Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная связь константа равновесия

    Изучение сдвига электронных полос позволяет определить важнейшие количественные характеристики водородной связи константу равновесия, энергию связи и др. Многие авторы приравнивают сдвиг полосы поглощения группы, участвующей в образовании водородной связи (относительно положения той же полосы в инертном растворителе), к энергии водородной связи соответствующего комплекса в основном электронном состоянии. Однако, как показал Пиментел [40], такой подход не является обоснованным. [c.226]


    Если бы на значения константы равновесия влияла в основном возможность образования водородных связей, константы К4 и Кв были бы близки, а в действительности они различаются на порядок. По Видимому, реакционная способность определяется в основном электронной плотностью на атоме азота. [c.200]

    Книга посвящена новой обширной области применения газовой хроматографии для определения физико-химических характеристик систем твердое тело—газ, жидкость—газ и чистых твердых и жидких веществ. В ней рассмотрены возможности использования газохроматографических методов для оценки катализаторов и носителей, определения коэффициентов диффузии, энтальпии образования водородной связи, констант адсорбционного равновесия теплоты адсорбции и других величин. [c.2]

    Формулу (Х.18) можно исиользовать для определения констант равновесия процессов комилексообразования с водородной связью. Для вычисления констант равновесия и получения термодинамических характеристик комплексообразования по уравнениям (Х.17) и (Х.18) разберем условия определения величины Кр по данным химических сдвигов. [c.268]

    Формулу (VI. 15) можно использовать и для определения констант равновесия процессов комплексообразования с водородной связью. Наблюдение по гидроксильному протону, положение которого сильно изменяется при образовании водородной связи, затрудняется из-за присутствия собственных ассоциатов, и определение констант равновесия производится по другой методике. В более редком случае, когда при комплексообразовании происходит изменение химического сдвига группы соседней с ОН, формула (VI. 15) может успешно применяться. [c.130]

    Межмолекулярные взаимодействия играют важную роль в осуществлении многих химических и биологических процессов. Образование водородной связи, перенос заряда, возникающие в результате слабых межмолекулярных взаимодействий, меняют не только химические свойства самих молекул, участвующих в них, но и физико-химические свойства среды, в которой осуществляются такие взаимодействия. Для описания состояния, в котором находятся молекулы, используют термин молекулярный комплекс , время жизии которого чрезвычайно мало — порядка Ю —10 с. Образование мо-лекулярны х комплексов регистрируют спектральными методами, так как физические свойства комплексов отличаются от свойств чистых компонентов. Одним из спектральных методов, позволяющих получить информацию о величинах констант равновесий, термодинамических и спектральных характеристик молекулярных комплексов, является спектроскопия ЯМР. [c.98]


    Как и в подгруппе VIA, у водородных соединений галогенов сила кислот, получающихся при растворении в воде, увеличивается по мере уменьшения электроотрицательности элемента по ряду HF, НС1, НВг, HI противоположно изменению электрпческих моментов диполей молекул НЭ. Здесь большую роль играет значительное уменьшение прочности связи Н—Э по тому же ряду. Термодинамические вычисления величин АСма для процесса H3(aq) ==H+(aq)-]-3 (aq) и по ним значений константы равновесия К привели к хорошему соответствию с экспериментально найденными значениями К (табл. 31). [c.388]

    Комплекс реагента В с кислотой НА может быть ионизированной формой молекулы (ВН ), ионной парой (ВН" ", А ), комплексом с водородной связью (В- НА). В образовании каждой из этих форм принимают участие полярные молекулы растворителя. В первой равновесной стадии продукт В выступает в качестве основания, которое отбирает протон у кислоты НА. Лимитирует процесс вторая необратимая стадия. Аналогичный характер носит реакция, катализируемая основанием. В этом случае реагентом является НА, а катализатором - основание В, которое регенерируется в последующей стадии превращения. При варьировании концентрации катализатора (кислоты или основания) в широких пределах образуются реакционноспособные комплексы различного состава и одни и те же продукты образуются по нескольким маршрутам превраШения исходного реагента. Нередко кислота (основание) образует с реагентом и нереакционноспособные комплексы (константа равновесия К), что, конечно, отражается на скорости реакции. Эффективная константа скорости каталитического превращения В в продукты равна [c.498]

