Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформации белковых молекул

    Ной пространственной конформации беЛковой молекулы и состоят из аминокислотных остатков, не расположенных последовательно в полипептидной цепи, но благодаря укладке последней пространственно сближенных. В отличие от них линейные детерминанты представляют собой пептидные сегменты из 5—8 аминокислотных остатков. При изучении антигенной структуры фермента определяют структуры его антигенных детерминант путем изучения взаимодействия антител с пептидными фрагментами фермента. [c.326]


    Кинетические характеристики 8Н-групп белка и их изменение под влиянием различных воздействий позволяют анализировать изменения конформации белковой молекулы, которые происходят при связывании субстратов, ионов-активаторов, аллостерических модификаторов, детергентов, при изменении температуры и т. д. [c.362]

    До сих пор при рассмотрении периодических структурных элементов полипептидной цепи не принималось во внимание влияние боковых радикалов аминокислот на конформацию белковой молекулы. Но белки, в особенности глобулярные, характеризуются трехмерным расположением полипептидной цепи, за стабилизацию которого помимо обсуждавшихся водородных связей в основном ответственны нековалентные взаимодействия. [c.381]

    В основе всех поисков предсказательных алгоритмов лежит конформационная концепция Полинга, согласно которой трехмерная структура белка представляет собой ансамбль регулярных вторичных структур. Позднее, развивая идею Полинга и Кори о взаимодействии вторичных структур, в конформационный ансамбль были включены супервторичные структуры. Единство всех исследований по отношению к этой концепции неизбежно, поскольку в противном случае очевидна бесперспективность поиска эмпирических корреляций и предсказательных алгоритмов, базирующихся на статистической обработке известных кристаллографических данных. Если основу пространственного строения сложных белковых макромолекул образуют не только отдельные немногочисленные стандартные блоки, но и практически неограниченное количество разнообразных нерегулярных структурных сегментов, то, очевидно, нельзя рассчитывать на его описание с помощью простых правил, выведенных путем статистической обработки всегда ограниченного экспериментального материала. Результаты рентгеноструктурного анализа свидетельствуют о том, что общее содержание вторичных форм полипептидной цепи в белках сравнительно невелико, во всяком случае его доверительное значение не превышает 50%. Реализующиеся в нативных конформациях белковых молекул а-спирали и р-структуры в действительности не являются, более того, у гетерогенных аминокислотных последовательностей никогда не могут являться, строго регулярными (отклонения соответствующих двугранных углов (ф, (/) от их значений в гомогенной цепи составляют, как правило, десятки градусов, а иногда достигают 100-120°). Анализ также показал, что все стандартные аминокислотные остатки (за исключением Pro) имеют практически одинаковые возможности для встраивания в а-спираль, р-структуру и неупорядоченные участки. Выбор определяется не индивидуальными свойствами остатков, а их комбинацией в последовательности. [c.78]


    Следовательно, наличие в белковой глобуле согласованности всех видов невалентных взаимодействий в условиях компактной, плотной упакованной структуры, т.е. при максимальной насыщенности стабилизирующих внутримолекулярных взаимодействий, является исключительным свойством белков как гетерогенных полимерных макромолекул обычно этим свойством наделены кристаллы только низкомолекулярных соединений. У белков оно было выработано в процессе эволюции путем вариации состава и порядка аминокислот. Дошедшие до нас последовательности белков свертываются в физиологических условиях таким образом, что в конечном счете все остатки приобретают те конформации из присущих им наборов низкоэнергетических форм, которые в глобуле оказываются наиболее комплементарными друг другу. Благодаря этому происходит резкая энергетическая дифференциация конформационных состояний, практически равноценных для свободных монопептидов, и выделение из огромного количества структурных вариантов уникальной нативной конформации белковой молекулы. [c.192]

