Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфор и его соединения применение в анализе

    Монография посвящается применению спектроскопии ядерного магнитного резонанса в неорганической химии. Излагаются основы метода ЯМР и области его применения, главным образом для установления структуры химических соединений. Описывается методика анализа спектров ЯМР и оценки полученных результатов. Особенно подробно приводятся результаты, относящиеся к соединениям, содержащим водород, бор, фтор и фосфор. Данные для всех исследованных неорганических соединений собраны в таблицы, содержащие величины химических сдвигов и константы спин-спинового взаимодействия, благодаря чему книга может служить справочником. [c.303]


    Спектральные методы анализа сосредоточены преимущественно в лаборатории, которую возглавляет А. В. Карякин. Изучаются возможности применения лазеров в эмиссионном спектральном и атомно-абсорбционном анализе, проводились работы по спектральном у определению трудновозбудимых элементов — серы, галогенов и др. с помощью плазмотрона. Лаборатория накопила опыт по эмиссионному спектральному анализу чистых веществ, соединений редкоземельных элементов, по определению платиновых металлов. В этой же лаборатории есть группа люминесцентного анализа, занимающаяся определением органических веществ в растворах и определением редкоземельных элементов с кристалло-фосфорами. [c.200]

    Направление научных исследований расчет молекулярных орбит электронная корреляция применение квантовой механики к изучению проблем в области валентности, спектроскопии и межмолекулярных сил ИК-спектры и ЯМР высокого разрешения кинетика и механизм неорганических окислительно-восстановительных реакций реакционная способность связи углерод — металл амиды металлов и неметаллов кинетика реакций в газовой фазе, реакций гидрирования и полимеризации неорганические полимеры органические соединения бора, фосфора, кремния, германия, олова влияние у-излучения на металлорганические соединения калориметрия металлорганических соединений рентгеноструктурный анализ природных веществ химия производных ацетилена, алкалоидов, терпенов и стероидов биосинтез метаболитов плесени моделирование системы энзимов. [c.273]

    Экстракционные методы. Наибольшее применение экстракционные методы концентрирования примесей имеют при анализе -ВОДЫ, кислот, щелочей, щелочных металлов и их солей. Характерно для этого способа концентрирование анионных форм таких элементов, как мышьяк, фосфор, вольфрам, селен, теллур, и неметаллов. Основные элементы, как правило, экстрагируют из сильно кислых сред активными кислородсодержащими растворителями в виде галогенсодержащих комплексных соединений. Такой метод отделения примесей в ряде случаев сопровождается побочными нежелательными эффектами (например, соэкстракцией). [c.202]

    Мешают определению (без экстракции комплексной кислоты) следующие ионы кремний в больших концентрациях, железо(III) в присутствии хлорида или сульфата, восстановители, хром (VI), мышьяк(V) и цитрат. Висмут(III), торий(IV), хлорид н фторид влияют на развитие окраски. Кремний можно удалить при кипячении раствора с концентрированной H IO4. Железо(III) можно связать в комплекс с фторидом, избыток которого удаляют введением борной кислоты. Борную кислоту можно использовать и для связывания фторидов, присутствующих в исходном анализируемом растворе. С использованием экстракции комплексной гетерополикислоты был разработан метод определения фосфора. Метод был применен для анализа практически всех фосфорсодержащих материалов стали [139, 140J, железных руд [141], алюминиевых, медных и никелевых сплавов с белыми металлами [142], воды [143, 144] и удобрений [145—147]. Работы по анализу удобрений [145—147] посвящены автоматизации очень точного метода определения фосфора с применением автоматических анализаторов. В анализаторы был заложен метод прямого измерения светопоглощения, а не дифференциальный вариант, который обычно используют для повышения точности определения. Полученные результаты позволяют заключить, что абсолютная ошибка измерения оптической плотности в интервале О—1,2 единицы не выше ошибки самого измерительного прибора (0,001 единицы поглощения). Следует отметить, что описанный метод по точности превосходит метод с применением молибдофосфата хинолина и, кро.ме того, обладает еще одним преимуществом — простотой выполнения определения. В биохимии метод применяли для определения фосфата в присутствии неустойчивых органических фосфатов [148] и неорганического фосфата в аденозинтрифосфате [149]. Метод был использован для анализа фосфатных горных пород [150]. В органическом микроанализе метод применяют после сожжения органических соединений в колбе с кислородом [151, 131]. [c.461]


