Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции диэлектрической проницаемости растворителя

    В ДПЭ-растворителях, напротив, сольватация анионов выражена очень слабо. Причиной этого является отталкивание отрицательных основных центров аниона и молекул растворителя. В соответствии с теорией жестких и мягких кислот образование сольватной оболочки около больших поляризуемых анионов (1 , 5СН-, 5 ) возможно только под действием дисперсионных сил (разд. 33.4.3.4). Жесткие же анионы (Р , ОН , ЫН -) в таких средах совершенно обнажены и поэтому проявляют высокую активность в реакциях с нуклеофильными заместителями. Предпочтительная сольватация катионов, вследствие чего образуются сольватные комплексы большого размера, снижает электростатическое притяжение между сольватирован-ными катионами и анионами, у которых практически не имеется сольватной оболочки. Такое состояние ионов в растворе способствует увеличению реакционной способности анионов, которая увеличивается еще и за счет высокой диэлектрической проницаемости растворителя. [c.449]


    Важной характеристикой растворителя, влияющей на механизм реакции, является диэлектрическая проницаемость, от которой в первую очередь зависит состав частиц, на которые распадаются вещества-электролиты в растворе (разд. 34.2.4). Кроме того, диэлектрическая проницаемость растворителя влияет на процесс диссоциации, а также кислотно-основное равновесие. Так, рекомбинация ионов в нейтральные молекулы происходит преимущественно в растворителях с низким значением диэлектрической проницаемости г, а увеличение е способствует их диссоциации. Выбор подходящего растворителя или их смеси позволяет получить любое значение е среды, в которой протекает реакция. Этим широко пользуются при титровании в неводных растворителях (разд. 39.9). [c.457]

    В реакциях полярных частиц в полярных средах проявляются электростатические взаимодействия на константу скорости реакции влияют диэлектрическая проницаемость растворителя и ионная сила раствора. Однако далеко не во всех случаях эксперимент согласуется с электростатической моделью, рассматривающей растворитель как континуум. Вызвано это тем, что растворитель дискретен, состоит из молекул, и поэтому его примитивная электростатическая модель не [c.134]

    Общие рекомендации по выбору растворителя для титрования. Из уравнений (11.40) —(11.43) следует, что полнота протекания кислотно-основных реакций прямо пропорциональна константе диссоциации растворенного соединения и обратно пропорциональна ионному произведению растворителя. Обе эти величины определяются диэлектрической проницаемостью растворителя. Полные уравнения для констант равновесия включают еще константы диссоциации титрантов и образующихся солей. Если образующиеся соли нерастворимы, то в уравнения входят величины произведений растворимости. [c.200]

    Влияние диэлектрической проницаемости растворителя здесь сводится к затруднению реакции ассоциации, а сольватация служит источником энергии не для процесса диссоциации молекул, а для процесса разрушения решетки. В воде все ионофоры являются сильными электролитами и присутствуют в виде независимых гидратированных ионов. В растворителях с меньшей диэлектрической постоянной равновесие ассоциации смещается вправо, так что возрастает число двойников, уменьшается электропроводность и появляется аномальная проводимость. [c.308]

    На скорость реакций влияет характер растворителя. Имеет значение диэлектрическая проницаемость растворителя. Для наиболее распространенного в аналитической химии случая, когда реагируют между собой ионы противоположного знака, скорость реакции уменьшается с увеличением диэлектрической проницаемости. Большинство органических растворителей имеет диэлектрические проницаемости меньше, чем у воды, и поэтому скорость реакций в таких растворителях больше, чем в водных растворах. Однако такая корреляция наблюдается далеко не всегда. Она справедлива только в пределах группы растворителей одного гомологического ряда или для серии смесей переменного состава, приготовленных из определенной пары растворителей. [c.443]


    Соблюдение этой закономерности иллюстрирует рис. 1, на котором изображены зависимости 1п/( от 1 /е для основных типов химических процессов в растворах, рассмотренных ранее. Если же добавить к этому, что в таких процессах принимают участие разнообразные химические соединения, а сами реакции протекают в разнообразных растворителях, то выведенная закономерность, устанавливающая зависимость глубины протекания процессов от диэлектрической проницаемости растворителя, приобретает фундаментальную общность. [c.36]