    По своей сути катализ общими кислотами и основаниями должен включать стадию переноса протона, которой предшествует образование водородной связи (гл. 2). Исходя из этого, эффективность общего катализа может зависеть от следующих факторов 1) величины константы равновесия образования комплекса с водородной связью 2) степени поляризации ковалентной связи, вызванной образованием комплекса 3) скорости переноса протона. Оценка вклада этих факторов основана на точном описании процесса переноса протона в ходе общего катализа. [c.132]

    Энергия водородных связей определяется из термодинамических свойств соответствующих веществ, из спектров и т. д. Термодинамические функции выражаются через константу равновесия [c.96]

    При каких же условиях п>1 Кооперативность велика, если велика свободная энергия, необходимая для возникновения одного разрыва в последовательности водородных связей, т. е. если мала константа равновесия а для тако- д го процесса  [c.101]

    Пиридин (ру) и 3-оксипирен (ROH) образуют комплекс за счет водородной связи константу равновесия можно определить из [c.167]

    Связанный водородной связью протон может быть либо ближе к А (1), либо-к атому кислорода карбонильной группы (II). Частицы I будут реагировать с константой скорости к , которая больше, чем константа скорости для свободного карбонильного соединения. Частицы II будут реагировать с очень высокой константой скорости к , но доля превращения, происходящего по этому пути, не может быть большой вследствие низкой концентрации частиц II. Изотопный эффект дейтерия и наклон зависимости Брёнстеда а для этой реакции будут функциями констант равновесия образования комплексов с водородными связями, константы равновесия К и относительных величин кх и к . Переходное состояние может быть достигнуто при движении протона от карбонильной группы [c.190]

    Все эти многочисленные данные не получили надлежащего объяснения, хотя Грамстед сделал ряд интересных предположений о возможных эффектах сопряжения, делокализации -электронов и т. п. Полученные результаты интересны в том отношении, что любая из переменных (AvOM, AvP=0 и константа равновесия) вполне может служить показателем силы водородной связи. В пределах ряда родственных соединений эти величины связаны друг с другом, но общее соотношение отсутствует. Ни одна из этих характеристик не является достаточно удовлетворительной мерой для оценки водородной связи, хотя при неизменном доноре протонов величина AvOH служит, по-видимому, наилучшим критерием для сравнения относительной силы связи. Константа равновесия, конечно, связана с изменением полной свободной энергии и включает как энтропийный, так и энтальпийный члены. Трудности сопоставления смещений частот и изменения энтальпии связаны с различиями между этими величинами. AvOH служит мерой изменения энергии связи ОН, AvP=0 отражает те же изменения связи Р=0, в то время как АЯ является мерой изменения энергии всей системы. В величине ДЯ находят отражение изменение энергии этих двух связей и энергия самой водородной связи. Вероятно, сюда входят также другие составляющие, соответствующие изменениям энергии связей с заместителями. Ясно, что было бы неправильно прямо сопоставлять смещения vP=0 с величинами АЯ или даже с полной энергией новой связи (которая изображена пунктиром в формуле R0H---0=P ). [c.285]


    Теория БЭТ несмотря на условность предпосылок позволила вывести уравнение изотермы адсорбции, имеющей S-образную форму. Вид этой изотермы характерен для полимолекулярной адсорбции. При значениях давления, далеких от давления насыщенного пара при данной температуре, и значении константы равновесия полимолекулярной адсорбции С>1 уравнение S-образной изотермы переходит в уравнение изотермы адсорбции Лангмюра. Таким образом, адсорбция в каждом слое подчиняется уравнению Лангмюра. Существует пять основных типов изотермы адсорбции (рис. 109). Изотермы типа I характерны для микропористых адсорбентов выпуклые участки на изотермах типов И и IV свидетельствуют о присутствии в адсорбенте наряду с макропорами и микропор. Менее крутой начальный подъем кривых адсорбции может быть связан с наличием моно- и полимолекулярной адсорбции для адсорбента переходнопористого типа. Начальные вогнутые участки изотерм типов И1 и V характерны для систем адсорбент — адсорбат, когда взаимодействие их молекул значительно меньше межмолекулярного взаимодействия молекул адсорбата, вызванного, например, появлением водородных связей. Теория БЭТ является наиболее полной тео(рией физической адсорбции. [c.257]