    Определение состава соединений по радиоактивности элементов. Непосредственное измерение радиоактивности отдельных изотопов может оказаться весьма полез-ным при разработке быстрых методов определения состава соединений [266]. В этом случае для синтеза исследуемого соединения удобно использовать исходные вещества, меченные изотопами элементов, входящих в его состав и сильно различающихся по периодам полураспада и характеру ядерных излучений. Если известны удельные активности исходных веществ (пересчитанные на удельные активности элементов), из которых получается анализируемое соединение, и активности входящих в состав получаемых веществ элементов в определенные моменты времени, то это позволяет рассчитать количественный состав соединений. Таким образом, например, находилось соотнощение между числом атомов фосфора и вольфрама в фосфоровольфрамате натрия. Применение в качестве радиоактивных изотопов (период полураспада 14,3 дня) и (период полураспада 24,1 ч) позволило достигнуть точности определения 2,5%, в то время как точность обычного химического метода анализа в этом случае не превышает 8—10%. [c.148]

    В заключение необходимо отметить, что методы получения производных для газохроматографического анализа разработаны достаточно подробно и широко используются на практике. Однако эти методы рассчитаны, как правило, на использование в последующем газохроматографическом определении только двух типов детекторов пламенно-ионизационного (ПИД) и электронно-захватного (ЭЗД). Более широкие возможности для селективного определения отдельных классов органических соединений открываются при использовании и предварительных реакций, связанных с введением в молекулу анализируемых соединений атомов серы, фосфора, азота и других элементов, для определения которых разработаны и успешно используются в хроматографической практике селективные детекторы пламенно-фотометри-ческий, термоионный, электрохимические (кулонометрический, полярографический и др.). В данном случае мы можем и должны говорить о развитии аналитической химии меченых нерадиоактивных атомов. Отметим, что в ряде случаев может быть полезным использование для тех же целей и методов введения в молекулы анализируемых соединений групп, содержащих радиоактивные изотопы, например и [154]. Особенно перспективно, по нашему мнению, использование комбинированных реагентов и детекторов для решения задачи идентификации компонентов сложных смесей, что является наиболее важной стороной использования метода предварительных реакций. Вторым перспективным направлением является применение предварительных реакций с целью концентрирования примесей. [c.49]

    Большое значение имеет хроматографический анализ фосфорсодержащих пестицидов, особенно их остатков в биологических объектах. Для анализа обычно используют термоионный детектор. Для определения остаточных пестицидов в экстрактах, полученных из лука, салата и других продуктов, был применен пламенно-фотометрический детектор [260]. При попадании в пламя горелки соединений серы или фосфора пламя несколько удлиняется, излучаемый пучок света через зеркало, фильтр и фотоумножитель преобразуется в соответствующий сигнал. В обычных условиях фотоэмиссия экранируется соответствующим цилиндром и, таким образом, свет попадает на фотоумножитель только при удлинении пламени. Для анализа соединений фосфора используют фильтр с максимумом пропускания 526 нм, а при анализе серосодержащих соединений — с максимумом пропускания 394 нм. Рекомендуется система, включающая три параллельно работающие микрогорелки, которые могут служить для детектирования фосфора, серы, а также для обычного пламенно-ионизационного детектирования остальных веществ. [c.234]

    Большое значение имеет хроматографический анализ фосфорсодержащих пестицидов, особенно их остатков в биологических объектах. Для анализа обычно используют термоионный детектор. Для определения остаточных пестицидов в экстрактах, полученных из лука, салата и других продуктов, был применен пламенно-фотометрический детектор [131]. При попадании в пламя горелки соединений серы или фосфора пламя несколько удлиняется, излучаемый пучок света через зеркало, фильтр и фотоумножитель преобразуется [c.244]