    К4М Х , повышение диэлектрической проницаемости растворителя ведет к существенному повышению скорости реакции. Так, скорость реакции алкилирования а-пиколина бромацетофеноном при переходе от толуола (ДП = 2,3) к нитробензолу (ДП=34,8) увеличивается в 25 раз. [c.79]

    Так же как и при рассмотрении равновесных процессов, при выводе уравнений, связывающих скорость процесса с диэлектрической проницаемостью, предполагалось, что растворитель — химически индифферентная среда. Однако химические (специфические) взаимодействия растворенного вещества с растворителем оказывают громадное влияние на скорость химической реакции. Влияние ЭТО часто бывает настолько велико, что диэлектрическая проницаемость растворителя отходит на второй план, а то и вовсе не сказывается. Здесь для иллюстрации этого положения можно обойтись одним, зато достаточно выразительным, примером. Реакция дегидробромирования пентабромэтана пиридином [c.81]

    Невозможность описания взаимодействий между растворителем и растворенным веществом с помощью диэлектрической проницаемости растворителя явилась причиной многочисленных попыток выразить полярность растворителя через те илп иные эмпирические параметры. Попытки найти такие параметры полярности растворителя путем подбора зависящей от растворителя стандартной системы и контроля изменений параметров этой системы при переходе от одного растворителя к другому (например, констант зависящих от растворителя скоростей реакций или смещений в спектрах сольватохромных красителей) рассматриваются в гл. 7. [c.101]

    Лейдлер отмечал [11, 242], что уравнение (5.88) имеет лишь полуколичественный характер и позволяет только весьма грубо оценить влияние диэлектрической проницаемости среды на скорость реакции с участием биполярных реагентов. Это справедливо и по отношению к уравнениям (5.87) и (5.90). Тем не менее во многих случаях экспериментально была обнаружена удовлетворительная корреляция между константой скорости реакции и функцией диэлектрической проницаемости растворителя примером может служить реакция Меншуткина между триалкил-аминами и галогеналканами, приводящая к четвертичным солям тетраалкиламмония [2, 56, 58, 60, 61, 64, 65, 245—247]. [c.284]

    Природа растворителя может заметно влиять на скорость окислительно-восстановительной реакции многие реакции, для которых в промежуточных стадиях участниками были ионы и радикалы, генерируемые из молекул воды (ОН , -ОН, -ОаН и др.), замедляются в среде неводных растворителей. Этому же способствует уменьшение диэлектрической проницаемости растворителя. [c.280]

    Явление, которое определяется как кислотная или основная диссоциация, представляет собой в действительности процесс переноса протона или протолиз. Этот процесс происходит с участием растворителя и формально описывается с помощью уравнения (VII.2). Полнота кислотно-основной или солеобразующей реакции в равной степени зависит как от кислых или основных свойств растворителя, так и от свойств растворенной кислоты или основания. Если образуются ионы, то на полноте диссоциации сказывается также величина диэлектрической проницаемости растворителя. [c.162]

    С другой стороны, степень протекания протолитической реакции зависит не только от силы кислоты и основания, но также от диэлектрической проницаемости растворителя и других факторов. Измерения кислотности имеют важное практическое значение, так как позволяют предсказать полноту протекания [c.173]

    Зависимости между диэлектрической проницаемостью растворителя и константой скорости реакции [572, 573], магнитной восприимчивостью и шириной запрещенной зоны изоэлектронных соединений [574], показа- [c.101]

    Аналогичные примеры найдены для реакций гидролиза сложных эфиров кислотами и основаниями, активированные комплексы в которых сильно полярны за счет ионизации карбонильных групп во второй главе обсуждаются именно такие механизмы реакции. За счет ориентации растворителя активированными комплексами энтропия активации в таких реакциях очень мала. И реакция ускоряется с повышением диэлектрической проницаемости растворителя. [c.238]

    Реакция сильно ускоряется с увеличением диэлектрической проницаемости растворителя [12]. Это означает, что переходное состояние является полярным, что и следует ожидать при механизме А 2. [c.321]