    Экспериментальное изучение многих белков, поддающихся ренатурации, выявило наиболее характерные черты этого явления самопроизвольность протекания, высокую скорость и безошибочность процесса сборки белковой цепи в нативную конформацию. Было показано, что структурная организация белка, несмотря на случайно-поисковый механизм сборки, осуществляется не путем перебора всех возможных конформационных состояний статистического клубка, а по определенному механизму, чувствительному к внешним условиям. При этом не было обнаружено фактов, противоречащих представлению о нативной конформации белковой молекулы как об энергетически глобальном равновесном состоянии. [c.471]

    О.Б. Птицына [140, 141], типичных по своей постановке, аргументации и некоторым другим качествам для работ этого направления. В одном из них ("Белковое свертывание общая физическая модель") нативная конформация белковой молекулы представлена как "определенный вид упаковки структурных сегментов (а-спирали и -структуры)" [140. С. 197]. Главным фактором, стабилизирующим регулярные участки, считаются пептидные водородные связи, не зависящие от природы и порядка [c.503]

    Развит подход к решению задачи о структурной организации белка, который включает термодинамическую и физическую теории, а также метод расчета нативной конформации белковой молекулы по известной аминокислотной последовательности. [c.586]

    Для них характерна большая зависимость между конформацией белковой молекулы и каталитической активностью. Их действие не подчиняется кинетике Михаэлиса-Ментен и описывается другими уравнениями, а графически зависимость скорости от концентрации субстрата имеет сигмоидный характер. Для аллостерических ферментов характерно проявление кооперативного эффекта, когда связывание одной молекулы субстрата усиливает способность присоединять следующую молекулу (активирующий кооперативный эффект), что видно на примере гемоглобина при связывании кислорода с одной субъединицей усиливается дальнейшее взаимодействие его с другими субъединицами. Тот факт, что аллостерический эффект проявляется часто на первой стадии процесса, объясняет выработанное в ходе эволюции экономное расходование веществ на последующих стадиях реакции. [c.35]

    Таким образом, линейная одномерная структура полипептидной цепи (т.е. последовательность аминокислотных остатков, обусловленная кодом белкового синтеза) наделена информацией другого типа—конформацион-ной, которая представляет собой образование белковой молекулы строго заданной формы с определенным пространственным расположением отдельных ее частей. Другими словами, третичная—объемная—структура белковой молекулы детерминирована аминокислотной последовательностью полипептидной цепи, а более конкретно—размером, формой и полярностью радикалов аминокислотных остатков. Эти представления могут служить основой для предсказания конформации белковой молекулы на основании аминокислотной последовательности. Следует указать, однако, что до сих пор представляется интригующей загадкой механизм этой тесной и тонкой связи между аминокислотной последовательностью и трехмерной структурой белковой молекулы. Оказывается, иногда полипептиды почти с одинаковыми последовательностями образуют разные структуры и, наоборот, полипептиды с разными последовательностями формируют одинаковую трехмерную структуру. [c.68]

    На последнем этапе формируется нативная конформация белковой молекулы, связанная с замыканием дисульфидных связей и окончательной стабилизацией белко-Рис. 3.10. Нативная структура ВОЙ конформации. Не исключена также не-рибонуклеазы специфическая агрегация частично сверну- [c.36]


    Дисульфидные группы выполняют важные функции по поддержанию нативной конформации белковой молекулы. Локализация положений дисульфидных связей является обязательным этапом при определении первичной структуры белков. [c.75]

    Сложный процесс наблюдается при денатурации белка специфическая пространственная структура (четвертичная, третичная и вторичная) разрушается, и с точки зрения конформационных характеристик денатурированный белок представляет собой полный хаос . Денатурация — это такое изменение нативной конформации белковой молекулы, которое происходит при достаточно резком изменении внешних условий и сопровождается заметным изменением физико-химических свойств белка и полной потерей биологической активности. [c.103]

    Денатурация белков. Поскольку конформации белковых молекул чаще всего закрепляются относительно слабыми водородными связями, то под влиянием многих факторов пространственная структура способна разрушаться, что приводит к потере биологических функций белков. К таким факторам относятся повышенная температура (нагревание), изменение pH среды, УФ- и рентгеновское излучения н даже механическое воздействие (встряхивание растворов белков). [c.421]