    Широкое применение методов определения фосфора и кремния привело к многочисленным исследованиям и предложению множества методик. Результаты применения различных методов, в общем, мало отличаются друг от друга, в больщинстве случаев выбор восстановителя не имеет значения. Только при анализе черных металлов необходимо принимать во внимание присутствие больших количеств железа(П1). В связи с этим применение некоторых восстановителей менее удобно. Так, при работе с хлоридом олова(П) необходимо вводить его в избытке для того, чтобы полностью восстановить железо(П1) в то же время избыток олова (И) может привести к указанным выше осложнениям. Некоторые органические восстановители образуют с железом(П1) окрашенные соединения или окисляются до окрашенных продуктов. Поэтому для определения в черных металлах фосфора и кремния в виде синих ГПК чаще в качестве восстановителя применяют сульфит. Применение сульфита в присутствии железа (И) в строго определенных условиях кислотности дает хорошие результаты. [c.76]


    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Описанные выще методы, основанные на образовании желтых ГПК, вызывают иногда трудности при массовых анализах черных металлов, так как невозможно избежать появления различных гидролизованных форм железа(III), которые также имеют желтую окраску. Поэтому для определения фосфора в черных металлах часто предпочитают применять методы, основанные на образовании восстановленных (синих) ГПК. Из огромного количества восстановителей наиболее часто применяют сульфит, который восстанавливает железо(1П) до железа(П). Многие органические восстановители при реакции с железом(III) образуют окрашенные соединения другие восстановители, как, например, хлорид олова (II), сильно изменяют свой потенциал при накоплении олова (IV) в результате реакции с железом(III), при этом воспроизводимость определения становится плохой. Применение сульфита в качестве восстановителя устраняет эти и некоторые другие затруднения, однако нельзя считать, что рассматриваемый метод свободен от недостатков. [c.88]

    Сожжение в кислородной колбе очень широко используется при определении галогенов, серы, фосфора и многих других элементов в органических соединениях, например ртути, цинка, марганца, никеля и кобальта. Метод сожжения в кислородной бомбе применим для окисления железа и сталей, но он не получил распространения [5.538]. Важное применение метода — определение радиоактивных изотопов, особенно Н, и в меченых органических и биологических материалах. Ниже приведены примеры применения метода сожжения, используемые в анализе органических материалов. [c.162]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ НЕКОТОРЫХ СОЕДИНЕНИЙ ФОСФОРА С ПРИМЕНЕНИЕМ ЭЛЕКТРОХИМИЧЕСКОГО КОНЦЕНТРИРОВАНИЯ МИКРОПРИМЕСЕЙ [c.171]

    Из неподвижных фаз для анализа соединений фосфора наибольшее применение получили апиезоны, силиконы, а также ряд полярных фаз типа полиэфиров гликолей, янтарной и себациповой кислот [I, 8,11]. [c.36]

    Спектры ЯМР Ф (см. 3,93-91) . аппаратура и методы снятия спектров ЯМР Ф высокого разрешения применение ЯМР Р Для установления структуры соединений фосфора, для кинетических исследований и аналитических целей данные по химическим сдвигам - - " и константам спин-спинового взаимодействия - квантовохнмическая теория химического сдвига эмпирические данные о влиянии соседних атомов и заряда на химический сдвиг и некоторые теоретические представления - спектры ЯМР фосфорорганических пестици-довЮО применение протонного магнитного резонанса для исследования фосфорорганических соединений (конфэрмационный анализ, производные фосфонитрилов, структура циклических молекул, содержащих атомы трех- и пятивалентного [c.63]

    Первое применение изотопной техники при исследовании процессов, происходящих в живой клетке, было сделано в 1923 г. X е в е ш и, изучавшим перенос и распределение радиоактивного свинца в живом растении. В 1935 г. тем же исследователем был впервые применен радиоактивный фосфор для выяснения распределения и циркуляции фосфора в организме крысы. С тех пор было проведено очень много подобных исследований с самыми различными изотопами по выяснению химических процессов, изучению биологических реакций и решению технических проблем. При этом нет никакой необходимости, чтобы исходное соединение было 100%-ным в отношении содержания применяемого изотопа в желаемом положении. В большииствг случаев достаточно, если изотопом элемента мечена лишь нек оторая часть молекул (около 5—20%), так как высокая чувствительность изотопного анализа позволяет провести определение изотопов уже при очень небольшом количестве вещества. [c.1142]