    Скэтчард [1], используя выражение из теории Дебая —Хюк-келя для потенциала 1) вблизи иона, нашел уравнение, описывающее влияние диэлектрической проницаемости растворителя на скорость реакции между ионами. Выражение для потенциала г) имеет вид [c.9]

    Это уравнение давало бы изменение удельной константы скорости при изменении диэлектрической проницаемости растворителя при нулевой ионной силе и постоянной температуре, если бы изменение скорости реакции при изменении О, а значит и состава растворителя, в основном определялось электростатическими факторами. Выбор стандартной величины диэлектрической проницаемости не определен однозначно. Лейдлер и Эйринг [3] выбирают в качестве стандартного состояния газовую фазу, где диэлектрическая проницаемость равна единице. Вместо уравнения (1.12) тогда получаем [c.11]

    Таким образом, и теория, и эксперимент показывают, что диэлектрическая проницаемость растворителя оказывает значительное влияние на энергию активации, а значит и на скорость реакции. Отклонение от теории, которое становится все более заметным по мере уменьшения диэлектрической проницаемости растворителя, можно в какой-то степени отнести за счет избирательной сольватации ионных реагентов одним из компонентов растворителя, как правило, более полярным. Влияние других свойств растворителя, таких, как вязкость, когезия, образование водородных связей, а также степень склонности к сольволизу в данном растворителе, будет рассмотрено ниже. Несомненно, однако, что они играют определенную роль, [c.25]

    Некоторые дополнительные опыты, поставленные Симпсоном и Каузманом для выяснения этого вопроса, не дали окончательного ответа. Было найдено, что скорость распутывания спирали не зависит от pH в интервале значений pH от 7 до 9, так что, по-ви-димому, электростатический заряд молекулы не оказывает влияния на скорость реакции. Диэлектрическая проницаемость растворителя в интервале 78—126 также, вероятно, не оказывает влияния на ход реакции. Поэтому можно полагать, что электростатические силы не играют главенствующей роли в механизме реакции. [c.718]

    Приведенные величины показывают, что для скорости реакции диэлектрическая проницаемость растворителя не имеет решающего значения. Не наблюдается пронорциональности и с другими известными параметрами растворителей (см. гл. 2). Повышение скорости реакции обусловлено главным образом понижением энергии активации. Сильно отрицательные энтропии активации [c.497]

    Особенность реакций в растворах—взаимодействие реагентов с растворителем (см. раздел XVII. 2 об области захвата). В отличие от реакций в газах в растворах часто происходят ионные реакции, на которые влияет диэлектрическая проницаемость растворителя и [c.226]

    Величина AG° характеризует влияние ионной силы и диэлектрической проницаемости растворителя в случае реакций между ионами в растворах (гл. XX). Энергию активации в уравнении (XVII. 31) определяют по уравнению (XVII. 23) теоретически вычислить ее не удается (см. стр. 237). [c.241]

    Теоретическое исследование кинетики и механизма химических реакций в растворах — намного более сложная задача по сравнению с исследованием газовых реакций, поскольку р растворах реагирующие вещества могут взаимодействовать с растворителем (следует учитывать влияние диэлектрической проницаемости растворителя, степень гидратации, присутствие посторонних компонентов и т. д.). Существует много различных типов реакций в растворах для некоторых из них влиянием растворителя мож но пренебречь (особенно в тех случаях, когда используются неполярные растворители). При некоторых условиях участники реакции взаимодействуют с такой же скоростью, как и в газах, как, например, при разложении N205. Существенным фактором является число столкновений между молекулами реагирующих веществ в растворе (включая растворитель). Дебай и Рабинович провели оценку числа столкновений в растворе, согласно которой оно примерно в три раза больше, чем в газовой фазе. Это согласуется с экспериментальными данными, также подтверждающими, что фактор столкновений для реакций в растворах увеличивается примерно в три раза. Так как энергия активации практически не меняется, скорость реакций в растворе также увеличивается в три раза по сравнению с газовыми реакциями. Для реакций в растворе характерна также небольшая подвижность реагирующих частиц (по сравнению с реакциями в газовой фазе). Для цепных и других реакций, в которых появляются Б качестве промежуточных частиц радика- [c.183]