    Конформация белковых молекул оказывает решающее влияние на величину связывания углеводорода. Проведенное исследование с водными растворами сывороточного альбумина человека показало, что взаимодействие углеводорода происходит по доступным гидрофобным областям, существующим при определенных [c.395]

    Полученный в работе экспериментальный материал показывает, что измерение эффекта солюбилизации может служить методом для определения конформации белковых молекул в растворе, а именно третичной структуры. [c.396]

    Как известно, конформацию белковой молекулы можно нарушить посредством какого-либо внешнего воздействия. Такое нарушение ведет к увеличению объема молекулы, что проявляется в снижении объема выхода. Так, диаграмма элюирования сывороточного альбумина на сефадексе 0-200 мочевиной (5 М) содержит два пика, тогда как обычно его /Саг) = 0,43. Первый компонент элюируется гораздо раньше (/Са = 0,1) около 60% белка не претерпевает никаких изменений [76]. Вполне возможно, что часть молекул денатурировалась и занимает поэтому больший объем. По изменению объема выхода можно непосредственно проследить за различными стадиями денатурации белка [77]. Так, молекулярный вес рибонуклеазы, установленный на сефадексе 0-100, увеличивается после денатурации щелочью в 1,9 раза, после окисления надмуравьиной кислотой — в 3,0 раза, после обработки 4 М мочевиной — в 2,5 раза, а после обработки 8 М мочевиной — в 4,3 раза. Как можно убедиться с помощью гель-фильтрации на сефадексе 0-200 [160], химическая модификация сывороточного альбумина (ацилирование различными реагентами) приводит к весьма значительному увеличению объема. [c.171]

    Есть основания считать, что изменение концентрации водород-. ных ионов может привести к существенным, хотя и обратимым нарушениям конформации белковой молекулы, к изменениям вторичной и третичной ее структуры [10], а это, в свою очередь. Может привести к вторичным трансформациям в районе активного центра — в частности, к нарушениям комплементарности фермента и субстрата, к изменениям расстояний между функциональными группами участвующими в реакции с субстратом. С точки зрения кинетической классификации реакций ингибирования, такой эффект ионов водорода следует рассматривать как неконкурентное торможение. Естественно, что в каждом конкретном случае изучения зависимости действия фермента от pH кинетические исследования должны-помогать решению вопроса о механизме влияния Н и ОН"-ионов. [c.104]

    Ацетилхолин и ионы тетраалкиламмония, как было показано выше, образуя комплексы с холинэстеразами, вызывают существенное уменьшение энтропии. Если это связано с созданием более стабильной конформации белковой молекулы, то можно ожидать защитный эффект соединений этого типа против тепловой инактивации. Эксперименты подтверждают такое предположение. На рис. 53 и 54 показано защитное действие тетраметиламмония (ТМА) и тетраэтиламмония (ТЭА) при тепловой инактивации ацетилхолинэстеразы эритроцитов (рис. 53) и холинэстеразы сыворотки крови (рис. 54) (очищенные препараты ферментов). Тепловая инактивация проводилась при pH 7,5 в течение 20 мин. в отсутствие ионов тетраалкиламмония, а также в их присутствии в разных концентрациях (показаны на оси абсцисс). Для выяснения специфичности действия аналогичные опыты проводились с КВг (в тех же концентрациях). Температура инактивации ацетилхолинэстеразы 51, холинэстеразы— 58° С. Замечено, что ацетилхолинэстераза менее термоустойчива, чем холинэстераза 50%-ная инактивация достигается соответственно при 49 и 56,5° С. [c.192]

    Нативная конформация. Биологически активная конформация белковой молекулы. [c.1014]

    Скручивание полипептидной цепи обусловливается специфик ческими связывающими свойствами составляющих ее элементов. Получено много экспериментальных данных, подтверждающих гипотезу (22—24] о том, что конформация белковой молекулы является просто функцией ее аминокислотной последовательности и вся структурная информация содержится в ее первичной структуре. Если нативному состоянию соответствует только ассоциированная молекула, то можно предположить, что процесс самосборки до ассоциированной молекулы (т. е. спонтанная равновесная ассоциация) приводит к достижению минимума свободной энергии, а, следовательно, единичная полипептидная цепь в нативной конформации не стабильна. [c.391]