    Метод сжигания в колбе с кислородом является одним из перспективных методов количественного элементного анализа. Он включен во многие фармакопеи мира, в том числе Международную и Европейскую, но пока ограниченно используется в отечественном фармацевтическом анализе. Метод основан на разрушении органического вещества сожжением в колбе, наполненной кислородом, растворении образовавшихся продуктов в поглощающей жидкости н последующем определении элементов, находящихся в растворе в виде ионов или молекул. Определение выполняют различными химическими или физико-химическим и методами. Метод может быть использован для качественного и количественного определения органически лекарственных веществ, содержащих в молекуле галогены, с у, фосфор, азот н другие элементы. Преимущества метода состоят в быстроте процесса минерализация, занимающего несколько секунда исключении потерь элемента в процессе минерализации, проходящем в герметически закрытой колбе возможности унификации применительно к различным группам соединений высокой чувствительности анализа на заключительной его стадий и широком сочетании метода на этой стадии с физико-хнмическими методами. Большие перспективы открывает применение метода сжига- [c.134]

    Активационный анализ с применением быстрых нейтронов использован для определения брома в тяжелых минералах [722], рудах и продуктах их обогаш ения [183], фосфор- [155[ и фторсо-держаш их органических соединениях [732]. Одновременно с бромом можно определить многие другие элементы. Однако по чувствительности этот метод уступает методу с использованием тепловых нейтронов. [c.156]

    Рассмотрим подробнее методы получения производных с целью повышения чувствительности ГХ анализа, в том числе получение летучих производных для высококипящих или лабильных соединений, для которых метод ГХ вообще непригоден без перевода их в более летучие производные с проведением химических реакций в мягких условиях. Метод получения производных для повышения чувствительности различных типов детекторов, глав- ным образом таких селективных детекторов, как ДЭЗ, ДТИ и ДПФ, состоит в введении с помощью химических реакций в молекулы анализируемых веществ различных функциональных групп и атомов, к которым используемый детектор имеет максималь- ную чувствительность. Например, ДЭЗ имеет повышенную чув--ствительность к галогенам. Поэтому получение и анализ галоген- содержащих производных органических соединений путем замены атомов Н на атомы С1, Вг, Р и I является перспективным путем повышения чувствительности этого детектора. Получение азот- и фосфорсодержащих производных позволяет увеличить чувст-л вительность анализа с применением ДТИ, а получение фосфор- и серосодержащих производных снижает предел обнаружения ГХ-метода с использованием ДПФ. В табл. 2.13 приведены срав- нительные показания ДЭЗ для некоторых галогенпроизводных спиртов и фенолов. Бром и иод не входят в состав этих производ-1 ных в связи с их малой летучестью и значительно меньшей эффективностью разделения. Из табл. 11.13 видно, что с увели-1 1.  [c.192]

    Для определения различных соединений пятивалентного фосфора, образующихся в процессе пиролиза NaH2P02, применен фотометрический метод, основанный на образовании синей фосфорномолибденовой кислоты [1198]. Пробу после пиролиза в атмосфере инертного газа обрабатывают водой и разделяют соединения фосфора методом хроматографии на бумаге. Отдельные пятна на хроматограмме вырезают, каждое из них растворяют в NH4OH подкисляют, восстанавливают желтую фосфорномолибденовую кислоту до синей раствором S11 I2, экстрагируют последнюю изобутанолом и заканчивают анализ фотометрически. [c.163]

    Леонов A.B. Математическая модель совместной трансформации соединений азота, фосфора и кислорода в водной среде ее применение для анализа динамики компонентов в евтрофном озере // Водные ресурсы. 1989. № 2. С. 105-123. [c.478]

    Методы термического анализа нащли широкое применение при детальном исследовании термической устойчивости кристаллогидратов неорганических соединений, количественном описании процессов дегидратации и разложения. В настоящей работе для определения стадии, лимитирующей скорость реакции термического разложения, был использован метод изотопного звмещения, который часто применяется с целью выяснения механизмов органических реакций [1, 2]. В литературе отсутствуют сведения об использовании изотопного замещения при изучении термических превращений неорганических гидратов методами неизотермической кинетики. Мы полагали, что с помощью изотопного эффекта можно установить различия в кинетических характеристиках термиче ского разложения исследуемых кремве,-12-водьфрамовой л фосфор-12-вольфрамовой кислот (КВК и ФВК) на тех стади- [c.32]

