулы связаны диполями, то их легче разъединить полярными растворителями, чем молекулы, связанные мостиками главных валентностей (полимеры сетчатой структуры). Часто достаточно очень немногих сшивающих связей для того, чтобы при исключительно сильном набухании не произошло полного растворения. Обычно растворимость полимеров уменьшается с увеличением размера молекул, так как при этом увеличивается энергия вторичных связей. [c.449]


    Растворимость неполярных газов Ng, 02( а = 0) в воде очень мала, так как между ними и полярными молекулами воды могут возникать лишь дисперсионные силы взаимодействия, что приводит к малой энергии связи. Молекулы двуокиси углерода С02([ = 0) обладают полярными связями и при взаимодействии с молекулами воды могут приобрести значительный индуцированный дипольный момент — растворимость СО а в воде значительная. Полярные газы НС ([А = 1,07 D) и NHg([i. = 1,46D) в воде растворяются очень хорошо и ориентационные силы межмолекулярного взаимодействия не только создают условия для растворения, но и меняют строение молекул газов, растворенных в воде (диссоциация). [c.184]

    Из сказанного выше вытекает, что в настоящее время еще невозможно сформулировать какую-либо зависимость между растворимостью белков и их составом или порядком распределения аминокислот в их молекуле. Растворимость вещества в растворителе почти всегда зависит от силы взаимодействия между молекулами растворителя и растворяемого вещества, а также от энергии кристаллической решетки твердой фазы, т. е. от сил, действующих между молекулами растворяемого вещества. Если интенсивность притяжения между молекулами растворяемого вещества и растворителя превышает взаимное притяжение молекул растворяемого вещества, то должно произойти растворение. Так как диаметр молекул глобулярного белка очень велик, то взаимодействовать друг с другом способны только те группы, которые расположены на поверхности молекулы. В связи с этим можно заключить, что растворимость белков будет зависеть главным образом от природы тех групп, которые образуют поверхность крупных частиц, а также частично от распределения ионных и неполярных групп между поверхностью и внутренней частью белковой молекулы [8, 26, 38, 40]. К сожалению, наши знания о таком расположении полярных и неполярных групп очень ограниченны. Некоторые сведения о распределении полярных групп можно получить, определяя прирост диэлектрической постоянной при растворении белков (см. гл. VII). [c.114]

    Кроме того, значения коэффициентов распределения и факторов разделения могут зависеть от распределения незаряженного комплекса или ионного ассоциата между двумя фазами. Так как незаряженный комплекс в большинстве случаев имеет гидрофоб- ную поверхность, то закономерности распределения такого комплекса должны в основном совпадать с закономерностями для органических соединений. Распределение органических соединений между водой и растворителем тесно связано с растворимостью этих соединений в воде, так как растворение в этом случае можно рассматривать как распределение вещества между водой и собственной органической жидкой фазой. Хорошо известно, что растворимость в воде углеводородов, являющихся членами одного гомологического ряда, снижается по мере увеличения числа углеродных атомов. Показано [4], что для каждой группы углеводородов (парафинов, циклопарафинов, олефинов, ацетиленов, ароматических углеводородов) имеется линейная зависимость между стандартной свободной энергией растворения и молярным объемом растворенного соединения. Более того, имеющиеся данные [5] позволяют предположить, что основной вклад в изменение положительной стандартной энергии растворения в воде вносит отрицательное изменение энтропии. Низкая растворимость углеводородов в воде и энтропийный характер этого процесса являются результатом структуроформирующего поведения углеводородов. Согласно Франку и Эвансу [6], органические молекулы, растворенные в воде, повышают долю тетракоординированных молекул воды. Образование кластеров тетракоординированных молекул воды вокруг растворенных углеводородов (или подобных им соединений) эквивалентно приближению ориентации молекул воды к льдоподобной структуре. Это сопровождается существенным снижением энтропии, так как молекулы воды, образующие кластер, теряют при этом трансляционную степень свободы. [c.21]