    Аналитические данные показывают, что яичный альбумин содержит около 9 остатков тирозина, обнаружить которые титрованием не удается. Благодаря тому что белки, имеющие изо-электрическую точку в кислой области, в щелочных растворах приобретают большой отрицательный заряд, характерное для фенольных групп значение р ш—Ю может измениться под влиянием электростатических эффектов до рк 2. Ионизацию фенольных групп можно установить спектральным методом, так как известно, что при 295 ммк заметно поглощает только анионная форма остатков тирозина. В яичном альбумине до рН>12,5 роста поглощения, характерного для анионной формы фенольных групп, не наблюдается, а затем оно наступает быстро и необратимо. Если затем снизите значение pH, то конформация белковой молекулы оказывается отличной от исходной. Необратимую денатурацию вызывает также нагревание и добавление сильной кислоты или концентрированного раствора мочевины. [c.117]

    Из ВОСЬМИ неспиральных участков молекулы один содержи карбоксильный конец цепи, а остальные находятся в местах изгибов между прямолинейными сегментами. Число аминокислотных остатков в местах изгибов колеблется от нуля до восьми, причем никакой определенной закономерности в распределении аминокислот на этих участках нет. Все четыре остатка пролина расположены в местах изгиба или вблизи от них (на амин-ном конце а-спиралей). В одном из мест изгиба два спиральных участка соединены одним-единственным остатком пролина. Данные об областях цепи, соединяющих два спиральных участка, особенно существенны, поскольку эти области определяют (по крайней мере отчасти) конформацию белковой молекулы. В одном случае между двумя спиральными участками находится только остаток аланина. [c.265]

    Представляется, что наиболее существенными факторами, пре-пятствупцими решении этой проблемы, являются сложность структу-рвсй организации глобулярных белков и недостаточная мощность современных ЭВМ для точного расчета низкоэнергетических конформаций белковых молекул. [c.168]

    Г. в. между неполярными атомными группами (углеводородными, гало гену глеродными и т.п.), входящими в состав большинства орг. молекул, определяет особые св-ва их водных р-ров, в т. ч. способность к мицеллообразованию и солюбилизацию (резкое повышение р-римости неполярных в-в типа масел в мицеллярных р-рах). Взаимод. между неполярными группами, входящими в состав полимерных молекул, оказывает решающее влияние иа их конформационное состояние в воде. В частности, устойчивость нативной конформации белковых молекул обусловлена определенной последовательностью расположения гидрофобных аминокислотных остатков в полипептидной цепочке. Г. в. обеспечивает специфич. взаимод. ферментов с субстратами, самосборку и разл. аспекты функционирования биомембран и др. надмолекулярных структур. Г. в.-движущая сила адсорбции ПАВ из водных р-ров на границе с воздухом и неполярными жидкими и твердыми фазами ( маслами , гидрофобными минералами типа угля, серы, полимерами типа полиэтилена, полистирола, фторопластов и др.). С Г. в. связана неустойчивость водиых пленок между неполярными фазами, коагуляция и структуро-образование в водных дисперсиях гидрофобных частиц (суспензиях, латексах, флотационных пульпах и др.). [c.568]

    С помощью современных методов анализа аминокислот — хроматографии, ионоф ореза и метода противоточного распределения к 50-м годам XX века был окончательно установлен аминокислотный состав большого числа белков. Эти исследования еще раз подтвердили, что большинство белков состоит из 22 различных аминокислот и что разнообразие белков вызвано главным образом количественным соотношением аминокислотных остатков, характером связи, последовательностью в пептидной цепи или циклах и конформацией белковой молекулы Эти вопросы и являются самыми кардинальными в настоящее время. Первым из них, требовавшим разрешения, был вопрос о характере связи аминокислотных остатков в белке В конце прошлого столетия Гофмейстером было высказано предположение, что основной формой связи аминокислотных остатков и белков является амидная —СО— NH-. Это положение нашло свое подтверждение в блестящих работах Э. Фишера и его школы. Основными фактами, подтверждавшими это положение, были следующие  [c.486]

