Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы получение из углеводородов и сероводорода

    Поскольку при переработке сернистого сырья сернистые соединения разлагаются с выделением сероводорода, сероводород всегда присутствует в газах термического крекинга сернистого сырья, в газах гидрокрекинга и гидроочистки. Дальнейшая переработка газообразных углеводородов без очистки от сероводорода невозможна не только вследствие сильной коррозии аппаратуры, но и потому, что сероводород является ядом для большинства промышленных катализаторов. При выделении из газа сероводорода одновременно решаются две задачи очистка газа и получение концентрированного сероводорода, являющегося сырьем для производства серы и серной кислоты. [c.356]


    Путем подбора соответствующих катализаторов превращению подвергается только содержащийся в газе сероводород. Углеводороды проходят через слой катализатора без изменений. Остальные элементы технологической схемы являются традиционными для установок получения газовой серы и прошли всестороннюю проверку в промышленности. [c.105]

    Для получения компонента автобензина фракцию смолы, выкипающую до 180 °С, подвергают селективной гидроочистке с целью гидрирования диеновых углеводородов, склонных к осмолению. При этом стремятся не затрагивать олефиновые углеводороды, так как их гидрирование приведет к снижению октанового числа бензина. Гидрирование проводят в легких условиях при 2—3 МПа и 170 °С в жидкой фазе на никелевом катализаторе [14, с. 25] или 150 С на палладиевом катализаторе [15, с. 140] при объемной скорости подачи сырья до 5 ч . При таких низких температурах гидрирования органических сернистых соединений, содержащихся в бензине, не происходит и сероводород не образуется. Водород, применяемый для процесса, не должен содержать сернистых соединений. Содержание же окиси углерода не должно превышать 5 млн. , так как окись углерода может образовывать в этих условиях карбонил никеля. [c.18]

    Характерной особенностью железооксидных катализаторов является их способность проводить реакцию окисления сероводорода в присутствии больших количеств углеводородов природного газа, которые при этом не подвергаются окислительным превращениям. Это дает возможность использовать железооксидные катализаторы для очистки природного газа от сероводорода с одновременным получением элементной серы. [c.66]

    На установках каталитического крекинга обычно "получают (% масс.) газа, содержащего водород, аммиак, сероводород и легкие углеводороды по С4 включительно, — до 20 высокооктанового компонента автомобильного бензина — до 60 кокса — от 2,5 до 8 остальное (за исключением потерь)—легкий и тяжелый газойли. В случае получения высокооктанового компонента авиационного бензина (в две ступени) выход его (от легкого сырья — фракции 200—350 °С) на цеолитсодержащем катализаторе достигает 45% (масс.) на сырье, на аморфном катализаторе — 27% (масс.). Кроме того, получают лигроин и полимеры. [c.68]

    Современные процессы гидрокрекинга дистиллятного сырья осуществляются по одно- и двухступенчатому вариантам над стационарными катализаторами. Если требуется получение большого количества легких топливных продуктов за счет глубокого превращения исходного сырья, чаще используется двухступенчатый вариант процесса. В этом случае на 1-й ступени происходит гидрогенизационное облагораживание исходного сырья на 2-й ступени (после удаления сероводорода, аммиака и легких углеводородов, образующихся на 1-й ступени) протекают основные реакции гидрокрекинга, гидрирования и изомеризации. При менее глубоких формах процесса используют одноступенчатый вариант гидрокрекинга. Одноступенчатый вариант может быть одностадийным или двух(трех)-стадийным. При одностадийной схеме применяют один тип катализатора при двух(трех)стадийной схеме используют два(три) типа катализатора, эксплуатируемых при различных параметрах, но в общем токе циркулирующего водородсодержащего газа. [c.276]


    Первая реакция идет без катализатора — сероводород сжигают при недостатке воздуха (во избежание дальнейшего окисления 502 в 50з). Объем воздуха, поступающего в зону горения, должен быть строго дозирован, чтобы обеспечить для второй ступени процесса требуемое соотношение 802 и НгЗ. Температура в печи для сжигания НгЗ в зависимости от концентрации НгЗ и углеводородов в газе составляет 1100—1300 С. Печь обычно представляет собой цилиндрический горизонтальный аппарат. Так, на установке, рассчитанной на получение 145 т серы в сутки , печь-реактор имела диаметр 3,66 м и длину 10,7 м. Горелки для газа смонтированы по длине печи или на одном из торцов. По оси печи размещена горизонтальная решетчатая перевальная стенка для лучшего перемешивания газа. [c.302]