    При образовании соединений между частицами компонентов растворимость повышается. Весьма часто энергия, необходимая для разрыва связей между частицами вещества при его растворении, компенсируется энергией, выделяющейся при образовании соединений между частицами растворяемого вещества и молекулами растворителя. Это играет важнейшую роль, например, при растворении сильных электролитов в воде. Именно за счет энергии, выделяющейся прн гидратации ионов, и происходит разрыв связей между ионами при растворении кристалла с ионной решеткой. Наоборот, необходимость дополнительной затраты энергии, например, на разрушение комплексов в случае ассоциированного растворителя или другие подобные процессы всегда связана с уменьшением растворимости. При одновременном действии этих факторов суммарное влияние их на растворимость может быть весьма сложным. [c.330]

    При растворении газов в металлах обычно тепло затрачивается, во-первых, на диссоциацию молекул, и, во-вторых, на раздвиже-ние атомов металла, что не компенсируется энергией растворения. Вследствие этого растворимость газов в металлах, как правило, увеличивается с повышением температуры. [c.90]

    Примерно соответствует размеру растворенной молекулы. Свободная энергия образования такой полости довольно велика, поскольку этот процесс сопровождается разрывом большого числа водородных связей. В основном это энтальпийный (АЯ) эффект. 2. Теперь молекулы воды будут стремиться изменить свою ориентацию, приспосабливаясь к присутствию в полости неполярной молекулы. Ясно, что они переориентируются таким образом, чтобы обеспечить оптимальные условия для вандерваальсовых взаимодействий и образовать максимальное число водородных связей. В результате такой переориентации число водородных связей может даже увеличиться, поскольку водородные связи в воде могут образовываться самым разным образом. Особенно это относится к низким температурам, когда в воде присутствуют в значительном количестве льдоподобные структуры. Во многих случаях ограничение подвижности молекул воды, окружаюш,их гидрофобные группы, т. е. возрастание структурированности воды, оказывается самым важным результатом действия гидрофобных сил. При растворении углеводородов энтальпия образования новых водородных связей почти полностью компенсируется энтальпией образования полости. В результате суммарное изменение энтальпии (АЯ) при переходе неиолярных молекул из инертного растворителя в воду обычно близко к нулю (как правило, это небольшая положительная или отрицательная величина). Вместе с тем уменьшение подвижности молекул воды приводит к значительному уменьшению энтропии, т. е. дает отрицательное значение AS. Поскольку AG = AH—TAS, а член 7 А5 положителен, изменение свободной энергии при переходе гидрофобной молекулы из инертного растворителя в воду также является величиной положительной, т. е. такой переход невыгоден с энергетической точки зрения. Именно этим объясняется плохая растворимость углеводородов в воде. [c.248]

    Поглощение излучения растворами, содержащими макромолекулы или низкомолекулярные растворенные вещества, можно исследовать в трех участках электромагнитного спектра, соответствующих различным типам поглощения излучаемой энергии системой. В области видимого и ультрафиолетового (УФ) света излучение вызывает возбуждение электронов. Органические молекулы поглощают видимый свет лишь в том случае, если они содержат большие резонирующие системы, а макромолекулы этого типа в растворе не изучались. Однако в некоторых случаях сильное поглощение видимого света обусловлено образованием комплексов ионов переходных металлов с макромолекулами, как, например, при исследовании гемоглобина и других белков, содержащих железо-порфириновый комплекс, связанный с макромолекулой [488]. Узко специфические проблемы, касающиеся спектроскопии таких материалов, рассматриваться не будут, и наше обсуждение будет ограничено применением УФ-спектроскопии, которая находит широкое применение при исследовании макромолекул. Спектральное поглощение в инфракрасной (ПК) области возникает в результате переходов между вращательными и колебательными уровнями. Как УФ-, так и ИК-спектроско-пия являются мощными средствами анализа полимеров. В качестве примера можно привести использование УФ-спектров для анализа сополимеров стирола или винилпиридина с неароматическими сомономерами, а также применение ИК-снектроскопии для исследования 1,А-цис-, 1,А-транс- или 1,2-присоединения в полибутадиене. Такой анализ основан на предположении, что вклады, вносимые мономерными остатками в измеряемую оптическую плотность, аддитивны. Для большого числа случаев это предполон<ение, но-видимому, является очень хорошим приближением. Однако следует заметить, что такие спектроскопические исследования в целом не зависят от растворимости образца и поэтому выходят за рамки нашего обсуждения, предметом которого УФ- и ИК-спектры являются лишь постольку, поскольку они специфически характеризуют растворенные молекулы. Совершенно иным является положение для поглощения в радиочастотной области, вызванного квантованными переходами в ориентации магнитных моментов некоторых атомных ядер во внешнем магнитном ноле. Разрешение, достигаемое нри исс. те-довании методом ядерного магнитного резонанса (ЯМР), значительно выше для жидких образцов, чем для твердых. Следовательно, изучение спектров ЯМР растворов макромолекул необходимо для выяснения таких данных о полимере, которые нельзя получить для твердых образцов. [c.172]