    Из планарности пептидной связи следует, Что угол поворота и = О (рентгеноструктурными исследованиями белков была показана возможность незначительного поворота с выходом из планарности). По определению углы (А к ф получают положительное значение, если, при наблюдении от С -атома, вращение осуществляется по часовой стрелке. Принципиально для этих углов разрешены не все значения это ограничение определяется радиусами взаимодействия не связанных друг с другом атомов. Рамачаи-дран и др. [148, 149] исследовали иа различных моделях с помощью ЭВМ все возможные комбинации углов поворота и (в табл. 3-7 приведены минимальные расстояния между ковалентно не связанными атомами, которые были взяты для расчетов стерически разрешенных и запрещенных конформаций белковой молекулы при отклонении ее от планарности амидной связи). Из-за стерических ограничений практически реализуется лишь 5Щ всех возможных значений риф. [c.376]

    Изучение структурной самоорганизации позволило сформулировать фундаментальное положение о том, что конформация белковой молекулы отвечает термодинамически равновесному состоянию и, как таковое, не зависит от конкретных внешних условий свертывания белковой цепи (in vivo, in vitro или с помощью шаперонов) и от ее предыстории, т.е. способа получения (биосинтез или химический синтез). Конечная пространственная структура определяется исключительно составом и порядком расположения аминокислот в последовательности. Было доказано, что все необходимые сведения о физиологически активной форме белка заключены в его химическом строении. Трансляция линейной информации в трехмерную структуру возможна, однако только при вполне определенных физиологических условиях (температура, давление, pH, ионная сила, присутствие простетических групп, ионов металла). При их соблюдении сборка осуществляется спонтанно в том смысле, что принятие белком своей равновесной нативной конформации не требует специального [c.81]

    Пространственное строение и другие свойства синтетических полимеров в растворе отвечают состоянию статистического клубка и описываются усредненными параметрами. Молекулярная поворотно-изомерная теория синтетических полимеров, являющаяся составной частью статистической физики, была разработана в 1950-е годы М.В. Волькенштей-иом [47] и позднее развита Т.М. Бирштейном и О.Б. Птицыным [48] и П. Флори [49]. Основы теории фазовых переходов полимеров были заложены в 1968 г. И.М. Лифшицем [50]. Хотя белки являются полимерами и их пространственное строение также определяется поворотной изомерией, теи не менее механизм структурной организации и особенности нативных конформаций белковых молекул не могут быть рассмотрены в рамках отмеченных теорий, базирующихся на равновесной термодинамике и конфигурационной статистике полимерных цепей. [c.101]

    Рассматриваемая здесь задача является качественно иной, имеющей смысл только для избранных, главным образом, природных аминокислотных последовательностей. Поэтому ее решение может быть вьпюлнено лишь на основе самостоятельной теории, учитывающей выработанную эволюцией конформационную специфику белков, а именно статистикодетерминистический механизм структурной самоорганизации и детерминистическую (в отношении как статических, так и динамических свойств) природу нативных конформаций белковых молекул. Стремление описать сборку белка с чисто статистических позиций, не учитывающих гетерогенности цепи и взаимообусловленности поведения макроскопической системы от внутреннего строения микроскопических составляющих, объясняется иллюзорным представлением о том, что в этом случае можно идти по уже проторенному для синтетических полимеров пути и тем самым избежать разработки несравненно более сложного статистико-детерминистического подхода. Однако традиционный поиск решения не отвечает самой сущности рассматриваемого явления, и, следовательно, все попытки дать чисто статистическую трактовку структурной самоорганизации белка следует признать, как отмечалось, обреченными на неудачу (см. разд. 1.3). [c.101]

    Основные положения физической теории. Ни одному из известных опытных фактов не противоречит сформулированное Р. Ламри и Г. Эй-Рингом в 1954 г. положение о том, что нативная конформация белковой Молекулы отвечает термодинамически равновесному состоянию [51]. Это достояние обладает минимальной свободной энергией Гиббса, т.е. являет- [c.101]