    Для реакций нуклеофильного замещения, механизм которых связан с распределением зарядов в реагирующей молекуле в момент активации, скорость реакции повышается с ростом диэлектрической проницаемости растворителя, что способствует ионизации связи. Так, в реакциях сольволиза грет-бутилхлорида (СНз)зСС1, являющегося излюбленным объектом в исследованиях влияния среды на кинетику химических процессов, протекание процесса связано с промежуточным образованием ионный пары (СНз)зС" "С1 , вследствие чего в ряду растворителей этиловый спирт (ДП = 24,3) — метиловый спирт (ДП = 32,6) —формамид (ДП= 109,5) соотношение скорости реакций равно 1 9 430. Интересно, что в воде, которая из-за своей исключительно высокой сольватирующей способности обеспечивает ионизацию, скорость реакции в 335 000 раз выше, чем в этаноле. [c.78]

    Напротив, реакции, при которых происходит распределение (уничтожение) заряда, уменьшают свою скорость при повышении диэлектрической проницаемости растворителя. Так, реакция распада ТрИЭТИЛСуЛЬфоНИЙбрОМИДа (С2Н5)з5 Вг =Ь (С2Н5)23 + [c.79]

    Естественно, что нейтрализация зарядов при реакции нуклеофильного замещения также ведет к тому, что повышение диэлектрической проницаемости растворителя понижает скорость процесса. Так, скорость гидролиза солей триметилсульфония (СНз)з5++0Н = СНзОН+ СНз)28 при переходе от этилового спирта к воде уменьшается в 20 ООО раз. [c.79]

Рис. 9. Зависимость константы скорости реакции этилброммалоната с тиосульфатом от диэлектрической проницаемости растворителя (25 С). Рис. 9. <a href="/info/9213">Зависимость константы скорости реакции</a> этилброммалоната с тиосульфатом от <a href="/info/471">диэлектрической проницаемости</a> растворителя (25 С).
    Скорость, с которой происходят столкновения между частиц ми реагента, зависит от ряда факторов. К ним относятся, безусловно, концентрации реагентов. Поскольку это влияние в явном ввде учитывается кинетяческим уравнением, целесообразнее уделить внимание другим важным факторам — температуре, диэлектрической проницаемости растворителя и ионной силе электролитов, присутствующих в реакционной среде. Скорость реакции может меняться (увеличиваться или уменьшаться) в присутствии веществ, уско-ряюшдос (катализаторы) или замедляющих (ингибиторы) реакцию. Катализ представляет собой явление, требующее отдельного подробного рассмотрения (разд. 6.3). [c.330]

    В неполярных растворителях, например в бензоле или диэтиловом эфире, бесцветное вещество (2а) образует бесцветный раствор. В более полярных растворителях (например, в ацетоне, ацетонитриле) появляется темно-красная окраска (Я = 475—490 нм), обусловленная стабилизированным резонансом карбанионом (За), причем интенсивность окраски возрастает при повышении полярности растворителя. Углерод-углерод-ную связь в соединении (2а) можно разорвать путем простой замены менее полярного растворителя на более полярный. Движущей силой такого гетеролитического расщепления связи является сольватация катиона и аниона, а для осуществления обратной реакции достаточно заменить растворитель на менее полярный. В соответствии с уравнением Борна для электростатического взаимодействия [285] энергия Гиббса гетеролиза (2а) хорошо коррелирует с обратной диэлектрической проницаемостью растворителя отклонения в сторону более высоких значений АО°гет наблюдаются в растворителях-ДЭП, например в диметилсульфоксиде [284]. [c.80]

    И снова при описании общих эффектов природы ионных реагентов и диэлектрической проницаемости растворителя оказывается полезной электростатическая теория. Более того, простую электростатическую модель впервые применили для расчета влияния диэлектрической проницаемости и ионной силы среды на скорости именно ионных реакций. В соответствии с уравнением (5.96) изменение. чнергии Гиббса, сопровождающее образование ионной пары из ионов А и В в стандартной среде с диэлектрической проницаемостью ег, равно электростатической энерпии сближения двух точечных зарядов г в и на расстояние Гдв (Л А — число Авогадро). [c.294]