    Таким образом, в водном растворе НР является кислотой средней силы. Сопоставление приведенных констант равновесия показывает, что в не очень разбавленных растворах HF содержится больше анионов НРд, чем Р . Образованный за счет водородной связи ион HFj имеет линейное строение (Р---Н—F)-. При нейтрализации НР происходит реакция, в результате которой получается бифторид калия KHF2(KF-HF)  [c.470]

    Адсорбция на ровной поверхности зависит в основном от природы адсорбента и адсорбата, ет их взаимного сродства. Необло-димо различать влияние этих факторов на величину адсорбции. 4 и на константу адсорбционного равновесия К- Чем сильнее взаимодействие адсорбент — адсорбат, тем больше К и тем большая величина мономолекулярной адсорбции А достигается при тех >i e равновесных давлениях 1глн концентрациях. Обычно считают, что сродство адсорбента к адсорбату (илп К) тем сильнее, чем больЛс-нх склонность к образованию связей одной природы, нанример, к дисперсионному взаимодействию, нли к диполь-динольному, или к образованию водородных связей, или к сильным химическим взаимодействиям. [c.124]

    Автопротолиз. Водородные соединения с полярной связью в жидком состоянии распадаются на ионы за счет протолиза — отщепления протона от одной молекулы и присоединения к другой. Состояние равновесия при автопротолизе характеризует константа равновесия, называемая константой автопротолиза. [c.143]

    Эти свойства можно характеризовать первой константой диссоциации слабой кислоты, так как реакции (12) и (12а) связаны с равновесием между НгА и ионами НА и Н" . Таким образом, кислая соль имеет два противоречивых свойства она может выделять водородные ионы и может их поглощать. В зависимости от того, какая из двух реакций (11) или (12) идет в большей степени, кислая соль может н.меть кислую реакцию (например, МаНЗО,) или щелочную реакцию (например, ЫаНСО,). [c.299]

    Ввиду димеризации молекул (Н Р ) кислота является слабой. По величине константы равновесия (Н) можно судить о том, что в растворе НР содержится больше ионов НР", чем ионов Р . При нейтрализации водного раствора кислоты сначала образуется кислая соль, например гидродифторнд калия КИР г, затем нормальный фторид КР. Для НР характерно образование кристаллических соединений, которые хорошо плавятся и кристаллизуются без разложения, например КР-НР, КР-2НР, КР-ЗНР и КР-4НР с водородными связями между фторнд-ионом Р и НР. Соли плавиковой кислоты — фториды — ядовиты. [c.341]

    В водном растворе HF является киаютой средней силы. Сопост вление приведенных констант равновесия показывает, что в не очень разбавленных растворах HF содержится больше анионов HFl, чем F . Образованный за счет водородной связи ион HFi имеет линейное строение (F - H-F).  [c.459]

    Для характеристики комплексов и ассоциатов необходимо знать их состав, структуру, а также энергии химических связей между частицами, образующими комплекс или ассоциат. Когда состав и структура комплексов и ассоциатов установлены, требуется найти их концентрации. Если концентрации всех комплексов, ассоциатов и мономерных частиц в жидкой фазе известны, то в рамках понятий об ассоциатах и комплексах строение жидкости выяснено. Определив концентрации мономерных молекул, ассоциатов и комплексов и, если возможно, отыскав их коэффициенты активности, вычисляют константы химического равновесия для реакций ассоциации и комплексообразования, протекающих в жидкости. Если эти константы найдены при ряде температур и постоянстве давления или объема системы, то с помощью уравнений изобары или изохоры химической реакции определяется изменение энтальпии АЯ или внутренней энергии А / жидкости, связанное с ассоциацией или комнлексообразованием. А величины АЯ и А позволяют судить о тех изменениях энергии жидкости, которые происходят при образовании или разрущении соответствующих химических связей, в частности водородных связей. [c.103]