    Теоретическое рассмотрение структурной организации белков вынуж-но было строиться таким образом, что о достижении всех отмеченных лей и решении проблемы можно было судить лишь на завершающей Стадии априорного расчета конформации белковой молекулы путем сравнения теоретических результатов с опытными данными. В процессе реше-1Шя проблемы нельзя было получить однозначный ответ на каждый из Ьоставленных вопросов в отдельности он всегда носил интегративный [c.465]

    Конформационные изменения решетчатой модели производились методом Монте Карло с различными относительными весами дальних и ближних взаимодействий и с вариацией соотношения между их специфическими и неспецифическими составляющими. Полученные результаты позволили авторам сделать следующие выводы феноменологического характера. Во-первых, решетчатая модель описывает равновесный переход свертывания и развертывания цепи как типичный двухфазный процесс (и, следовательно, полагают авторы, модель отвечает поведению реального белка) только при определенном соотношении между специфическими дальними взаимодействиями и всеми другими взаимодействиями. Во-вторых, скорость процесса свертывания и развертывания цепи существенно зависит от соотношения специфических и неспецифических взаимодействий. Специфические взаимодействия способствуют образованию у модели локальных нативноподобных структур, объединение которых, в конечном счете, приводит к искомой конформации белковой молекулы. Неспецифические взаимодействия ведут к созданию у модели менее стабильных, флуктуирующих состояний. Решетчатая модель представляет свертывание белковой цепи в нативную конформацию как процесс инициации и постоянного увеличения популяции нативноподобных локальных структур относительно популяции мигрирующих и распадающихся состояний структур развернутой цепи. При увеличении влияния неспецифических взаимодействий модель вырождается в статистический клубок, а при переоценке влияния специфических ближних взаимодействий - в [c.491]

    Бифуркационная термодинамическая теория и обобщение известных опытных данных о нативных конформациях белковых молекул послужили основой для разработки физической теории структурной организации белка. Физическая теория позволила представить громоздкую задачу структурной организации белка в виде менее сложных задач, поддающихся последовательному рассмотрению. Поэтапный подход к решению осуществлен путем разбиения всех внутримолекулярных невалентных взаимодействий на ближние, средние и дальние. Количественная оценка энергии всех видов взаимодействий производилась с помощью метода атом-атомных потенциалов ван-дер-ваальсовых, электростатических и торсионных взаимодействий и водородных связей (см разд 2.2). [c.586]

    Решающим доказательством справедливости предложенного подхода к решению задачи о структурной организации белка явились результаты априорного расчета трехмерной структуры бычьего панкреатического трипсинового ингибитора и количественное представление свертывания белковой цепи как самопроизвольного, быстрого и безошибочного процесса. Рассчитанная при использовании аминокислотной последовательности и стандартной валентной схемы конформация белка совпала с кристаллической структурой молекулы БПТИ. Точность расчета значений всех двугранных углов вращения ф, у, (О и %, расстояний между атомами С всех остатков и длин реализуемых водородных связей оказалась близкой точности рентгеноструктурного анализа белков высокого разрешения. На основе данных о конформационных возможностях аминокислотной последовательности БПТИ получили свое объяснение все детали ренатурации белка, механизм которой был изучен экспериментально. Тем самым, во-первых, была подтверждена неравновесная термодинамическая модель сборки белка. Во-вторых, была апробирована физическая теория структурной организации белка, вскрывающая природу бифуркационных флуктуаций и утверждающая представление о нативной конформации белковой молекулы как о глобальной по внутренней энергии структуре, плотнейшим образом упакованной и согласованной в отношении всех своих внутриостаточных и межостаточных невалентных взаимодействий. Именно гармония между ближними, средними и дальними взаимодействиями ответственна за резкую энергетическую дифференциацию и выделение из множества возможных структурных вариантов стабильной и уникальной для данной аминокислотной последовательности конформации белка. В-третьих, продемонстрированы реальность фрагментарного метода теоретического конформационного анализа пептидов и белков и удовлетворительное количественное описание с его помощью их пространственных структур применительно к условиям полярной среды. Под- [c.589]