    Контактные превращения бензотиофена изучались при 450 и 475 в этих условиях в продуктах крекинга не было установлено углеводородов, но при 475° в них найден полимер стирола. Поскольку молекула бензотиофена несимметрична (связи С—8 неравноценны), образуется меркаптан, который обнаружен при крекинге в незначительных количествах. Основным серусодержащим продуктом распада был сероводород. Элементарная сера найдена в катализате, полученном при 450°, и в коксовых отложениях на катализаторе. Степень распада бензотиофена не превышала 36%.  [c.170]

    Разработанная технология доочистки основана на методе прямого каталитического окисления сероводорода до серы кислородом воздуха. Основной процесс (установка получения элементарной серы) ведется с избытком сероводорода за счет снижения расхода воздуха на термической ступени. При этом равновесный процесс взаимодействия сероводорода и диоксида серы (реакция Клауса) на каталитических ступенях идет до полного превращения SO . В избытке сероводорода также гидролизуются сернистые соединения углерода ( Sj и OS), которые, как правило, образуются на термической ступени, если в кислом газе присутствуют углеводороды. Избыток сероводорода также благоприятно сказывается на работе катализатора процесса получения элементарной серы, так как тот не подвергается сульфатации. Остающийся в технологическом газе сероводород далее подвергается прямому окислению кислородом воздуха на высокоселективном катализаторе. [c.118]

    Еще во времена Мейера были разработаны лабораторные методы получения тиофена и, в частности, Мейеру принадлежат первые попытки синтеза тиофена из ацетилена или этилена и серы [1]. Развитие исследований в области каталитического синтеза тиофена и его гомологов подробно рассмотрено в обзоре [70]. Авторы его приходят к заключению, что в настоящее время наиболее перспективным следует считать метод, основанный на использовании продуктов переработки сернистых нефтей — Сд—Се углеводородов и сероводорода, и что значительной активностью в большинстве реакций образования тиофена и алкилтиофенов обладают многокомпонентные хромсодержащие катализаторы. В нашей стране имеются огромные запасы нефтей подобного типа, поэтому и такой путь получения тиофенов мог бы удовлетворять возникающие потребности в течение многих лет. [c.13]

    Необратимые отравления, приводящие к стойкой потере активности, которую нельзя устранить обработкой катализатора чистым газом, вызываются многими веществами, вступающими в химическое взаимодействие с катализатором или осаждающимися на его поверхности. Из таких веществ следует обратить внимание, прежде всего, на соединения, которые могут содержаться в газах, применяемых обычно в промышленном сщ -тезе аммиака (примеси сернистых соединений и высших углеводородов). Сероводород и органические соединения серы быстро полностью отравляют катализатор в процессе синтеза а.ммиака. Описанные в первой части книги (главы I и II) методы получения и очистки газовых смесей, применяемых в процессе синтеза аммиака, дают возможность с большой полнотой удалить из газа соединения серы. Таким образом, эти каталнз.д торные яды в синтезе аммиака не имеют большого значент я [c.490]

