Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

зависимость от времени электрода

    Нестационарные (релаксационные) методы исследования основаны на анализе зависимости потенциала электрода или тока, поляризующего электрод, от време- [c.305]

    Переходное время находят из зависимости потенциала электрода , от времени t с момента начала пропускания тока плотности [c.36]

    Для замеров pH водных растворов, применяемых в производстве Мочевино-формальдегидных композиций, наиболее удобным и практичным индикаторным электродом признан сурьмяный электрод. В качестве сравнительного при этом определении может быть каломельный электрод. Сурьмяный электрод представляет собой стержень из сурьмы, или другого металла, или графита. Стержень этот покрывается сурьмой электролитическим путем. Метод изготовления электродов не является определяющим электроды, полученные различными методами, в одинаковых условиях и при одинаковой подготовке показывают одну и ту же зависимость потенциала. В то же время электроды, изготовленные по аналогии, могут давать разные показания. Это происходит, по-видимому, из-за ничтожных различий в структуре поверхности. [c.42]


    Форма кривых потенциал — время хлорид-, бромид- и цианид-селективных электродов аналогична форме кривой иодид-селективного электрода. Это говорит о том, что в течение переходного времени зависимость потенциала электрода от времени для этих электродов подчиняется экспоненциальному закону. [c.29]

    Если концентрация комплексов или лигандов, которые участвуют Б электродной реакции, изменяется со временем вследствие медленного протекания гомо- или гетерогенной химической реакций, то потенциал электрода зависит от времени, причем вид этой зависимости определяется кинетическими параметрами медленной реакции. Последние могут быть установлены из зависимости потенциала электрода от времени, если медленная реакция практически не нарушает равновесия стадии переноса электронов от реагирующих частиц к электроду и в противоположном направлении. Выражение для зависимости подобных квазиравновесных электродных потенциалов от времени можно получить, подставив в уравнение Нернста зависящие от времени концентрации частиц, которые выражены через кинетические параметры медленной химической реакции и время ее протекания. [c.78]

    Широко используется при исследовании кинетики электродных процессов полярографический метод, основанный на измерении силы тока, протекающего на ртутном капельном электроде при различных значениях его потенциала. Метод стационарных поляризационных кривых и полярографический метод называют классическими методами в отличие от нестационарных (релаксационных) методов исследования кинетики электродных процессов, также широко используемых в настоящее время. Нестационарные методы исследования обычно основаны на анализе зависимости потенциала электрода или плотности поляризующего тока от времени в условиях, когда либо поляризующий ток, либо потенциал изменяются во времени по определенному закону. [c.70]

    Наряду с необходимостью установления связи между количеством включенного водорода и перенапряжением при его выделении первостепенное значение имеет также проблема нахождения зависимости между наводороживанием металла и перенапряжением его выделения. С этой целью рассмотрим некоторые экспериментальные данные, полученные Кузнецовой при электроосаждении железа. На рис. 22 приведены кривые зависимости перенапряжения выделения железа (кривая /) и зависимости выхода по току (кривая 2) от pH электролита. Из рисунка видно, что в области pH 1,5—2,5 происходит резкое увеличение выхода металла по току от 10 ДО 90%, в то время как дальнейшее повышение pH на такую же величину на выход по току существенного влияния не оказывает. При этом кривая зависимости потенциала электрода от pH электролита проходит через максимум при pH 2—2,5. Сопоставление кривых 1 т 2 показывает, что максимум на кривой 1 примерно соответствует выходам по току металла, равным 50—60%. Отсюда вытекает, что на участке йЬ кривой 1 большая часть тока идет на восстановление ионов водорода, и при переходе от точки Ь к точке а количество тока, затрачиваемое на восстановление ионов водорода, возрастает. На участке Ьс ток главным образом расходуется на выделение металла, и при переходе от точки Ь к точке с он возрастает. [c.63]


    В то же время изменение энергии адсорбированного иона при поляризации зависит, очевидно, не от общего скачка потенциала ф между электродом и раствором, а от величины ф — 4 1. Таким образом, зависимость энергии активации процесса разряда от потенциала и перенапряжения, с учетом строения двойного слоя, выражается уравнением [c.628]