    Kj, T)—константа равновесия брутто-реакции. Дзюро Хориути решил эту задачу в 1939 г. для частного случая — реакции, протекающей на водородном электроде. Именно в связи с этой задачей и было введено известное понятие стехиометрическое число . Г. К. Боресков, по условиям военного времени не знакомый с работой Хориути , дал решение задачи для последовательности реакций при некоторых упрощающих предположениях (одна стадия — лимитирующая кинетическая зависимость — степенная). Задача Хориути — Борескова оказалась весьма трудной. Фактически эта задача согласования кинетических и термодинамических соотношений для сложных реакций. В своей общей постановке, т. е. для многомаршрутных нелинейных реакций, эта задача до сих пор не решена. Далее мы изложим результаты, касающиеся линейных механизмов. [c.99]

    Димерные комплексы пероксида водорода исследованы на уровне Q ISD(T)/6-311G(2i/,y9)//MP2/6-311 + G d,p) [12]. На поверхности потенциальной энергии найдено два минимума, строение которых показано на рис. 2.2. Симметричный комплекс А характеризуется большей энергией димеризации (-29.3 кДж/моль против -24.7 кДж/мольдля комплекса Б), однако энтропия равновесия [-124 Дж/моль К (А) и -111 Дж/моль К (Б)] нивелирует предпочтительность комплекса А так, что расчетные значения константы равновесия в интервале 298—373 К для обоих комплексов практически совпадают. Высокий дипольный момент структуры Б (2.7 D) может служить дополнительным фактором стабилизации этого комплекса в полярных растворах. Инверсия комплексов А и Б протекает через переходные состояния, также стабилизированные водородными связями, [c.78]

    ПРИМЕНЕНИЕ рН-СТАТИЧЕСКОГО ТИТРОВАНИЯ ДЛЯ ИССЛЕДОВАНИЯ ИОННЫХ РАВНОВЕСИЙ И ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИЙ ОРГАНИЧЕСКИХ КИСЛОТ Основой изучения ионных равновесий в растворах являются уравнения материального баланса (МБ), электронейтральности растворов (ЭН) и закон действия масс (ЗДМ). Однако использование этих уравнений возможно, если в них входят в качестве переменных концентращ1И ионов, в частности, ионов водорода [Н ], информацией о которых является экспериментальное pH. Но последнее отражает не концентрацию, а активность этих ионов. Кроме того, экспериментальное pH зависит от ряда других факторов - диффузионных потенциалов, погрешностей шкалы стандартов, асимметричных потенциалов, точного выполнения электродной системой водородной функции. Б связи с этим разница между найденными из pH значения1у1и [Н ] и их истинными значениями может быть весьма велика. Ошибка при непосредственном пересчете pH на [Н ] может достигать сотни процентов, что приведет к ошибке при расчете констант равновесия на несколько порядков. Решение этой проблемы сводится либо к стандартизации по растворам сильных кислот или щелочей в присутствии нейтральных электролитов, либо к расчетам коэффициента активности по приближенным уравнениям Дебая-Гюккеля. Оба метода не являются точными и имеют ряд известных из [c.92]

    Алексеева, Ушакова, Шварцмана [52-54], В этих исследованиях была поставлена задача выяснить связь между термодинамической активностью углерода в сталях и склонностью этих сталей к водородной коррозии.Эту связь авторы характеризуют определенными количественными соотношениями. При вьшолнении термодинамических расчетов авторы [ 52-54]. полагали, что метан обра ется при при взаимодействии с углеродом, находящимся в феррите на поверхности микрополостей, существующих в стали, по уравнению С-(- 2Н2<= СН4,Константа равновесия этой реакции определяется уравнением  [c.135]