    Метод стандартных серий очець прост и обеспечивает получение удовлетворительных результатов. Он находит применение при массовых анализах. Этот метод применим в том случае, если окрашенные стандартные растворы устойчивы во времени. При малой устойчивости окрашенных растворов для приготовления цветовой шкалы применяют имитирующие растворы других, более устойчивых соединений. Так, при определении фосфора в виде синего фосфорномолибденового комплекса готовят стандартную серию смешением растворов азотнокислых солей меди, кобальта и железа в различных соотношениях. [c.28]

    Обсуждены особенности применения абсорбционной спектрофотометрии к элементному микроанализу элементоорганических соединений. Показано, что спек-трофотомстрическос окончание анализа при определении Р и 81 в виде фосфор-и кремниймолибденовых комплексов и бора в виде комплекса с азометииом-Н в водной среде позволяет получить большую точность анализа при высокой избирательности и чувствительности. Основными методами разложения являются сплавление с КОН в никелевой микробомбе (В, 81), сожжение в колбе с кислородом (Р) и окислительная минерализация мокрым путем (В, Р). Показано, что 81, Р и В могут определяться в присутствии многих гетероэлементов. Не мешают определению  [c.346]

    Наряду с групповыми реагентами в ряде случаев целесообразно использовать специфические реагенты, взаимодействующие с одним-двумя компонентами. Например, для поглощения воды, мешающей хроматографическому анализу многих соединений, применяют такие реагенты, как ангидрон, хлористый кальций, пятиокись фосфора и др. (а также молекулярные сита). Так, нри анализе водных растворов углеводородов и З-бром-1,1,2,2-тетрафторпропана [66] перед хроматографической колонкой включали реактор (452 X 0,6 СЛ1) со смесью фосфорного ангидрида и огнеупорного кирпича (весовое отношение 9 1, фракция кирпича 60—80 меш). После поглощения воды хроматографическое разделение проводили на колонке (294 X 0,6 см), заполненной 20% силикона ДС-710 на огнеупорном кирпиче. Одна набивка реактора может быть использована для анализа 50 проб по 0,1 мл каждая. Метод применен для определения следов 3-бром- [c.83]

    Качественный элементарный анализ органических веществ. При исследовании качественного состава чистых органических соединений чаще всего приходится встречаться с небольшим числом элементов. Это — углерод, водород, кислород, азот, сера, галоиды и фосфор. Открытие всех этих элементов, кроме водорода и кислорода, основано на переводе их в растворимые в воде ионизирующиеся соединения, анализируемые с применением соответствующих реакций, хорошо известных из неорганической химии. Водород же открывается в виде воды. [c.36]

    Применительно к простым реакциям фосфорсодержащих соединений (диссоциация кислот, таутомерные превращения, гидролиз и некоторые дру- pJ гие реакции) М. И. Кабач-ником [151] была разработана теория, позволившая показать правомерность применения корреляционных уравнений и вычислить значения констант бф для разнообразных заместителей А и В при фосфоре. Однако использование этих констант для анализа влияния заместителей на реакционноспособность ФОС в отношении холинэстераз находит пока ограниченное применение. [c.213]

    Различные свойства полифосфатов явились предметом многочисленных исследований в частности, исследовалась структура полифосфатов [4411—4436], диэлектрическая проницаемость [4437], термические свойства [4438—4447], вязкость 4448— 4450, взаимодействие ионов фосфатов с катионами [4451—4461], условия гидролиза фосфатов, поведение их как замедлителей коррозии [4462—4493] и т. д. [4494—4498] Разработаны методы анализа фосфатов [4499—4537] и других соединений фосфора [4538, 4539]. Полифосфаты находят применение в качестве замедлителей коррозии [4540—4559], моющих веществ [4560— 4574], диспергаторов и пептизаторов в текстильной [4575— 4577], кожевенной [4578—4580], бумажной [4581—4583] и пищевой промышленности, [4584—4594] для получения фосфатных -стекол [2692, 2833,2850,2858, 2882—2884, 2892, 3011, 3054, 3114, 3115, 3281, 3282, 3362] ив других областях [4595—4598]. Поли-фосфорные кислоты употребляются вместо комплексона, а также в качестве циклизующего средства [4599—4610]. [c.474]