    Аналитическую зависимость эффективного потенциала электрода от плотности тока V = / (г) можно получить только для простых случаев коррозии, в то время как поляризационные кривые (графическое изображение этой зависимости) можно получить опытным путем даже для наиболее сложных случаев коррозии, соответствующих практическим условиям работы коррозионных элементов. [c.270]

    Диаметр электродов в зависимости от стойкости поступающей эмульсии и ее электропроводности равен 1,3—2,7 м. С увеличением диаметра электродов при одной и той же производительности аппарата увеличиваются размеры электрического поля и время пребывания эмульсии в нем, что способствует более полному ее разрушению. Однако при увеличении диаметра электродов сила тока растет пропорционально его квадрату, так как сечение и электропроводность столба жидкости, заключенного между электродами, пропорциональны квадрату диаметра электродов. При чрезмерном увеличении [c.51]

    Выполнение работы. Устанавливают ширину щели спектрографа 0,012 мм, помещают железные электроды в держатель штатива, возбуждают разряд и проверяют правильность установки трехлинзовой системы освещения щели спектрографа по изображению разряда на промежуточной диафрагме и по световому пятну на крышке щели. Источник возбуждения спектра— генератор ДГ-2, ток дуги 3—4 А, дуговой промежуток 1,5 мм. При фотографировании спектров стандартных образцов и проб до экспозиции проводят обжиг электродов в течение 10 с. В зависимости от чувствительности фотопластинки экспозиция меняется от 10 до 20 с. При искровом возбуждении используют генератор ИГ-3, включенный по сложной схеме индуктивность 0,05 мкГ, емкость 0,01 мкФ, ток искры 2 А, время обыскривания (обжига) 60 с, экспозиция 60 с. [c.33]

    Процесс электролиза предполагает обязательное наличие двух электродов в одном растворе или в двух растворах различного состава, соединенных между собой электролитическим контактом. Если рассматривать процессы, происходящие во время электролиза, на поверхности каждого электрода в отдельности, то можно проследить за изменением тока как функции электродного потенциала. Графическое изображение зависимости I =((Е), представляющее собой кривую поляризации, приобретает для объяснения электродных реакций большее значение, чем величины равновесных электродных потенциалов. [c.13]

    Методом построения градуировочного графика определяют следующие основные параметры электрода 1) область прямолинейной концентрационной зависимости потенциала 2) угловой коэффициент наклона прямой = /(рс,) — крутизну электродной функции (5) 3) коэффициенты селективности относительно различных ионов 4) время отклика электрода, т. е. время достижения равновесного или стационарного потенциала. [c.112]

    В настоящее время отечественное производство изготавливает несколько марок стеклянных электродов, функционирующих К2К рМ-электроды (М — N3+ К+, НН4+, Ag+). Основной характеристикой электродных систем, включающих в себя соответствующий измерительный электрод, является зависимость их э.д. с. от рМ и температуры [c.119]

    Другие методы определения момента эквивалентности. В настоящее время для определения pH раствора широко применяются специальные приборы — рН-метры (рис. 29). В исследуемый раствор погружают два электрода — индикаторный и стандартный. Потенциал индикаторного электрода зависит от pH раствора. Милливольтметр прибора непосредственно градуируется в единицах pH. При потенциометрическом титровании в анализируемый раствор опускаются электроды и прибавляется рабочий раствор небольшими равными порциями. После прибавления каждой порции производится отсчет pH. По полученным данным строится график зависимости объем рабочего раствора — pH анализируемого [c.102]

    Поперечное сечение ванн обусловливается размерами анода, эти размеры складывались исторически. Вначале вес анода определялся применением ручного труда (переноска, установка). Его ширина была не более 45 сж, высота 80 см, вес не более 50 кг. Ширина ванны определялась возможностью ухода за электродами сбоку из прохода и поэтому не превышала 100 см на штангу завешивалось два анода. С введением механизации погрузочных работ аноды стали отливать во всю ширину ванн, их вес в настоящее время достигает 300 кг. На рис. 90 показан чертеж анода несколько большего размера, чем принято на наших медеэлектролитных заводах. Толщина анода в зависимости от плотности тока и заданного времени пребывания анода в ванне колеблется от 30 до 45 мм. [c.165]