    ТОГО, ранее показано, что можно в определенных условиях получать тиофен из тиофана с выходами, близкими к равновесным, а также найдена возможность получения тиофенов из алкилтиофанов [549] и сульфона тиофана [501]. В присутствии твердых катализаторов различного состава при температуре выше 400°С тиофен получается из диалкилсульфидов, дисульфидов, сульфоксидов, сульфонов, тиофанов и сульфона тиофана. (табл. 56, 57). Реакция является в основном каталитической в отсутствие катализатора термическое превращение, например, диэтилсульфида начинается при температуре выше 400°С и протекает с небольшой скоростью тиофен без катализатора начинает образовываться при температуре выше 500°С при 570°С и т=0,6 с выход тиофена составляет около 5 мол. °/о. Превращение всех исследованных соединений двухвалентной серы в тиофены сопровождается разложением исходного вещества с образованием углеводородов, сероводорода, иногда меркаптана. В основном из соединений алифатического ряда образуются углеводороды с тем же числом атомов углерода, что и в алькильном радикале. Так, в углеводородной части катализатов, полученных при превращении ( 2Hs)2S, главным образом найдены этан и этилен. Состав углеводородных газов, образующихся при превращении циклических соединений, свидетельствует о разрыве молекулы по обеим связям С—S. Например, в углеводородной части катализата, полученного при превращении сульфона тиофана, в основном найден бутадиен-1,3 в очень небольших количествах обнаружены бутилен, бутан, пропилен, этилен, метан. Во всех опытах выход тиофена ниже, а глубина разложения выше равновесных. Это можно объяснить тем, что кроме реакции элиминирования серы происходит гидрогенолиз исходного соединения или тиофена с участием водорода, выделяющегося в реакции. [c.155]


    Конверсия метана коксового газа. Получение СО-водородной смеси на базе коксового газа может осуществляться высокотемпературной либо каталитической конверсией содержащегося в нем метана. Коксовый газ, очищенный от нафталина, поступает на очистку от сероводорода (моноэтаноламиновая или мышьяковосодовая), затем освобождается от тяжелых углеводородов в угольных фильтрах и направляется в конверторы, заполненные железохромовым катализатором, где при температуре 400° С сероорганические соединения конвертируются до сероводорода. Последний удаляется из газа на специальных установках. [c.16]

    Сернистые соединения в значительной степени ухудшают качество природного газа как сырья для различных технологических процессов, так и как технологического топлива. Они являются причиной повышенной коррозии аппаратуры, вызывают быстрое и необратимое отравление катализаторов, применяемых в процессах конверсии углеводородов. При сжигании газа, содержащего сернистые соединения, образуются высокотоксичные оксиды серы, которые, попадая в атмосферу с дымовыми газами, отрицательно воздействуют на окружающую среду. Вместе с тем, входящие в состав природного газа сернистые соединения являются сырьем для получения ценных продуктов. Из сероводорода, извлеченного из газов, получают элементную серу, этантиол и смесь природных меркаптанов (СПАЛ) используются для одорирования газов, этан- и бутантиолы применяются при производстве инсектицидов и моющих средств. Поэтому технологические схемы глубокой переработки природного и попутного газа, как правило, включают стадию очистки их от сернистых соединений. В зависимости от конкретных условий производства, [c.5]

    Производные тиофена реагируют с водородом с образованием соответствующего углеводорода и молекулы сероводорода (реакция 1). Производные бензтиофена при реакции с водородом образуют соответствующий алкилбензольный углеводород и сероводород (реакция 2). Кроме того, в зависимости от условий реакции и состава катализатора возможно получение нафтенового углеводорода (реакция 3). Аналогично взаимодействие дибензтиофенов с водородом может вести к образованию ароматического, нафте-но-ароматического или нафтенового углеводорода и сероводорода (реакции 4—6). При гидрировании нафтобензтиофенов кроме сероводорода возможно образование нафтено-ароматического или нафтенового углеводорода (реакции 7— 8). Гидрирование алифатических сульфидов ведет к образованию двух углеводородных молекул и молекулы сероводорода (реакция 9), а циклических — к образованию сероводорода и соответствующей углеводородной молекулы (реакция 10). При взаимодействии с водородом меркаптанов и дисульфидов также образуются углеводороды и сероводород (реакции 11 и 12). [c.293]

    Избирательное каталитическое гидрирование особенно широко применяется для доказательства строения сераорганических соединений ряда бензтиофена и дибензтиофена. Наиболее часто используют для этих целей скелетный никелевый катализатор (A i Ренея) при низких температурах (50—150° С) [106 1. В этих условиях удается практически полностью осуществить разрыв связей С—S с последующим связыванием никелем серы, выделяющейся в виде сероводорода. В большей или меньшей степени идет при этом и насыщение водородом двойных связей в ароматических кольцах, но сравнительно мало затрагиваются простые связи С—С. Следовательно, нрп избирательном каталитическом гидрировании сернистых соединений происходит отщепление атома серы при сохраненип углеродного скелета исходных молекул, т. е. осуществляется переход от сераорганических соединений к соответствующим углеводородам. Установление строения полученных в этих условиях углеводородов является поэтому прямым ответом на вопрос о химической природе содержащихся в нефти сернистых соединений. Чем ниже температура гидрирования и продолжительность процесса, тем меньше задеваются двойные связи в бензольных кольцах. [c.417]