    Тот факт, что бимолекулярные реакции с участием анионов в биполярных растворителях-НДВС протекают значительно быстрее, чем в протонных растворителях, при сравнимой диэлектрической проницаемости растворителей этих двух типов, важен (в том числе и с практической точки зрения) не только в реакциях замещения, но и в реакциях элиминирования, отщепления протона и присоединения [6]. [c.321]

    Для выяснения характера распределения атомов хлора в ХСПЭ Нерсесян и Андерсен [59] использовали метод кинетического анализа, основанный на различиях в скоростях реакции между хлоридами и аминами в зависимости от структуры хлорида, степени основности амина, диэлектрической проницаемости растворителя и температуры реакции. [c.37]

    Способ получения частиц коллоидного размера альтернативный дроблению основан на конденсации вещества, находящегося первоначально в парообразном или растворенном состоянии. Конденсация, т. е. образование частиц твердого или жидкого вещества из его газообразной фазы или раствора, наступает при перенасыщении пара или раствора. Перенасыщение означает увеличение концентрации сверх той величины, которая присуща веществу при данных условиях (температура, природа растворителя). Перенасыщение может быть создано изменением физических условий (температура, давление газа, диэлектрическая проницаемость растворителя и др.), в которых находится исходная гомогенная фаза (пар, раствор), или проведением химической реакции между компонентами гомогенной фазы, при которой образуется новое вещество, являющееся нелетучим или нерастворимым при условиях проведения реакции. Если гомогенная система находится в мета-стабильном состоянии (перенасыщена, перегрета, переохлаждена), то конденсация вызывается введением зародышей новой фазы или иных центров конденсации. Примеры физической конденсации образование тумана (взвеси капель воды в воздухе) при охлаждении влажного воздутса, образование коллоидного раствора канифоли в воде при разбавлении водой спиртового раствора канифоли, образование полукол юидного раствора, сопровождающееся помутнением круто заваренного чая при его охлаждении, проявление треков элементарных частиц в камере Вильсона или в пузырьковой камере. Примеры химической конденсации образование дыма (взвеси частиц сажи в воздухе) при сгорании топлива, сигнальных, маскировочных и других дымов при срабатывании пиротехнических изделий, красивые реакции образования ярко-синего раствора берлинской лазури (коллоидного раствора гексацианоферрата желе-за(1П)) и ярко-красного раствора (коллоидного) тио-цианата железа(1П). Во многих реакциях качественного анализа на присутствие в растворах тех или иных ионов образуются коллоидные растворы. [c.751]

    Таким образом, в общем виде для данного значения [К] при заданной температуре скорость неразветвлеиной цепной реакции можно увеличить, повышая кр или I и уменьшая О или М, и понизить, действуя в обратном порядке. Скорость разветвленной цепной реакции в стационарном режиме можно увеличить, повышая кр или Р и уменьшая О или М, и снизить при противоположных изменениях этих величин. Эти возможности позволяют понять катализ и ингибирование цепных реакций. Катализатор обычно приводит к увеличению I или Р и значительно реже — к уменьшению С трудно представить себе какие-либо пути, которыми катализатор может уменьшить М, если только такой путь не включает электростатические эффекты типа изменений в диэлектрической проницаемости растворителя (см. стр. 432). В некоторых полимеризационных процессах, дающих стереорегулярные полимеры, катализатор меняет природу стадии роста цепи, но он, вероятно, влияет также и на скорость инициирования. В небольшом числе ионных реакций катализатор (или полученные из него частицы) участвует в стадии роста. Ингибитор обычно действует, увеличивая О или М и значительно реже — уменьшая Р или I. Следует отметить, что в случае разветвленных цепных реакций часто очень трудно отличить уменьшение Р от увеличения С, поскольку каждый из них приводит к одному и тому же кинетическому эффекту. Примеры, относящиеся к этим проблемам, будут рассмотрены подробно в разд. 4 гл. XI. Для неразветвленных цепных процессов существует много примеров реакций, скорость которых соответствует общим уравнениям [c.357]