    Режим формирования определяется вариантом работы. В ходе формирования следует замерять как общее напряжение на ячейке, так и потенциалы электродов. Для получения зависимости напряжение — время применяют регистрирующий вольтметр. Потенциалы электродов принято замерять относительно кадмиевого электрода сравнения с помощью высокоомного вольтметра. Кадмиевый электрод имеет вид стержня, на который на некотором расстоянии один от другого надеты узкие резиновые кольца— изолирующие прокладки. Такая конструкция электрода сравнения позволяет при замере потенциала прижимать его вплотную к плоскости пластины без опасения вызвать короткое замыкание, а также обеспечивает постоянную дистанцию между электродами. [c.217]

    Полностью разряженный аккумулятор заряжают током I = = 0,25 Сном (/4) Б течение 6 ч с записью зависимости напряжение— время . После минутной паузы измеряют напряжение разомкнутой цепи (НРЦ) и начинают разряд стабилизированным током /5, /з пли /2. Разрядную характеристику получают с помощью самопишущего вольтметра. В ходе разряда каждые 5 или 10 мин (в зависимости от режима разряда) измеряют потенциалы каждого из электродов относительно цинкового электрода сравнения. К концу разряда по мере снижения напряжения замеры потенциалов делают чаще. [c.224]

    У анода образуются растворы окислителей или кислоты, у катода — растворы восстановителей или основания. В зависимости от типа титрования применяют один из потоков жидкостей и отбрасывают другой. При 100%,-ном выходе по току действительное содержание компонента можно рассчитать, зная силу тока на генераторных электродах и время достижения точки эквивалентности, которое определяют, например, амперометрическим методом. Между генераторными электродами находится стекловата для предотвращения смешивания катодной" и анодной жидкости в результате конвекции. Для титрования применяют любые реагенты, которые можно электролитически генерировать из исходного раствора. [c.275]

    Бели используют стационарный гладкий электрод при постоянном значения потенциала, то вследствие обеднения раствора деполяризатором вблизи электродов сила тока снижается примерно пропорционально (д — площадь поверхности, (— время электролиза). На капельном электроде поверхность каждой новой капли до ее падения формируется в (зависимости от времени так, что Объединение обоих уравнений дает выражение т. е. сила тока возрастает по параболической зависимости от. нуля до максимального значения перед отрывом капли. Поверхность под кривой ток —время для отдельной капли соответствует количеству электричества, проходящего через каплю (в кулонах,, если силу тока [c.287]

    Потенциометрическое титрование основано на линейной зависимости между электродным потенциалом и показателем концентрации ионов в растворе. Если применяемый при титровании электрод обратим по отношению к ионам титруемого илн титрующего вещества, то изменение потенциала такого электрода во время титрова-яия указывает на изменение концентрации ионов в растворе. [c.58]

    Выяснение природы перенапряжения при электрохимических процессах представляет определенный теоретический и практический интерес. Электродная поляризация в общем случае складывается из четырех составляющих 11р. 11 . Для оценки природы поляризации необходимо найти вклад, который вносит в ее общую величину каждая составляющая. Поскольку в настоящее время отсутствуют необходимые для этого данные, используется упрощенный подход к решению этого вопроса. Во-первых, определяется лимитирующая стадия. Вид перенапряжения, ей свойственный, относится к электродному процессу в целом. Во-вторых, величина поляризации разделяется только на две части концентрационную, к которой относится перенапряжение диффузии, и активационную, объединяющую все остальные виды перенапряжения. Для определения природы поляризации используются различные методы. К их числу относится метод, основанный на применении вращающегося дискового электрода, метод поляризационных кривых и др. Широкое применение нашел температурно-кинетический метод, предложенный С. В. Горбачевым. Оп основан на изучении зависимости скорости электродных процессов от температуры. Уравнение Аррениуса, связывающее константу скорости k химической реакции с температурой и энергией активации [c.510]