    Недеструктивная гидрогенизация проводится для насыщения молекул углеводородов водородом без коренного изменения структуры молекул. Например, получение изооктана гидрированием изо-октена или циклогексана гидрированием бензола. Разновидностью этого процесса является обессоривание дизельного, реактивного топлив, бензинов и других продуктов. В этом случае сера, содержащаяся в сернистых соединениях исходного сырья, связывается с водородом и выделяется в виде сероводорода. Процесс гидрогенизации осуществляется в присутствии различных катализаторов прп температуре 200—450° и давлении 10—300 ати. [c.582]

    Установка типа 35-6. Установка предназначена для получения бензола и толуола из фракций 62—105°С или только бензола из фракции 62—85°С. Мощность установки 300 тыс. т/год. В схеме установки (рис. 40) не предусмотрена гидроочистка сырья. В на-I стоящее время все такие установки дооборудованы отдельными блоками гидроочистки. Схема блока гидроочистки такая же, как и на установке 35-11. Для обеспечения селективной и стабильной работы катализатора сырье должно подвергаться глубокой очистке от сернистых и азотистых соединений, а так же от воды. Гидро-очищенное и тщательно осушенное сырье, содержащее серы не более 0,0005 вес. % (5 ррт), в смеси с циркулирующим газом (влажность газа не более 30 мг1м ) подвергается риформингу в трех последовательно включенных реакторах. Нагрев исходной смеси и межреакторный ступенчатый подогрев осуществляют в многокамерном огневом трубчатом подогревателе. Так как установка предназначена для получения ароматических углеводородов, в схему включен реактор для гидрирования содержащихся в дистилляте непредельных углеводородов. Реакция гидрирования протекает при 280—320 °С. Стабильный дистиллят направляется на выделение ароматических углеводородов. Поскольку проектная схема не предусматривала блока гидроочистки, на установке имеется система очистки циркулирующего газа от сероводорода раствором моноэтаноламина и осушки газа диэтиленгликолем. При эксплуатации установки с блоком гидроочистки эти секции выключаются из работы. [c.101]

    Установки каталитического риформинга, как правило, состоят из блоков риформирования и гидроочистки. Они различаются по мощности, конструкции аппаратов и оборудования, катализатору и, в ряде случаев, технологическому режиму. На рис. 53 приведена принципиальная схема одной из таких установок. Перед каталитическим риформингом сырье подвергают гидроочнстке. Затем продукты поступают в отпарную колонну 5. Сверху ее выводят сероводород и водяные пары, а снизу — гидрогенизат. Гидрогенизат вместе с рецир кулирующим водородсодержащим газом нагревается вначале в теплообменниках, а затем в змеевиках печи 6 и поступает в реакторы риформинга 9. Продукты, выходящие из последнего реактора, охлаждаются в аппаратах 7, 2 и 3 и ра.зделя-ются в сепараторе 4 а газовую и жидкую фазы. Жидкие продукты фракционируют с целью получения высокооктанового компонента или других продуктов (ароматических углеводородов, сжиженного нефтяного газа и т. д.). Богатый водородом газ направляют на рециркуляцию, а избыток его выводят из системы и используют в других процессах. [c.168]

    В Советском Союзе разработан процесс гидрокрекинга в трехфазном кипящем слое, где твердая фаза представлена мелкосферическим алюмокобальтмолибденовым катализатором, жидкая фаза — смесью еще непрореагировавшего сырья с уже образовав-щимися низколетучими продуктами, а газовая фаза — смесь водорода, сероводорода, аммиака и паров углеводородов. На этой установке можно перерабатывать даже такое тяжелое остаточное сырье, как гудроны ромашкинской и арланской нефти, с получением дизельного и котельного топлива. Спад активности катализатора полностью устраняется его регулярным обновлением без изменения и нарушения технологического режима. Ниже приво- [c.282]