    При этом переход молекул растворенного вещества из объема раствора на поверхность адсорбента связан не с величиной энергии взаимодействия этих молекул с поверхностными атомами кристаллической решетки сорбента, а с разностью величин энергий, взаимодействия молекул растворенного вещества с адсорбентом и молекулами растворителя. Эта последняя энергия в водных растворах в значительной мере определяется структурой жидкой воды и изменениями структуры, которые возникают при растворении в воде органических веществ. Связь молекул растворенного вещества с растворителем проявляется прежде всего в величине растворимости и изменении растворимости веществ с температурой. Поэтому адсорбция растворенных веществ существенно зависит от их растворимости, что уже давно нашло отражение в известном правиле Траубе, согласно которому, в гомологическом ряду алифатических карбоновых кислот произведение коэффициента распределения вещества между раствором и твердым сорбентом К на растворимость этого вещества является величиной постоянной, т. е. КС, = onst. Справедливость правила Траубе была показана и для адсорбции некоторых других гомологических рядов. Впоследствии было установлено, что изменение адсорбции с температурой также подчиняется правилу Траубе. [c.7]

    По данным измерений растворимости, на кривой зависимости lg X от 1/Г имеется минимум (рис. 177, табл. 99). В соответствии с этим Бейкер предположил, что при температуре ниже 18° С существует стержнеподобная структура, а при более высоких температурах более беспорядочная структура. При 18° С энергия, полученная за счет усиления клатратообразовапия в воде вблизи растворенной молекулы углеводорода, сводит на нет энергию, необходимую для отделения молекулы углеводорода от ее соседей в конденсированном состоянии. [c.503]

    Наконец, эта обратимая работа образования полости может быть использована для вычисления растворимости простых газов в расплавленной соли, поскольку основной вклад в свободную энергию растворения вносит свободная энергия, связанная со смещением частиц жидкости, которое необходимо для образования области достаточного размера, чтобы вместить растворенный атом или молекулу [70]. В настоящее время теория Рейса и др. относится только к жидкостям, частицы которых обладают твердыми оболочками одинакового размера плавная часть парного потенциала, вообще говоря, не конкретизируется, хотя в случае расплавленной соли она должна быть хотя бы частнчо кулоновской. [c.173]

    Теория айсбергов впервые выдвинута Или [1] при изучении аномалий в теплотах растворения и энтропии растворения в воде газов с неполярными молекулами (благородных газов, углеводородов и т. д.). Теплота растворения (энтальпия, взятая с обратным знаком) этих слаборастворимых веществ в случае воды гораздо больще, чем в случае нормальных органических растворителей. Энтропия растворения по абсолютной величине также больше в случае воды, чем для нормальных органических растворителей (разница составляет около 12 ед. Клаузиуса). Так, для метана АЯ°= =3,19 ккал/моль, А5°=—31,8 ед. Клаузиуса/моль. По данным Или [1], для растворения молекул газа нет необходимости в предварительном образовании структурных нустот (что потребовало бы затраты значительного количества энергии), поскольку в рыхлой структуре жидкой воды уже имеется достаточное число таких пустот, пригодных для размещения молекул газа. Если размеры молекул газа оказываются больше, чем размеры пустот, то пустоты могут увеличиться при относительно небольшой затрате энергии. Энергия, необходимая для разрыва водородных связей, сопровождающего этот процесс, компенсируется за счет энергии, выделяющейся при образовании новых водородных связей между молекулами, окружающими структурные пустоты. Согласно этой теории, неполярные молекулы газа могут занимать до 2% внутренних структурных пустот. Результаты вычисления изменений энтропии при растворении хорошо согласуются с экспериментальными данными [2]. Однако большое уменьшение энтропии, так же как и малая растворимость газов, не согласуется с предположением о независимости коэффициента активности растворенных газов от концентрации. [c.73]