    Время отклика (время установления стационарного потенциала) определяют по зависимости потенциала электрода от времени с момента погружения в анализируемый раствор. В зависимости от щзироды мембраны время отклика может колебаться от нескольких секунд до нескольких минут. Время достижения постоянного потенциала зависит от методики работы и изменяется от того, переносят ли электрод из более концентрированного раствора в более разбавленный шш наоборот. У большинства электродов за 1 мин потенциал достигает 90% от максимальной величины. Чем меньше время отклика, тем лучше, особенно щ)и непрерывных измерениях в потоке или при автоматизщювавных измерениях. [c.135]

    Хроиопотенциометрия — основана на зависимости потенциала электрода от времени =/(т) при прохождении через электролитическую ячейку постоянного тока заданной величины. Время зависит от концентрации определяемого вещества [73, 74]. Вариант метода — производная хроиопотенциометрия, т.е. иссле- [c.20]

    Измерения зависимости потенциала электрода от концентрации проводят с насыщенным каломельным электродом сравнения. Оба электрода (0,2 и 1,0 М) ведут себя одинаково и в диапазоне концентраций 10 -10 г-ион/л дают электродную функцию с наклоном, близким к нернстову (58 мВ/декада). При концентрациях от 10 до 1 г-ион/л наклон составляет уже 51 мВ/декада, в то время как при низких концентрациях г-ион/л он равен 48 мВ/декада. [c.170]

    Результаты определения глюкозы с помощью ферментного электрода в меньшей степени зависят от присутствия посторонних веществ, чем результаты анализа, проведенного каким-либо другим методом без использования ферментов. Гибсон и др. [507] и Кейлин и Хартри [508, 509] исследовали селективность реакции, катализируемой глюкозо-оксидазой. Если условно принять скорость окисления (З-о-глюкозы за 100, то 2-дезокси-о-глюкоза окисляется со скоростью 25, из восьми альдо-о-гексоз окисляются только о-манноза, о-альтроза и о-галактоза (с очень маленькой скоростью). Фермент ингибируется ионами Ag , Hg , u , н-хлормеркаптобензоата и фенилмеркуриацетата [510] эти ионы не должны присутствовать в определяемом растворе, если необходимо получить оптимальную функциональную зависимость тока электрода от концентрации глюкозы. Стабильность показаний электрода в течение всего срока службы исследовалась испытаниями в растворе глюкозы с концентрацией 5-10 моль/л (фосфатный буфер с pH 6,6). Испытания показали, что снижение тока по сравнению с максимумом составляет примерно 0,1%/сут за время хранения электрода при комнатной температуре в течение более 10 месяцев. [c.173]

    Для выбора оптимальных условий проведения электролиза, в частности для установления рабочего потенциала электрода (или плотности тока), необходимо знать зависимость между током и потенциалом электрода, которая выражается в виде так называемых поляризационных или вольт-амиерных кривых. Если стадией, определяющей скорость электродного процесса, является диффузионная подача деполяризатора, то на характер кривых зависимости между током и потенциалом, как правило, оказывает влияние время, прошедшее с начала электролиза. Ранее (см. гл. I, 2)уже были рассмотрены кривые зависимости потенциала электрода от времени, получаемые при электролизе с постоянной плотностью тока (см. рис. 4). Уравнения для диффузионных токов (см. гл. 1,3) определяют характер изменения тока во времени при постоянном потенциале электрода. [c.20]

    В соответствии с (1.35), ток от внешнего источника на границе электрод— раствор расходуется на два процесса фарадеевсккй н заряжение емкости двойного электрического слоя. Если убрать из раствора частицы, обладающие электрохимической активностью, то появляется возможность следить за процессами, определяемыми индивидуальными свойствами электрода. Полученная в этих условиях зависимость потенциала электрода от количества электричества (Q), прошедшего во внешней цепи, или от времени (при постоянном токе) носит название кривой заряжения. Для того, чтобы свести к минимуму транспорт частиц от электрода или к нему, заряжение проводят либо токами большой плотности, либо применяют электроды с развитой поверхностью и возможно меньшие объемы электролита. На рис. I. 6, а приведена классическая кривая заряжения для Р1-электрода в сернокислом растворе, снятая как при движении от катодных к анодным значениям Ян, так и в обратном направлении при изменении полярности тока заряжения [24, 33, 44]. Участок / соответствует десорбции или адсорбции водорода, емкость на этом участке составляет 700 мкФ-см на участке II основное количество электричества расходуется на заряжение двойного слоя, поэтому он носит название двойнослойный (емкость равна 40—70 мкФ-см ). И, наконец, /// участок, кислородный, соответствует посадке кислорода на поверхности платины и его десорбции. Кривые заряжения позволяют не только установить наличие тех или иных процессов в определенной области потенциалов, но и сделать заключения относительно их обратимости. Так, если проводить изучение кривых заряжения только на / и // участках, то при изменении полярности тока заряжения кривые совпадут. В кислородной облает , однако, наблюдается значительный гистерезис на кривых заряжения. В интервале потенциалов 0,8—1,5В (кислая среда) в настоящее время различают три степени связанности кислорода- с поверхностью платины, причем тот кислород, который оказался на платине при н > 1,2 В, начинает в заметной мере сниматься только при Ен < 0,8 В (см., например, [53]). [c.40]