    Несмотря на то, что при гидрогенизации твердых топлив большая часть водорода (до 75%) расходуется на первой (жидкофазной) стадии, основные процессы, осуществляемые с целью получения высококачественных бензинов, протекают, как правило, в газовой фазе. Газофазную гидрогенеза-цию в прог<лышленной практике проводят в две стадии - предварительное гидрирование и расщепление (бензинирование). На каждой ступени используют свой катализатор. При предварительном гидрировании сырье обогащается водородом и освобождается от кислородсодержащих, сернистых и особенно азотсодержащих соединений, являющихся ядом для многих катализаторов. При этом происходит отщепление сероводорода, воды и аммиака. Кроме того, имеющиеся в сырье ароматические углеводороды превращаются в шестичленные нафтены, а олефины - в предельные углеводороды. [c.145]

    Как правило, прежде чем направить заводские газы на разделение, их подвергают очистке. Целью очистки чаще всего является удаление сернистых соединений, представленных в нефтяных газах в основном сероводородом. Присутствие сероводорода в газе недопустимо вследствие 1) корродирующих и токсичных свойств сероводорода и 2) отравляющего действия на многие катализаторы. Поскольку при переработке сернистого сырья концентрация сероводорода в газе может быть весьма значительна, необходимо не только удалять его из газа, но и использовать для получения серы или серной кислоты. Если тяжелые газовые компоненты получают с технологической установки в жидком виде (под давлением), их иногда подвергают только промывке щелочью для удаления сернистых и кислотных соединений. Для очистки углеводородов, находящихся в газовой фазе, используют водные растворы этаноламн-нов, фенолятов и других реагентов. Наиболее распространена очистка этаноламинами  [c.277]

    Амберг с сотр. [98—103] изучали процесс очистки углеводородов от тиофена на оксиде хрома и кобальтмолибдате и определили относительные скорости различных стадий при 415 и и 400 °С соответственно. На обоих катализаторах начальная стадия при гидросероочистке — расщепление связи углерод — сера с получением бутадиена, а определяющая стадия — реакция адсорбированного олефина с водородом до образования бутана. Сероводород замедляет гидроочистку от тиофена и гидрирование бутенов, слабо влияет на г ис-гранс-изомеризацию или изомеризацию двойной связи, а также на гидрирование бутадиена. Данные результаты наводят на мысль, что при гидросероочистке участвует более одного типа активных мест поверхности катализатора. Идентификация этих мест могла бы быть полезна при разработке более активных и селективных катализаторов гидросероочистки. [c.86]

    Реакции разложения на элементы мог)гг быть практически возможны или при очень высоких температурах (выше 700° С), или в присутствии определенных металлических катализаторов при более умеренных температурных условиях. Никель является одним из наиболее энергичных катализаторов, ускоряющих разложение парафинов, как и других углеводородов, на элементы или метан и элементы. Сабатье и Сандерен [111] описали частичное разложение метана на углерод и водород при 390° С и этана при 325° С в присутствии никеля. Фрей и Смит [39] и Херд [56] наблюдали очень быстрое разложение пропана и бутана на углерод и газы при 350—400° С и 500° С в присутствии того же катализатора. Катализаторами подобного типа являются медь, железо, монель- леталл, многие другие тяжелые металлы и некоторые неметаллы, например селен. Особенно активны порошкообразные металлы. С Другой стороны, тот факт, что железные трубы не активируют разложение нефти на элементы в обычных условиях крекинга, должен указывать или на неактивность железа в виде сплошной массы или на деактивацию металлической поверхности вследствие отложения углерода. Однако каталитическое действие металлической поверхности труб может быть заметно при повышенных температурах, применяемых при крекинге в паровой фазе или в таких процессах, как дегидрогенизация. Предварительная обработка труб при высоких температурах паром или сероводородом может деактивировать металлическую поверхность. Небольшие количества пара или сероводорода (или других соединений серы), добавленные к сырью для крекинга, могут вызвать тот же эффект. В результате такой обработки активная металлическая поверхность покрывается неактивными окислами или сульфидами. Полученный эффект может быть приписан также отравлению активной поверхности образовавшимися окислами или сульфидами. [c.11]