    Результаты этого эксперимента показали, что термостабильность фермента повыщается при образовании новых дисульфидных связей, при этом наиболее термостабильным является белок с максимальным числом таких связей. Однако некоторые варианты (С, Е и F), будучи более термостабильными, чем нативный фермент или фермент псевдодикого типа , не обладают ферментативной активностью. Возможно, это обусловливается искажением конформации белковой молекулы при образовании дисуль-фидной связи между остатками 21 и 142. Хотя создание новых белков с помощью методов генной инженерии часто представляет собой эмпирический процесс (т. е. далеко не всегда бывает ясно, замены каких именно аминокислот позволяют получить наилучший вариант), описанный эксперимент показывает, что получение термостабильных белков с дополнительными дисульфидными связями вполне реально. [c.169]

    Многие исследователи считают, что определяющая роль в термофилии принадлежит белкам, в первую очередь ферментным. С этих позиций основные температурные точки термофилов зависят от конформации одного или нескольких ключевых ферментов при минимальной температуре роста происходит переход от жесткой неактивной конформации белковых молекул к конформации с ограниченной гибкостью оптимальная температура роста определяет наиболее благоприятное конформационное состояние ферментных белков при максимальной температуре начинаются нарушения конформации белков и снижение их ферментативной активности, а выше этой температуры рост прекращается вследствие тепловой денатурации белков. [c.136]

    Этим функции белка как фермента или апофермента скорее всего не исчерпываются. Все рассмотренные ме-чанизмы предполагали достаточно статичное расположение функциональных групп белка в активном центре Это не совсем верно. Взаимодействие с субстратом нередко сопровождается изменением конформации белковой молекулы, и согласно теории, выдвинутой Кошландом, направленные конформационные изменения белка являются важным фак1чэром ферментативного превращения. В отдельных случаях такие изменения зарегистрированы с помощью рентгеноструктурного анализа. Например, карбоксипептидаза А была подвергнута рентгеноструктурному анализу как в отсутствие субстрата, так и в комплексе с глицил-1/-тирозином. Полость, в которой находится активный центр, существенно сужается при связывании этого субстрата, т.е, наблюдается отчет ливый конформационный переход. Кроме того, широко дискутируется и имеет в отдельных случаях убедительные подтверждения гипотеза, согласно которой фермент фиксирует субстрат в конс юрмации, существенно более близкой по своей геометрии к активированному комплексу реакции, чем конформация субстрата, преобладающая у несвязанных молекул. Это, естественно, должно приводить к снижению активационьюго барьера реакции и способствовать существенному ускорению превращения. [c.208]

    Исследования влияния углеводородов на конформационное состояние макромолекул глобулярных белков проводились методами оптического вращения и его дисперсии, вискозиметрически, спектрофотометрически и по изучению кинетических параметров ферментативной активности, Вращение плоскости поляризации чрезвычайно чувствительно к изменению конформации белковых молекул. Правда, между оптической активностью и структурой белка нет простой и ясной зависимости, но значение оптической активности как характеристики степени конформационного изменения белков общеизвестно и играет большую роль при изучении процессов денатурации. [c.29]

    Механизм образования этой высокоупорядоченной структуры из первоначально вязкой нефибриллярной секреции гусеницы и конформация белковых молекул до начала прядения шелка пока не установлены. [c.295]


Смотреть страницы где упоминается термин Конформации белковых молекул: [c.168]    [c.534]    [c.75]    [c.84]    [c.591]    [c.24]    [c.60]    [c.133]    [c.54]    [c.191]    [c.945]   
Органическая химия (1972) -- [ c.425 ]

Органическая химия (1972) -- [ c.425 ]




ПОИСК





Смотрите так же термины и статьи:

Конформация молекул

Конформация молекулы белка

Молекулы белка



© 2025 chem21.info Реклама на сайте