    Если исследуемый электрод находится в стандартных условиях, когда активности всех ионов, определяющих Э. п., равны 1, а давление газа (для газовых электродов) равно 1,01-10 Па, значенне Э. п. наз. стандартным ( ). Оно связано со стандартным изменением своб. энергни Гиббса ДО и константой равновесия Кр электрохим. р-ции ур-нием —ДО = пРЕ = RTlnKp, где F — число Фарадея, й — число электронов, участвующих в р-ции, R — газовая постоянная, Т — т-ра (обычно Е" электрохим. систем по отношеншо к водородному электроду и протекающие на электродах р-цин приводят в таблицах). Зависимость Э. п. от активностей а участников эдектрохим. р-цин выражается ур-ннем Нернста  [c.697]

    Для объяснения поведения реагирующих и ассоциированных Ж. учитывают влияние на их структуру коро1кодей-ствующих насыщаемых (т. е. локализованных между отдельными парами частиц) сил притяжения. Это влияние выражается в образовании различных связанных групп частиц от димеров, тримеров и т. д. до цепочек, слоев и целых пространств. стр)1ггур, обусловленных ковалентными либо водородными связями. Равновесные концентрации димеров. тримеров и т. п. могут быть определены на основе закона действующих масс, а св-ва Ж. рассчитаны как св-ва жидкой смеси мономерных, димерных и др. молекул, находящейся в хим. равновесии. В практич. расчетах применяют т. наз. квазихимнческие модели, в к-рых константы равновесия не вычисляются, а рассматриваются как параметры. Такой подход оказывается полезным при описании как чистых Ж., так и р-ров. [c.155]

    Оно связано со стандартным изменением энергии Гиббса ДС и константой равновесия электрохим. р-ции ур-нием -KG nFFP = RT nK , где F- число Фарадея п- число электронов, участвующих в р-ции R - газовая постоянная Т - абс. т-ра. Значения " электрохим. систем по отношению к водородному электроду и протекающие на электродах р-ции сведены в спец. таблицы (подробнее см. Стандартный потенциал). [c.424]

    На сопряженные химические реакции оказывают влияние как физические, гак и химические свойства среды Такие физические свойства растворителя, как диэлектрическая постоянная, дипольный момент и способность образовывать водородные связи, влияют на константы скорости и равновесия ряда сопря- [c.85]

    Характеризуя количественно межмолекулярные взаимодействия, биохимики говорят обычно о вандерваальсовых силах, электростатических взаимодействиях, водородных связях и гидрофобных силах. Количественными характеристиками суммарного действия всех сил являются константа равновесия н изменение энтальпии и энтропии рассматриваемой системы. [c.243]

    Анализируя данные по термодинамическим параметрам реакций комплексообразования эфира 18-краун-б (табл. 4.8) и р-ЦД (см. ниже табл. 4.17) с аминокислотами в воде, можно сделать следующие сравнительные выводы о взаимодействии указанных макроциклов с АК в воде. Константы равновесия реакций комплексообразования 18-краун-б с АК меньше соответствующих констант для систем р-ЦД + АК, однако 18-краун-б имеет более сильную комплексообразующую способность к АК по сравнению с р-ЦД. Ассоциация 18-краун-б со всеми АК в воде происходит по единому механизму за счет образования трех водородных связей посредством КНз-группы АК и через три электростатических взаимодействия Г Г. .. О. р-ЦД селективно ассоциирует с изученными АК и образует комплексы только с ароматическими АК за счет специфических взаимодействий, а процесс комплексообразования в большей мере, чем в случае с 18-краун-б, управляется влиянием среды. Это подтверждается существованием зависимости энтальпии комплексообразования (Д(.// ) 18-краун-б и р-ЦД от энтальпии гидратации (Д ,у ,Л) аминокислот (рис. 4.14), из которой выпадают только значения для комплексов Ь-Шз-р-ЦД, Ь-01п-18Кб, Ь-Р11е-18К6, что свидетельствует об ином механизме молекулярного узнавания этих АК указанными макроциклами. Как видно из рис. 4.14, зависимость А,Н А,,у гН) для Р-ЦД сильнее выражена, чем для 18-краун-б, что говорит о большем влиянии растворителя на процесс ассоциации АК с р- [c.227]