    Наиболее рациональным методом получения тиофеыов с точки зрения практической реализации является циклизация углеводородов С4—С.5 с сероводородом, в особенности, диеновых углеводородов — дивинила (бутадиена-1,3) и пиперилена (пентадиена) [Пат. 158164 ВНР, 1974]. В качестве эффективных катализаторов данного процесса используют промотированные оксидами элементов I и П1 групп Периодической системы оксиды алюминия и хрома. Перспективность такого процесса определяется н тем, что он базируется на сероводороде — отходе нефтегазоперерабатывающей, химической, металлургической и ц е л л ю л о 31 ю б у м а ж н о й п р о м ы ш л е н н о 1. [c.329]

    В последнее время получил распространение метод очистки нефтепродуктов путем гндрпгсипзаиии их под давлением 30— 700 н см при 250—420° С в присутствии катализаторов (кобаль-то-молибденовых). Гидроочистка основана на умеренной селективной гидрогенизации, в результате которой из органических соединений серы, кислорода и азота получаются углеводороды с одновременным выделением сероводорода, аммиака и воды. Ненасыщенные углеводороды при этом переходят в насыщенные. Выделяющийся с газами сероводород может быть использован для получения серы или серной кислоты. При гидроочистке используется дешевый водород, получаемый в процессах риформинга. [c.80]

    В отсутствие сероводорода дегидратация 2,2 5,5-тетраалкилфурани-динов при контакте с окисью алюминия происходит неупорядоченно — получается широкая смесь диеновых и этиленовых углеводородов, наблюдается значительное разложение при действии же сероводорода главным продуктом реакции (30%) является диеновый углеводород с сопряженной системой двойных связей в еще большей степени (68%) последнее направление реакции Выражено в том случае, когда дегидратация производится в присутствии воды [2]. Отсюда следует, что гидратация с образованием диолов-1,4 является необходимой промежуточной стадией для гладкого получения диеновых углеводородов сопряженного типа из фуранидинов при контакте их с катализаторами дегидратации. [c.181]

    Не нашли практического применения синтезы тиофена и его гомологов из диеновых углеводородов и серы [27, 28], диеновых углеводородов и сероводорода на различных катализаторах и в их отсутствие [29—30], из алифатических углеводородов и серы при температурах 600—700° [7, 13, 15—26], из олефинов и серы в присутствии ускорителей [32], из галоидугле-водородов со смесью сернистого ангидрида и сероводорода [32], из моноолефинов и сернистого ангидрида [36—46], из спиртов и сернистого ангидрида [55—58], из альфа-окисей с сероводородом в присутствии гидрата окиси бария [59] и из альфа-дикетонов и эфиров альфа-кетокислот с тио-диуксусной кислотой [59—61]. Наиболее высокий выход тиофенов (30—40%) был получен конденсацией 1,4-дифункциональных соединений с сульфидами типа P2S3 при высоких температурах [47—54]. [c.28]

    Наиболее часто встречающиеся процессы гидроочистки как бензиновых, так и керосино-газойлевых фракций на алюмомолибденовых или алюмохромовых катализаторах имеют обычно следующие рабочие параметры температура 320— 430°, давление 14—100 атм и отличаются большой подачей водорода 18—900 лг на 1 м сырья [3]. Интересно отметить, что в некоторых процессах подачи водорода извне не требуется, так как в этих случаях используется водород, выделяющийся при дегидрировании части гексаметиленовых углеводородов, находящихся в сырье (автофайнинг) [47]. Процесс гидроочистки выгоден также и тем, что при этом получается значительное количество сероводорода, который легко перерабатывается в элементарную серу. Так, при обессеривании сырья с концентрацией серы 1,9% был получен продукт с конечным содержанием серы 0,008%, при этом выход элементарной серы составил 1,7 т на 100 м [1]. [c.202]