    Заряды определяли с двух сторон образцов бесконтактным способом — методом вибрирующего электрода. На рис. 49 приведены экспериментальные результаты. Видно, что с повышением степени поперечного сшивания скорость спада м ёдляется. Па ржи бОтгряведены те ке -результаты, построенные в полулогарифмических координатах. Видно, что зависимости удовлетворительно описываются экспоненциальной зависимостью. Найденные по наклону зависимостей времена релаксации приведены в табл. 8 вместе со степенью поперечного сшивания, определенной набуханием. Резиновая смесь с 50 масс. ч. серы дает твердый вулканизат — эбонит он обладает самым высоким временем релаксации заряда. Дальнейшие исследования показали, что на эбоните заряд стабилизируется, и суммарное т., таким образом, значительно выше. По-видимому, полученные результаты можно интерпретировать как поляризацию в поле гомозаряда. При этом общая величина заряда, начальная величина которой ограничена пробивной прочностью воздуха, снижается во времени одновременно с ростом Рг- [c.100]

    Подобно. электровесоаому анализу кулонометрия проводится (в зависимости от состава раствора и возможного числа электродных реакций) или при з-здап-ном потенциале, или при заданном токе. Второй вариант следует применять в тех случаях, когда на электроде в широком диапазоне потенциалов исключена возможность протекания каких-либо реакций, кроме основной. Этот вариант обеспечивает максимальную точность и чувствительность анализа. Количество прошедшего электричества при кулонометрии с заданным потенциалом измеряют при помощи кулонометра, при кулонометрии с заданной силой тока определяют умножением силы тока на время анализа. Это так называемая непосредственная кулонометрия. [c.286]

    Рассмотрим зависимость эквивалентной электропроводности раствора электролита от скорости движения ионов. Пусть электрический ток проходит через раствор электролита, помещенный в стеклянную трубку с поперечным сечением s см , причем расстояние между электродами равно см и разность потенциалов между ними равна Е в. Обозначим через и — скорости движения катионов и анионов, см/сек, а через с, — концентрацию раствора электролита, г-экв/л. Если степень диссоциации электролита в данном растворе равна а, то концентрации катионов и анионов равны ас,/1000 [г-экв1см . Подсчитаем количество электричества, которое переносится через поперечное сечение трубки за 1 сек. Катионов за это время пройдет через сечение у заСэ/ЮОО г-экв и они перенесут [c.257]