    Иное положение с химией соединений фосфора Достигнутые за последние 20 лет успехи в этой области химии столь велики, что химию фосфора по широте и глубине имеющихся сведений можно сравнить только с химией углерода [130, с, 361]. Найт (1949) впервые наблюдал различие в положении линий в спектре ЯМР для химически различных форм фосфора. У. Дикинсон (1951) отметил существование химических сдвигов в спектрах ЯМР нескольких соединений этого элемента. Гутовский и сотр. (1951— 1953) обнаружили мультиплетность структуры спектров и объяснили этот факт взаимодействием между неодинаковыми магнитными ядрами в молекулах типа СНзОРРг и др. Именно благодаря хорошим спектральным качествам фосфора, которые позволяли работать даже с аппаратами низкого разрешения тех дней, данные относительно ядра Р сыграли ключевую роль в ранней разработке общей теории ЯМР [131, с. 2]. К середине 50-х годов Я1ЙР фосфора приобрел практическое значение для структурного анализа и других аналитических применений. В 1956 г. была уже опубликована сводка данных по ЯМР для нескольких сотен соединений фосфора. Р ЯМР высокого разрешения предоставляет химику... уникальную и неоценимую помощь. Сюда входит разъяснение структуры, качественный, и количественный анализ чистых соединений и смесей, измерение скоростей реакций и открытие тонких взаимодействий между фосфорсодержащими молекулами и их окружением. Это быстрый метод, требующий небольшого количества образца и не разрушающий его... Успехи в этой области привели к положению, когда фундаментальные аспекты Р ЯМР хорошо поняты, а техника достигла статуса рутинного инструмента [131, с. 72]. [c.271]

    Введение. При количественном определении различных веществ часто возникают трудности, связанные с очень малым количеством определяемого вещества или содержанием других веществ, мешающих разделению. Это может быть обусловлено тем, что малые количества определяются недостаточно точно или отсутствуют характерные реакции для их обнаружения [ 1 ]. Для анализа подобных соединений используется высокая чувствительность радиоактивных определений, разработан целый ряд методов, основанных на применении радиоактивных изотопов [2—4]. Имеются различные возможности проведения анализов. В простейшем случае используются такие радиоактивные изотопы, которые образуют малорастворимый осадок с определяемым веществом. Так, например, таллий можно осадить йодом-131 ь виде йодистого таллия и произвести радиометрические измерения осадка [5]. При отсутствии радиоизотопа, дающего малорастворимое соединение, анализ можно провести косвенным путем. Ишибаши и Киши [6] определяли кальций и литий, проводя осаждение фосфорной кислотой, растворяя фосфаты и устанавливая содержание свободной фосфорной кислоты при помощи радиоактивного свинца. (В то время еще не применялся фосфор-32.) [c.324]

    Ванадатометрия основана на применении титрованных растворов метаванадата аммония NH4VO3 и других соединений ванадия. Как метод объемного анализа ванадатометрия разработана советским химиком В. С. Сырокомским в 1936 г. Титрование ва-надатом аммония применяют при определении фосфора, серы,, кальция, хрома, марганца, железа, меди, молибдена, свинца,, перхлоратов, гидразина. При определении железа (II) титрование ведут вбн. растворе H2SO4 с индикатором (0,1%-ным раствором фенилантраниловой кислоты). Реакция идет по уравненик> V0+ + 2Н + -f ё VQ2+ + HjO [c.421]

    Методами бумажной хроматографии были разделены различные серусодержащие соединения алкилсульфаты, сульфоновые кислоты, сульфонамиды, соли сульфония, тиомочевина. Были разделены различные гетероциклы — пиррол, норфирин и его комплексные соединения, галленовые красители, производные пиразола, имидазола, гистамин, эрготионеин, индол, серотонин, пиридин, пиридинкарбоновые кислоты, феноксазин, пиразин и др. Бумажная хроматография нашла применение нри анализе органических соединений фосфора — фосфатидов, фосфолипидов и др. [c.204]