    Внедрение отечественного промышленного каталитического риформинга началось со строительства в 1955 г. опытной установки мощностью 4 т/сут и опытно-промышленной установки 35-4 в 1959 г. мощностью 100 тыс. т/год с целью получения автобензина с октановым числом по моторному методу 72—74 пункта и ароматических углеводородов [2]. На опытной установке предусматривалась - защита катализатора от сероводорода путем адсорбционной очистки циркулирующего водорода [181]. Параметры процесса следующие давление 4 МПа, объемная скорость подачи сырья 1,5 ч и кратность циркуляции водородсодержащего газа примерно 1500 hmYm [170]. В 1962 г. были введены две (в то время укрупненные) установки риформинга 35-5 для получения бензина с октановым числом 75 по моторному методу. [c.71]

    Полное удаление сероводорода из газовых смесей, предназначенных для дальнейшей обработки, часто является нежелательным. Например при обработке смеси газообраэньк углеводородов водяным паром при. 1000° в присутствии катализатора, содержащего хром, с целью получения водорода и окиси углерода, эффективность катализатора по некоторым данным повышается в том случае, если в реакционной смесн присутствует примерно 1% сероводорода, или какие-либо другие газообразные соединения серы  [c.462]

    Влияние углеводо родов в сырьевом газе. Присутствие углеводородов в кислом газе, поступающем на производство элементарной серы, вызывает необходимость увеличить подачу воздуха по сравнению с количеством, требуемым для протекания реакции с сероводородом. Если на 2 моля сероводорода требуется всего 1 моль кислорода, то на 1 моль метана расходуется 2 моля кислорода, на 2 моля этана — 7 молей кислорода и на 1 моль пропана — 5 молей кислорода. Углеводороды могут также пиролитически разлагаться, дезактивируя катализатор в результате отложения слоя кокса на активной пове рх ности [613]. Образование углеродистых отложений, по-видимому, подавляется, если поддерживать в каталитических реакторах температуру в пределах 400—500 °С [49, 628]. Иногда высокое содержание углеводородов в сырьевом газе приводит к получению окрашенной товарной серы [561]. [c.371]

    В отличие от обессеривания при помощи пиролюзита, описанного в патентной литературе [3], пиролюзит и другие марганцевые руды применяются нами в атмосфере водорода, что создает благоприятные практические условия для образования сероводорода из сераорганических соединений и дальнейшего его перехода в сульфид марганца. Термодинамические расчеты реакций гидрогенолиза сераорганических соединений типа содержащихся в нефтях показывают, что их равновесие сдвинуто в сторону образования сероводорода и сбответствующего углеводорода, однако практически глу- 1на гидрогенолиза не для всех сераорганических соединений является достаточно полцой. Ее можно резко увеличить, если в процессе гидрогенолиза катализатором-адсорбентом из газовой фазы будет удаляться сероводород. Это и достигается применением восстановленного пиролюзита или восстановленной марганцевой массы, полученной на базе гидрата закиси мар-гарда и карбоната марганца. В процессе сероочистки нефтепродуктов закись марганца переходит в сульфид, который после регенерации вновь переходит [c.196]

    Сероводород является одной из самых нежелательных примесей в газе поскольку он ядовит и способен оказывать корродирующее действие на металлы. Кроме того, загрязнение газа сероводородом приводит к дезактивации и отравлению катализаторов, применяемых во многих процессах производства и использования водорода, как, например, при конверсии СО, конверсии углеводородов, синтезе аммиака, синтезе метанола, гидрогенизации пищевых жиров и т. д. Поэтому очистка газа от сероводорода предусматривается в большинстве схем получения водорода. Так, при производстве водорода или сицтез-газа методом газификации твердых или-жидких топлив (содержащих обычно в своем составе серу) очистке от НгЗ подлежит водяной газ, поскольку для дальнейшего получения из него водорода водяной газ должен быть направлен на каталитический процесс конверсии окиси углерода. При получении водорода из углеводородных газов — очистке от серы подвергается первичное газообразное сырье. При железо-паровом способе сероводород удаляется из целевого газа — технического водорода. Практически, из промышленных способов получения водорода только процесс электролиза воды не связан с очисткой газа от сероводорода. [c.316]