    До сих пор мы не упоминали еще об одном факторе, который играет важную роль для многих реакций в растворах, а именно об энергии сольватации. Для реакций нейтральных частиц в неполярных растворителях ее вклад невелик, но становится значи-тСоЧьным для ионов (или сильно полярных молекул) в сольвати-рующих растворителях. Недостаточное развитие теории жидкой фазы не позволяет проводить массовые расчеты полной энергии сольватации, однако при помощи формулы Борна удается оценить величину одного из вкладов в энергию сольватации. Для этого необходимо знать электронные заряды на атомах д ) растворенного вещества и относительную диэлектрическую проницаемость растворителя (ег)  [c.466]

    Сопоставление скорости изотопного обмена с кислотно-ос-(говными свойствами веществ (электропроводность, константы диссоциации, способность к реакциям металлирования, распределение и т. д.) показывает, что скорость возрастает параллельно с возрастанием кислотных или основных свойств веществ. Так, бензол, толуол, мезитилен, гексаметилбензол, электропроводность которых в DF по исследованиям Кильпет-рика и Любарского была наиболее высока, легко обменивают водород в DF и тем скорее, чем больше их константы основности. На скорости изотопного обмена, как и на кислотно-основных свойствах, сказываются химические и физические свойства растворителей. В кислых электроннофильных растворителях вещества проявляют свои основные свойства в тем большей степени, чем выше диэлектрическая проницаемость растворителей. (HF> H2SO4 > НВг). Это же имеет место и в основных нуклеофильных растворителях. В этих растворителях кислые свойства проявляются тем в большей степени, чем выше диэлектрическая проницаемость. В гидразине кислые свойства проявляются сильнее, чем в аммиаке. [c.566]

    Имеется ряд теоретических соотноше1ЖЙ, описывающих влияние растворителя на скорость химических реакций. Некоторые из этих соотношений описывают влияние диэлектрической проницаемости растворителя на скорость реакций, другие —влияние вязкости и иных свойств растворителя. Имеется также много эмпирических уравнений, связывающих свойства растворителя со скоростями химических реакций в этом растворителе. [c.9]

    В теории Амиса—Джаффё ион-дипольных реакций оставалась некоторая неопределенность в установлении величины диэлектрической проницаемости для стандартного состояния. Амис [11] вывел уравнение для зависимости к от диэлектрической проницаемости на основе рассмотрения кулоновской энергии взаимодействия между реагирующими частицами. Такой подход ограничен рассмотрением эффектов, связанных с диэлектрической проницаемостью растворителя, однако он отличается простотой и его можно применить к анализу реакций между реагентами с различными зарядами [12], а также в случае электрически несимметричных комбинаций реагентов. Подход, основанный на рассмотрении промежуточного комплекса и коэффициентов активности, больше, вероятно, годен для анализа солевых эффектов. [c.49]

    Несмотря на то что силы электростатического взаимодействия между дипольными молекулами меньше по величине, нежели между ионами или между ионами и дипольными молекулами, они тем не менее значительны и должны быть учтены при любом рассмотрении факторов, определяюших скорость реакций между электрически несимметричными молекулами. Поскольку диполь-дипольные взаимодействия существуют, растворитель будет оказывать влияние на силы, с которыми молекулы действуют друг на друга, а значит от этого будет зависеть возможность сближения молекул и химического взаимодействия между ними. Это влияние определяется диэлектрической проницаемостью растворителя. В данной главе рассмотрены различные способы теоретической трактовки подобного влияния растворителя на скорости реакции между дипольными молекулами. Вследствие относительно малой величины эффекта влияние диэлектрической проницаемости на электростатику реакций между дипольными молекулами легко маскируется специфическим влиянием растворителя или структурными эффектами. Сами же по себе структурные эффекты, по-видимому, трудно или даже невозможно обнаружить. [c.67]


Смотреть страницы где упоминается термин Реакции диэлектрической проницаемости растворителя: [c.146]    [c.137]    [c.444]    [c.457]    [c.40]    [c.163]    [c.71]    [c.102]    [c.52]    [c.69]   
Равновесие и кинетика реакций в растворах (1975) -- [ c.169 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость



© 2025 chem21.info Реклама на сайте