    Наоборот, если энергия взаимодействия молекул А и А или В и В больше, чем А и В, то одинаковые молекулы одного и того же компонента предпочтительно будут связываться между собой и растворимость понизится. Это часто наблюдается при значительной полярности одного из компонентов раствора. Этим, например, можно объяснить плохую растворимость полярного хлористого водорода в неполярном бензоле. Этим же объясняется небольшая растворимость неполярных и малополярных веществ в полярном растворителе, например в воде. Молекулы НгО в жидкой воде связаны друг с другом сильными водородными связями. Поэтому притяжение неполярных молекул неэлектролита к молекулам воды будет меньше, чем притяжение молекул воды друг к другу. Очень высокая растворимость веществ часто бывает обусловлена образованием с растворителем водородных или донорно-акцепторных связей. Например, водородные связи образуются при растворении этилового спирта в воде, а донорно-акцепторные связи — при растворении Ag в жидком аммиаке (практически нерастворимый в воде АдС1 хорошо растворим в жидком МНз). [c.235]

    Особенностью неионогенных деэмульгаторов является ухудшение их растворимости с повышением температуры. Это объясняется тем, что растворение их в воде связано с образованием водородных связей, Повышение температуры выше определенной вели ны приводит к их дегидратации, поскольку энергия водородной связи недостаточно велика, Дегидратированное при нагревании вещество теряет способность растворяться в воде, и раствор становится мутным, при охлаждении вещество вновь растворяется в воде. Каждый де ульгатор имеет свою температуру помутнения, являющуюся мерой соотношения величины гидрофильной и гидрофобной частей молекулы. При температуре помутнения деэмульгатор образует новую фазу и эфс ктивность его снижается, что обусловлено механизмом разрушения эмульсии. Экспериментальная проверка этого факта показала [ 110], что водорастворимые деэмульгаторы при введении в нефтяную эмульсию, нагретую выше их температуры помутнения теряют эффективность, Различие особенно значительно, если деэмульгаторы с низкими температурами помутнения используются для деэмульгации при высокой температуре, В случае проведения де-эмульгацни п температуре ниже температуры помутнения различие уменьшается, Способ ввода деэмульгатора оказывает наименьшее влияние на эффективность в случае применения реагентов с высокой температурой помутнения и низкой температурой деэмульгации. [c.132]

    Еще одна характеристика размеров молекулы, с которой часто связывают растворимость, — это площадь поверхности молекулы. В 1925 г. Лэнгмюр предложил использовать ее совместно с данными о поверхностном натяжении растворителя для расчета гиббсовой энергии растворения. В большинстве расчетов полости полагаются сферическими. Метод расчета площади поверхности несферической формы, позволяющей учитывать детали строения молекулы, предложен Германом [59] и успешно применен к описанию растворимости в воде углеводородов [59] и многих других соединений [60]. Вместе с тем, следует отметить, что и концепция площади поверхности молекулы также весьма неопределенна. Например, площади поверхностей молекул углеводородов, вычислен--ные несколькйми различными методами, отличаются на 30% [59]. [c.38]