    Другая серьезная проблема, возникающая при учете электростатических взаимодействий, связана с диэлектрической проницаемостью е. Выше отмечалось, что этот параметр характеризует макроскопическое свойство среды ослаблять взаимодействие зарядов, находящихся на большом расстоянии друг от друга. В конформационном анализе одной молекулы такая трактовка параметра е, строго говоря, теряет смысл. Тем не менее от использования диэлектрической проницаемости не отказались и вводят В расчет в виде эмпирического параметра, величина которого может существенно отличаться от величины известной физической константы. Определение е, используемой в конформационном анализе, связано с большими трудностями и вряд ли является однозначным. В отсутствие молекул растворителя в промежутке между близко расположенными атомами значение диэлектрической проницаемости определяется поляризуемостью взаимодействующих атомов и полем, создаваемым окружающими атомами и молекулами растворителя. Для неполярной среды Брант и Флори рекомендуют величину е = 3,5 [86]. Выбор был сделан при сопоставлении результатов конформационного анализа полипептидов с опытными данными. В работе Скотта и Шераги, посвященной конформационному анализу регулярных структур полипептидов, значение е варьируется от 1 до 4, что, однако, мало сказывается на профиле потенциальной поверхности [85]. Учитывая величину диэлектрической проницаемости в алкиламидах (е = 4), значения от 1 до 4 можно считать разумными при оценке электростатических взаимодействий атомов полипептидов в неполярных средах. В случае водных растворов значение зф должно быть больше, так как для самой воды е = 81 и, что весьма важно, вода при образовании водородных связей оттягивает на себя заряды атомов амидной группы. С. Кримм и Дж. Марк в расчете конформаций полипептидов с заряженными группами в водной среде использовали величину е, равную 10 [95]. В работе Е.М. Попова и соавт. [96] была рассмотрена возможность учета влияния растворителя на конформационное равновесие низкомолекулярных пептидов в рамках механической модели. Наилучшее совпадение с экспериментальными данными было получено при е = 4 для растворов в ССЦ, е = 6-7 - СНСЦ и е = 10 - Н2О. [c.119]

    Рассмотрим оценки, сделанные опытным проявлениям молекулярных свойств ангиотензина II и попытаемся составить общее представление о характерных особенностях структурной организации гормона, а затем qpasHHTb его с представлением, следующим из теоретического анализа. Противоречивыми оказались первые же исследования структуры ангиотензина II методом диализа на тонких пленках. В одних работах [33, 34] сделан вывод о том, что молекула гормона в растворе имеет одну компактную форму, а в другой [8] предположено наличие конформационного равновесия двух форм. Не менее противоречивы выводы разных авторов из кинетических данных по изотопному замещению протона в водородных связях ангиотензина II. Г. Шерага и соавт. [15] отмечают одинаковую скорость обмена всех амидных протонов и делают вывод о том, что конформационное состояние гормона отвечает статистическому клубку. Р. Ленкинский и соавт. [35] отмечают аномально низкую скорость обмена амидного протона His , а М. Принтц и соавт. [24, 36] выделяют по этой же причине остатка VaP и VaP. В работе [25] амидные протоны разделены по скорости обмена на три группы, причем к группе с наибольшими скоростями отнесены протоны Asp и Arg . В классификации, предложенной Г. Маршаллом [37], все обменивающиеся протоны разделены на четыре группы. К одной группе отнесены амидные протоны всех остатков ангиотензина II, за исключением Asp и Phe , имеющие, согласно сообщению [37], одинаковую скорость обмена. По значениям констант диссоциации ионогенных групп гормона, полученных потенциометрическим титрованием [9] и с помощью спектров ЯМР и КД [38], сделан вывод о сближенности N- и С-концевых групп пептидной цепи, допускающей их взаимодействие. Расстояние между группами значительно меньше соответствующего расстояния в случае пребывания ангиотензина в состоянии статистического клубка. В работе [38], кроме того, предположено, что все ионогенные группы доступны растворителю, а имидазольное кольцо остатка [c.279]