    Биокатализаторы интересны еще и с другой точки зрения реакции, катализируемые ими, протекают с достаточной скоростью при обычных температурах и давлениях многие реакции в присутствии химических катализаторов возможны лишь при высоких температурах, а часто и высоких давлениях. К биокатализаторам указанного действия относятся бактерии, обеспечивающие, например, фиксацию азота воздуха (азотобактеры), выделение железа и окислов железа (железные бактерии), получение серы из сероводорода и других сернистых соединений (серные бактерии), различные превращения углеводородов (нефтяные бакте-рии), образование белков из нефти и т. д. В результате таких процессов получаются продукты, обладающие более высокой энтропией, чем исходные. Происходит это за счет параллельно идущих экзотермических процессов, особенно процессов окисления. Необходимо глубже вникнуть в механизм действия такого рода ферментативных систем, чтобы изыскать возможности восироизведения их с помощью искусственных катализаторов. Пока мы еще не создали таковых, здесь нужны широкие исследования возможностей осуществления промышленных процессов с применением природных ферментов в виде соответствующих бактерий и грибков. [c.19]

    Этот способ получения БК в среде насьпценных углеводородов с использованием комплексных катализаторов-соединений А1С1з и ГАОС с аренами, кислотами, зефирами, водой, сероводородом и другими веществами-лишен многих недостатков [89, с. 132]. По увеличению активности (показатель-степень полимеризации Рт,) донорно-ак-цепторные комплексы с водой можно расположить в ряд  [c.181]

    Природный газ проходит сепаратор 7 для отделения жидких углеводородов, сжимается турбокомпрессором2до 28—30ат и подогревается в подогревателе 3 за счет сжигания в межтрубном пространстве природного газа. Последующую очистку проводят в две стадии. В аппарате 4 при 380—400 °С осуществляется каталитическое гидрирование органических соединений серы до сероводорода (водород или подходящий по условиям процесса водородсодержащий газ вводят перед подогревателем 3). В адсорбере 5 при температуре 360°С сероводород поглощается адсорбентом на основе окиси цинка (объем катализатора и поглотителя должен обеспечивать срок службы, определенный для катализатора синтеза метанола, или быть больше его). В избранных технологических условиях достигается высокая степень очистки. Очищенный газ подают на конверсию в трубчатую печь 6 в газ предварительно вводят необходимое количество водяного пара и двуокиси углерода. Температура паро-газовой смеси повышается в подогревателе трубчатой печи за счет тепла дымовых газов до 530—550 °С подогретый газ направляется непосредственно на катализатор в реакционные трубы. Процесс паро-углекислотной конверсии проходит при давлении до 20 ат. Тепло, необходимое для конверсии, получается в результате сжигания отходов производства или природного газа в специальных горелках. Тепло дымовых газов, имеющих температуру выше 1000°С, используют для подогрева паро-газовой смеси, получения пара высокого давления в котле-утилизаторе, подогрева воды, питающей котлы, и топливной смеси перед подачей ее в горелки трубчатой печи 6. Охлажденные до 200—230 °С дымовые газы выбрасываются в атмосферу или частично направляются на выделение двуокиси углерода. [c.85]

    Гидроочистка заключается в обработке очищаемого продукта водородом в присутствии катализатора при температуре 250— 420° и давлении от 3 до 70 ат. Водород взаимодействует с олефинами, переводя их в насыщенные углеводороды, а сернистые, азотистые и кислородсодержащие соединения образуют сравнительно легкоотделяемые от очищаемого продукта сероводород, аммиак и воду. Гидроочистка получает все большее распространение, так как позволяет применять для получения нефтепродуктов высокосернистые нефти. [c.186]


Смотреть страницы где упоминается термин Катализаторы получение из углеводородов и сероводорода: [c.98]    [c.82]    [c.256]    [c.367]    [c.5]    [c.174]    [c.180]    [c.256]    [c.191]   
Производство сероуглерода (1966) -- [ c.138 , c.140 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы получения

Катализаторы углеводородов

Сероводород получение vr



© 2025 chem21.info Реклама на сайте