    Для оценки растворяющей способности жидкостей по отношению к конкретному полимеру предложен ряд критериев [1 3 18]. Найболее строгим критерием качества растворителей является разность термодинамических (изоба рпо-изотермических) потенциалов и соответственно связанные с ней величины отаосительной упругости паров над раствором или осмотического давления [1]. Однако эти величины пока не могут быть рассчитаны заранее. без экспериментальных исследований. Учитывая роль энергетическил факторов при растворении полимеров, в качестве ориентировочных характеристик, коррелирующих с растворимостью, можно использовать различные величины, характеризующие энергию взаимодействия молекул растворителя, плотность энергии когезии, величины внутреннего давления жидкостей, поверхностное натяжение, дипольные моменты или комбинацию двух последних величин [4 6 18 19]. Вышеуказанные корреляции имеют ряд исключений, так как при рассмотрении растворимости необходимо сравнивать не только энергетическую составляющую изменения изобарно-изотермического потенциала, но и энтропийные изменения в соответствии с вышеприведенным уравнением (2.3). [c.41]

    Гораздо удачнее оказывается полуэмпирическое рассмотрение проблемы высаливания, основанное иа учете влияния солей на плотность когезионной энергии или внутреннее давление воды [25, 45, 49]. Внесение неполярной молекулы в воду можно разделить на две стадии разъединение молекул воды с образованием полости, в которой может поместиться вносимая молекула, и внесение молекулы в эту полость. При растворении неполярных молекул, которые не могут сильно взаимодействовать с водой, основная часть свободной энергии, требуемой для осуществления процесса, должна затрачиваться на уменьшение взаимного сцепления молекул воды на первой стадии. Это основная причина низкой растворимости органических веществ в воде, если их молекулы недостаточно полярны, чтобы, взаимодействуя с водой на второй стадии, компенсировать эти затраты свободной энергии (гл. 8). Таким образом, добавление какого-либо вещества, способного увеличивать среднюю когезионную энергию, т. е. энергию сцепления молекул воды между собой, будет затруднять их раъединение на первой стадии процесса растворения. Напротив, добавление таких веществ, как спирты, которые способны уменьшать среднее взаимное сцепление молекул воды, будет облегчать этот процесс. Большинство солей увеличивает среднюю силу взаимного сцепления молекул воды и плотность когезионной энергии водного раствора. Это проявляется экспериментально в электро-стрикции и возрастании поверхностного натяжения. Таким образом, в соответствии с рассмотренной моделью в большинстве случаев должно наблюдаться высаливание неполярных веществ, неспособных сильно взаимодействовать с водой. Высаливание можно рассматривать просто как выталкивание неполярных молекул, вызываемое электрострикцией и увеличением средней силы взаимного сцепления молекул растворителя в присутствии соли. [c.291]

    ТОГО окружения, которое предпочитают разные аминокислоты. Он сравнивал растворимость аминокислот в воде (как в типичном полярном растворителе) и в этаноле. Этанол служил моделью неполярного растворителя, все еще обладающего способностью растворять аминокислоты в количестве, достаточном для проведения измерений. Так как в обоих растворах взаимодействия с кристаллической фазой одинаковы, можно использовать данные о свободной энергии растворения при расчете АС для перехода 1 моль остатков из этанола в воду при постоянной концентрации. АС, естественно, будет зависеть от взаимодействия растворителя как с боковыми цепями, так и с заряженными амино- и карбоксильными группами. В качестве стандартной аминокислоты, лишенной боковой группы, Тэнфорд избрал глицин. Вклад боковой группы в свободную энергию переноса Тэнфорд определил как разность между АС для соответствующей аминокислоты и АС для глицина. Для этого имеются разумные основания, поскольку с достаточной степенью точности можно считать свободную энергию переноса аддитивной функцией структуры молекулы. [c.53]

    Установлено, что при экстракции неполярными экстрагентами при гемпературах вблизи критического состояния растворителей также проявляется избирательная растворимость высокомолекулярных углеводородов масляных фракций. Обусловливается это тем, что с приближением температуры экстракции к критической про — исхо, ит резкое снижение плотности растворителя и соответственное ослабление прочности связей между молекулами растворителя и растворенных в нем углеводородов. В то же время силы дисперсионного взаимодействия между молекулами самих углеводородов при этом практически не изменяются. В результате, при определен — 1ГЫХ гемпературах внутримолекулярные силы углеводородов могут превысить межмолекулярные силы взаимодействия между растворителем и углеводородами и последние выделяются в виде дисперсной фазы. При этом, поскольку энергия дисперсионного взаимодействия является функцией от молекулярной массы молекулы, в первую очередь из раствора выделяются наиболее высокомолекулярные смолисто-асфальтеновые соединения, затем по мере повышения температуры — углеводороды с меньптей молекулярной массой. При температурах, превышающих критическую,из раствора выделяются все растворенные в нем соединения независимо от молекулярной массы и химической структуры углеводородов (рис.6.4). [c.221]