    Следующий этап исследований — изучение потенциалов фильтрации углеводородных жидкостей. Исследования проводили на специальной установке. Основной ее элемент — измерительная ячейка, в которой находились образцы естественных кернов в виде цилиндров диаметром 0,03 м и длиной 0,04 м. Для измерений потенциалов использовали хлорсеребряные электроды диа метром 0,002 м, которые помещались в измерительную ячейку В процессе фильтрации создавались перепады давления в жидкости и наружного давления на керн. Потенциал регистрировали высокоомным потенциометром, а в качестве индикатора нуля использовали микроамперметр. Исследования проводили на экстрагированных образцах керна Арланского месторождения с проницаемостью 0,149 мкм (по воздуху) и пористостью 25,3 %. Методика измерения потенциалов фильтрации заключалась в следующем. Перед проведением экспериментов образец насыщали исследуемой жидкостью и при атмосферном давлении определяли потенциал асимметрии, который в опытах был равен 3 мВ. Результаты предварительных исследований показали практическую независимость потенциала фильтрации от нагрева ячейки на 3— 4 К, вызванного длительной работой электромагнита. Эксперименты проводились на модельных углеводородных жидкостях при различных скоростях фильтрации. При этом перепады давления составляли от 0,35 до 0,45 МПа. В процессе эксперимента заме-рялось количество отфилътровавщейся жидкости, а время фильтрации фиксировалось по секундомеру. Каждый эксперимент повторяли три раза. Полученные результаты для двух значений линейных скоростей фильтрации приведены на рис. 22. Эти результаты сравнивались с теоретической зависимостью, рассчитанной по формуле (4.6) при = 0,3 В. Как видно из рисунка, расчетные и экспериментальные данные совпадают, что свидетельствует о справедливости зависимости Гельмгольца—Кройта для принятых условий фильтрации полярных углеводородных жидкостей. [c.123]

    Уравнения электрокапиллярной кривой названы так потому, что выражаемые ими зависимости экспериментально проверялись Лнпиманом с иомощь о прибора, называемого капиллярным электрометром (рис. П. 9). При исследовании зависимости поверхностного натяжения от потенциала двойного электрического слоя в качестве одной из фаз наиболее удобно применять металлическую ртуть, поверхиостиое натяжение которой легко измерить, например, капиллярным методом, и в то же время удобно изменять межфазный потенциал с помощью внешнего источника тока. Кроме того, ртуть являете. почти идеально поляризуемым электродом, т. е. таким электролом, на котором не протекают электродные реакции при прохол., еини тока, и поэтому изменение заряда электрода вызывает только изменение его потенциала. Это обусловлено тем, что благородные металлы почти совсем не отдают своих ионов в раствор. Малое содержание их в растворе делает невозможным и обратную реакцию (восстановления). [c.50]

    Схема спектрографической установки показана на рис. 56, б. Регистрирующим прибором служит спектрограф J2, а в качестве спектроскопического источника света используется спектроскопическая импульсная лампа /, свет от которой, пройдя реакционный сосуд и спектрограф, попадает на фотопластинку 13. Спектроскопическая лампа зажигается через определенный промежуток времени после вспышки фотолитической лампы при помощи блока временной задержки 14. Таким образом по.лучается полный спектр поглощения фотолизуемого раствора. Меняя время задержки, можно получить набор спектров, изменяющихся во времени. В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача таких ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в УФ-области к ксенону добавляют другие газы, например Нг, или ртуть. Используют им-пульсные лампы и с другим наполнением (Ог, N2, Аг). Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической вспышки. А время вспышки импульсной лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии и от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотнонюния между сопротивлением R, индуктивностью L и емкостью С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотпошепие Lj . Уменьшение времени затухания т достигается снижением индуктивности соединительных проводов, а также снижением емкости и индуктивности конденсатора (r yZ, ). При этом уменьшение энергии вспышки E = Wj2 компенсируется за счет увеличения напряжения на конденсаторе U. Увеличение [c.157]

    Электродный потенциал - один из основных электрохимичесз-ких параметров, измерение которого составляет суть метода потенциометрии, - был предметом многочисленных исследований. Впервые в 1889 г. В. Нернст вывел термодинамическую зависимость э.д.с. от концентрации ионов в растворе. В настоящее время под термином "электродный потенциал" понимают э.д.с. электрохимической цепи ( ), составленной из стандартного водородного электрода и электрода, представляющего любую другую окислительно-восстановительную полуреакцию. Таким образом, данная формулировка включает два основных типа электродов электроды, функционирующие на основе а) электронного и б) электронно-ионного равновесия, иными словами, электроды, обладающие электронной и смешанной (электронноионной) проводимостью. Однако необходимо принять также во внимание третий тип, а именно электроды, перенос зарядов в которых осуществляется за счет ионов, т.е. электроды с ионной проводимостью. По этому принципу функционируют так называемые мембранные электроды, которые рассматриваются в разделе "Ионометрия". [c.20]