    Применение катализаторов снижает время, необходимое для проведения анализа. Описана [123] методика определения фосфора в коксе после сожжения его в колбе с кислородом. В качестве восстановителя применяли аскорбиновую кислоту, катализатором служил антимонил-тартрат калия, оба соединения добавляют в виде одного сложного реагента. Этот прием использовали в работах [124, 127] для анализа морской воды. [c.459]

    Свинцовый селективный электрод применен для титрования сульфатов в минеральных и морских водах [178]. Образцы первоначально пропускают через ионообменную колонку с катионитом в Ag-форме для удаления хлорид-ионов, а затем через такую же колонку, заполненную катионитом в Н-форме для удаления избытка серебра. Этот метод позволяет определить 20—3000 ррт сульфатов. Упомянутый электрод использован для мнкро- и полумикроопределений серы в органических соедииеинях [179]. В этой работе присутствующий фторпд отделяют либо прибавлением борной кислоты, либо кипячением с хлорной кислотой. Другие галогены и азот не мешают определению серы, по фосфор должен отсутствовать. Результаты анализа 10 различных соединений показывают, что погрешность определения не превышает 0,3% (абсолютные значения). Свинцовый селектигпый электрод применен для определения серы в нефти [180] и в растворах, используемых для никелирования [181]. [c.550]

    В настоящей работе для анализа соединений фосфора применен метод электрохимического концентрирования микропримесей на тонком угольном диске [6]. Следует заметить, что электролиз соединений фосфора для целей электроосаждения металлов применяется уже давно, еще в 1882 г. соли [c.171]

    Галогениды кремния, серы, углерода, фосфора и азота [129]. Эти соединения так же, как и соответствующие оксигалогениды и хлориды металлов, легко подвергаются гидролизу. Это значительно затрудняет их хроматографирование, но не требует применения только фторированных носителей и неподвижных фаз, на которых анализируются реакционноспособные фториды. Затруднен выбор насадки при хроматографировании легко гидролизуемых галогенидов и оксигалогенидов фосфора и кремния. Подвержены гидролизу все галогениды серы, кроме фторидов, а также некоторые оксигалогениды углерода. Анализ этих соединений невозможен без предварительного удаления влаги из сорбентов, газа-носителя и коммуникаций хроматографа. Особенно труден анализ тетрафторида кремния, который количественно поглощается стерхамолом, активированным углем, окисью алюминия и ситами 5А [130]. Через колонку с тефлоном 51р4 про- [c.77]

    Для конечного определения образующегося при реакции фосфата сначала применяли осаждение в виде хинолинфосформолибдата [2]. Это, несомненно, лучший из всех известных методов. При действии основания осаждается фосфор молибденовая кислота метод применяется в органическом микроанализе после сожжения в колбе, наполненной кислородом [1]. Применение этой методики при анализе чистых растворов фосфата в микрограммовых количествах дало удовлетворительные результаты, при испытании же органических соединений выявились очень серьезные помехи, обусловленные кремнием, выделившимся во время сожжения из стенок колбы. Для преодоления вредного влияния кремния [1, 2] добавляли лимонную кислоту, но здесь необходима большая осторожность, так как в присутствии лимонной кислоты растворимость хинолинфосформолибдата повышается. Количество, указанное в разделе Метод (стр. 100), соответствует обычному определению. Однако при использовании новых колб образуются чрезмерно большие количества двуокиси кремния, и поэтому перед определением следует обработать колбы, сжигая в них примерно шесть образцов, не взвешивая. [c.98]


Смотреть страницы где упоминается термин Фосфор и его соединения применение в анализе: [c.289]    [c.64]    [c.106]    [c.59]    [c.63]    [c.401]    [c.153]    [c.207]    [c.88]    [c.111]    [c.271]   
Перекись водорода (1958) -- [ c.498 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ применение

Спектральный анализ некоторых соединений фосфора с применением электрохимического концентрирования микропримесеи. В. 3. Красильщик, А. Ф. Яковлева

Фосфор применение

Фосфор примененне

Фосфорила соединения



© 2025 chem21.info Реклама на сайте