    С повышением температуры растворимость компонентов масляных фракций в полярных растворителях увеличивается и при критической температуре растворения (КТР) наступает полное растворение их в данном количестве растворителя. При растворении компонентов масляных фракций в избирательных растворителях при температурах как выше, так и ниже КТР, система находится в жидком состоянии, т. е. и в том, и в другом случае энергия межмолекулярного притяжения больше энергии теплового движения молекул. Образование однофазной системы при темле-ратурах выше КТР объясняется тем, что в этих условиях кинетическая энергия молекул достаточна для преодоления различия в энергиях межмолекулярного притяжения однотипных молекул компонентов, входящих в состав масляной фракции, и взаимного притяжения молекул самого растворителя [4]. При температурах ниже КТР т-0пловое движение молекул превышает силы притяжения молекул не всех компонентов масляной фракции, в результате чего система разделяется на две жидкие фазы. Критическая температура растворения зависит от структуры углеводородов и природы растворителя. [c.48]

    Ароматические углеводороды масляных фракций растворяются как в парафино-нафтеновых углеводородах, так и в полярном растворителе, за счет действия однотипных дисперсионных сил. В последнем случае при контакте с неполярной частью молекул растворителя ароматические углеводороды растворяются в нем вследствие дисперсионного притяжения при соприкосновении с функциональной группой в молекулах этих углеводородов индуцируется дипольный момент и растворение происходит в результате ориентации диполей. Следовательно, преимущественное растворение ароматических углеводородов в шолярном растворителе объясняется большей энергией притяжения диполей по сравнению с энергией взаимодействия неполярных соединений и, кроме того, наличием дисперсионных сил между неполярной частью молекул распворителя и молекулами этих углеводородов. В связи с вышеизложенным растворимость ароматических углеводородов в полярных растворителях при прочих равных условиях уменьшается по мере увеличения длины боковых цепей и усложнения их структуры (рис. 6), так как при этом затрудняются индуцирование в их молекулах дипольного момента и ассоциация с молекулами растворителя [5]. В этом случае растворение является в основном следствием дисперсионного взаимодействия молекул. Повышение степени цикличности ароматических углеводородов приводит к увеличению их растворимости в результате большей поляризуемости таких м олекул, и энергия притяжения диполей превышает энергию дисперсионного цритяжения молекул. [c.49]

    Процесс растворения идет самопроизвольно (АОсО) и раствор остается ненасыщенным. Когда энтальпийный и энтропийный факторы в уравнении (П. 10) станут одинаковыми, т. е. ДО = О, система окажется в состоянии истинного равновесия. Раствор становится насыщенным. В таком растворе неопределенно долго могут сосуществовать без каких-либо изменений раствор и избыток растворяемого вещества. Так как скорость, с которой молекулы, отрываясь от поверхности твердого тела (при наличии его избытка), переходят в раствор, равна скорости осаждения молекул растворенного вещества на той же поверхности, равновесное состояние может быть нарушено только в результате изменения температуры, давления или введения других веществ (см. ниже). Из изложенного следует, что растворимости твердых веществ способствует склонность к возрастанию неупорядоченности, а их кристаллизации — энергетический фактор, т. е. склонность к понижению потенциальной энергии. Равновесие соответствует концентрации, отвечающей уравновешиванию обоих процессов. Наоборот, растворимости газообразных веществ благоприятствует тенденция к уменьшению неупорядоченности. [c.138]


Смотреть страницы где упоминается термин Энергия растворения молекул и растворимость: [c.235]    [c.8]    [c.393]    [c.52]    [c.322]    [c.321]    [c.206]    [c.174]   
Электрохимия растворов издание второе (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия молекул



© 2025 chem21.info Реклама на сайте