    Развитие постояннотоковой полярографии привело к созданию некоторых ее вариантов, улучщающих условия проведения анализа. К ним относятся использование быстрокапающего электрода, что позволяет существенно сократить время регистрации полярограммы медленнокапающего электрода с регистрацией силы тока только в конце периода жизни капли это существенно увеличивает фарадеевский ток по сравнению с емкостным и, следовательно, улучщает чувствительность метода. При этом используют метод сравнение и запоминание , основанный на применении современной электронной аппаратуры. Определенные возможности имеет и замена координат 1 — Е на д1 дЕ — Е. Основанная на этой зависимости производная постояннотоковая полярография может успешно конкурировать с более сложными вариантами ее, описанными в следующих разделах. [c.281]

    Физические свойства электретов существенно зависят как от особенностей диэлектриков (их полярности и электропроводности), так и от режима изготовления (например, напряженности поля, температуры и времени поляризации). В зависимости от напряженности электрического поля можно получать из одного и того же вещества и гомо- и гетероэлектреты (совпадающие и несовпадающие по полярности со знаком заряда электрода) с различной плотностью поверхностных зарядов. Гетерозаряд обусловлен, прежде всего, ориентационной дипольной поляризацией, а также микроскопическими неоднородностями и ионной электропроводимостью диэлектрика. Образование гомозаряда связано с тем, что при высоких напряжениях вследствие искрового пробоя воздушного зазора заряды переходят с электрода на образец полимера. Электретный эффект в твердых диэлектриках имеет объемный характер. В так называемом незакороченном состоянии электрет все время находится в электрическом поле, в результате чего происходит рассасывание объемного заряда. При плотном закорачивании электрета его внутреннее поле равно нулю [58, гл. I]. Время жизни электрета зависит от электропроводности как его самого, так и среды, а также от качества закорачивания. Поскольку возникновение электретного состояния связано с поляризацией и ориентацией, ему должно сопутствовать существенное увеличение оптической анизотропии. При кратковременной поляризации полимеров (в частности, ПММА) их оптическая анизотропия практически не проявляется. После резкого возрастания оптической анизотропии в интервале времен от 3 до 6 ч дальнейшее увеличение времени поляризации практически не повышает анизотропию, что свидетельствует о завершении ориентации. [c.253]

    Как и в случае водоактивируемых элементов, контакт электролита с электродами не является достаточным условием мгновенного приведения в рабочее состояние ампульной батареи. Требуется некоторое время, необходимое для пропитки сепаратора электролитом, а также для выведения электродов из состояния пассивности, в котором они могут находиться. Но в отличие от наливных элементов активация ампульных элементов протекает быстро, занимая от долей секунды до десятков секунд в зависимости от природы активных масс и электролита, материала сепараторов, конструкции элемента, способа подачи электролита и других факторов. [c.252]

    ПОЛЯРОГРАФИЯ — электрохимический метод качественного и количественного определения ионов (вещества), основанный на явлении предельного диффузионного тока, величина которого пропорциональна концентрации вещества, обусловливающего данный ток (ток в электрохимической цепи, величина которого определяется скоростью диффузии к электроду иопов, разряжающихся на нем). Величина предельного тока определяется по полярограмме, представляющей собой кривую зависимости силы тока от напряжения. Для получения по-лярограммы необходимо, чтобы поверхность катода была значительно меньше, чем поверхность анода, и чтобы при прохождении тока потенциал анода практически не изменялся. Метод П. позво-Л ет определять одновременно наличие и концентрацию нескольких ионов в одном растворе. Пользуясь П. методами, можно определять количества вещества при концентрации их в растворе 10 — 10 " моль/л. В настоящее время успешно развивается метод амальгамной полярографии с накоплением , позволяющий определять некоторые ионы с концентрацией Ю —10 моль/л. П. распространяется на новые отрасли — неводные растворы и расплавы. Метод П. разработан в 1922 г. Я. Гейровским. [c.201]


Смотреть страницы где упоминается термин зависимость от времени электрода: [c.13]    [c.133]    [c.104]    [c.8]    [c.233]    [c.374]    [c.464]    [c.53]    [c.141]    [c.8]    [c.42]   
Радиохимия и химия ядерных процессов (1960) -- [ c.129 ]




ПОИСК







© 2025 chem21.info Реклама на сайте