    НОСТЬ сольватировать реагенты или активированные комплек сы, а также молекулы в основном и возбужденном состояниях [1, 3]. В свою очередь сольватирующая способность растворителя зависит от всех специфических и неспецифических взаимодействий между молекулами растворителя и растворенного вещества, в том числе электростатических взаимодействий между ионами, ориентационных взаимодействий между биполярными молекулами, индукционными и дисперсионными взаимодействиями, образованием водородных связей, переносом заряда, а также сольвофобными взаимодействиями (см. гл. 2). При этом не учитываются только такие взаимодействия, которые приводят к определенным химическим изменениям молекул растворенного вещества, например к протонированию, окислению, восстановлению, комплексообразованию. Очевидно, что определяе мую таким образом полярность растворителя нельзя описать каким-либо одним физическим параметром, например диэлектрической проницаемостью. Действительно, очень часто не удается обнаружить какой-либо корреляции между диэлектрической проницаемостью [или той или иной ее функцией, например 1/бг, (вг—1)/(2ег+1)] и логарифмом скорости или константой равновесия зависящей от природы растворителя химической реакции. Вероятно, вообще не существует такого макроскопического физического параметра, с помощью которого можно было бы учесть все многочисленные взаимодействия между растворителем и растворенным веществом, осуществляющиеся на молекулярном уровне. До настоящего времени сложность взаимодействий между растворителем и растворенным веществом не позволяет найти достаточно общие математические выражения, с помощью которых можно было бы вычислить скорости или константы равновесия реакций в растворителях различной полярности. [c.487]

    Хроматографическое разделение оптических изомеров обусловлено диастереомерной ассоциацией хиральной среды, созданной в колонке, и энантиомерных сорбатов. Разнообразие экспериментальных условий, при которых наблюдалось непосредственное разделение оптических изомеров, также свидетельствует о том, что необходимое различие в ассоциации может быть следствием различия в типах молекулярных взаимодействий. Ассоциация, которую количественно можно выразить через константу равновесия, является функцией как связывающих, так и отталкивающих взаимодействий, вовлеченных в этот процесс. Отталкивание обычно можно рассматривать как следствие стерических взаимодействий, но оно может вызываться и диполь-дипольными взаимодействиями, тогда как связывающие взаимодействия могут иметь самую различную природу. Это и водородная связь, и электростатическое или диполь-дипольное притяжение, и взаимодействия с переносом заряда, и гидрофобные взаимодействия (в водных системах). Как мы увидим в дальнейшем, уже одного типа связывающих взаимодействий может оказаться достаточным для разделения энантиомеров. Например, соверщенно очевидно, что для разделения энантиомеров в некоторых видах как ГХ, так и ЖХ достаточно даже удерживания, обусловленного образованием всего лишь водородной связи. Тот факт, что энантиомерные сорбаты, несущие только один заместитель, способный к образованию водородных связей, можно разделить в этих условиях, указывает, что для проявления хиральной дискриминации в этом виде хроматографии необходим только один тип удерживающих сил. [c.73]

    Возбуждение электронной оболочки молекулы оказывает сильное воздействие на водородную связь. Резко возрастают скорости образования водородной связи, достигая Ю м" -л-с , и скорости ее диссоциации, достигая значений 10 с". Баланс скоростей образования и диссоциации частично или полностью протонированных оснований (что зависит от глубины протонирования — степени внедрения протона в электронную оболочку основания) определяет константу равновесия реакции кислотно-основного взаимодействия, или, другими словами, — силу кислоты в данном растворителе, выступающем в роли основания. Глубина протонирования основания при его фотовозбуждении может возрастать настолько, что слабое взаимодействие (Н-ассоциат, в котором реализуется водородная связь) перейдет в сильное (Н-ассоциат переходит в полностью протонированное основание с освобожде- [c.266]


Смотреть страницы где упоминается термин Водородная связь константа равновесия: [c.113]    [c.53]    [c.445]    [c.557]    [c.99]    [c.32]    [c.47]    [c.135]    [c.304]    [c.100]    [c.210]   
Теоретические основы органической химии (1979) -- [ c.122 , c.123 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Константа равновесия

Равновесие константу, Константа равновесия

Связь водородная константа

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте