Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободные радикалы энергия образования

    Как видно из данных табл. 1, некоторые типы связей (I—I, Р—Р, О—О) сравнительно непрочны. Например, образование свободного радикала ОН из воды с разрывом связи Н—ОН требует затраты энергии 116 ккал/моль, образование того же свободного радикала из перекиси водорода с разрывом связи НО—ОН — 48 ккал/моль, а из трет-бутилгидроперекиси с разрывом связи (СНз)зСО—ОН — 39 ккал/моль. [c.18]

    Действие сил растяжения вдоль оси молекулярной связи К1—Кг проявляется в ослаблении кажущейся энергии ее образования и, таким образом, способствует увеличению вероятности разрыва связи. Если ослабление кажущейся энергии связи существенно, то механическое воздействие можно считать основной причиной деструкции цепи. Поскольку разрыв цепной молекулы сопровождается образованием органических радикалов, а последующее появление неспаренных свободных электронов регулируется механическими силами, то изучение процесса образования радикалов и их реакций дает необходимую с точки зрения молекулярной теории информацию относительно сил, действующих па цепь. Исследования свободных радикалов методом парамагнитного резонанса усиленно развивались в течение последних 30 лет [1, 2]. С тех пор данный метод успешно применялся для объяснения механизма образования свободных радикалов в химических реакциях и под действием облучения видимым и ультрафиолетовым светом, рентгеновским и 7-излучением и облучением частицами [1, 3]. Дополнительно изучались величина фактора спектроскопического расщепления магнитное окружение неспаренного спина свободных электронов и структура свободного радикала. Во всех этих случаях спин свободного электрона действует как зонд, который, по крайней мере временно, присоединяется к определенной молекуле, принимает участие в ее движении и взаимодействует с окружающим магнитным полем. [c.156]


    Инициирование радикальной полимеризации. Реакция инициирования радикальной полимеризации заключается в образовании первичного активного свободного,радикала из молекулы мономера в результате появления в ней неспаренного электрона. Свободные радикалы могут образоваться при действии тепла (термическая полимеризация), света (фотополимеризация), в результате облучения мономера частицами с высокой энергией (радиационная полимеризация), под влиянием инициаторов (полимеризация в присутствии инициаторов). [c.92]

    Например, для реакции окислеиия водорода при невысоких давлениях обрыв цепей происходит преимущественно на атомах Н, которые присутствуют в наибольшей концентрации. При этом может происходить либо взаимодействие атомов ] со стенкой, либо их присоединение к молекуле О,, в присутствии третьей частицы М, необходимой для отвода энергии, с образованием неактивного при низких давлениях и температурах свободного радикала НОа  [c.319]

    Однако одним из наиболее распространенных и часто применяемых на практике методов полимеризации является инициированная полимеризация. Она активируется соединениями, которые легко распадаются на свободные радикалы в условиях полимеризации. Такие соединения называются инициаторами полимеризации. Они содержат в своих молекулах неустойчивые химические связи (О—О, N—N, S—S, О—N и др.), которые разрываются при гораздо меньшей энергии, чем это требуется для образования свободного радикала из молекулы мономера (при ее активации). Инициаторами могут быть органические перекиси и гидроперекиси, некоторые азо-и диазосоединения и другие вещества  [c.391]

    Вулканизация может протекать также под действием свободнорадикальных инициаторов (например, пероксидов) или под действием излучений высокой энергии (например, 7-излучения). Механизм реакции заключается в отрыве подвижного атома, например атома водорода, от макромолекулы с образованием свободного радикала. Рекомбинация макрорадикалов в конечном счете приводит к образованию разветвленных и сшитых полимеров. [c.61]

    Внутренняя энергия покоящихся многоатомных молекул в состоянии идеального газа равна сумме энергий разрыва всех химических связей в этой молекуле (энергий связей). Эта величина может быть представлена как взятая со знаком минус сумма энергий разрыва отдельных связей в рассматриваемой молекуле и в частицах, образующихся из нее при последовательном разрыве связей. Например, энергия разрыва связи О — Н в молекуле HjO, приводящая к образованию атома Н и свободного радикала ОН, равна 493,8 кДж/моль. Энергия разрыва связи в двухатомной частице ОН равна 423,7 кДж/моль. Следовательно, внутренняя энергия паров воды за вычетом энергии термического возбуждения составляет — 9)7,5 кДж/моль. Из этого примера ясно, что энергия разрыва связи зависит не только от того, между какими атомами эта связь образована, но и от того, в какой частице эта связь находится. [c.134]


    Следует отметить, что при соединении двух свободных атомов или свободных радикалов в первый момент образовавшаяся молекула находится в возбужденном состоянии — ее полная энергия, равная сумме полных энергий исходных частиц, достаточна для того, чтобы образовавшаяся химическая связь сразу же разорвалась. Для завершения реакции образования молекулы нужно, чтобы за время жизни возбужденной молекулы она встретила бы еще одну частицу и отдала бы ей часть своей энергии. Это условие выполняется в растворах и газах при достаточно высоких давлениях. При низких давлениях в газе два свободных атома или свободных радикала образуют устойчивый продукт лишь в присутствии третьей частицы в момент соударения. [c.281]

    Такой процесс выгоден, потому что образование связи Н—(]1 сопровождается выделением значительной энергии (430 кДж/моль). Молекула метана превращается в остаток -СНз — свободный радикал, частицу с неспаренным электроном. Эта активная частица реагирует с молекулой хлора, отнимая от нее один атом, а другой снова превращая в активный свободный атом хлора (радикал)  [c.235]

    Возникновение свободного радикала всегда связано с затратой значительного количества энергии, которое должно быть сообщено молекуле. В зависимости от способа образования радикалов, начинающих реакционную цепь, различают термическую, фотохимическую, радиационную и инициированную полимеризацию. [c.65]

    Распад молекулы инициатора на свободные радикалы требует гораздо меньшей затраты энергии, чем образование свободного радикала при непосредственной активации молекулы мономера. Поэтому введение инициаторов резко повышает скорость первой элементарной реакции процесса полимеризации —реакции образования активных центров—и соответственно суммарную скорость полимеризации. [c.66]

    С образованием атомарного водорода и свободного радикала ОН требует затраты энергии 493 кДж/моль. Для отрыва второго атома водорода необходимо затратить лишь 430 кДж/моль. Последняя величина характеризует энергию связи в радикале ОН. [c.75]

    Устойчивость радикалов (время нх жизни) оценивают энергией диссоциации разрываемой связи. Чем меньше энергии требуется для образования свободного радикала, тем легче он образуется и тем более устойчив Поэтому по устойчивости эти же свободные радикалы располагаются в обратный ряд [c.111]

    Из таблицы значений энергии диссоциации связей (разд. 4.26) следует, что количество энергии, необходимое для образования свободного радикала из алканов, уменьшается в том же порядке Иg > первичный > вторичный > третичный. Если совместить эти два ряда — потенциалы ионизации и энергии диссоциации связей, то видно, что (рис. 5.7) для рассмотренных алканов порядок устойчивости карбониевых ионов следующий  [c.163]

    Радикальная полимеризация является наиболее распространенным методом синтеза полимеров. Процесс образования макромолекулы включает следующие реакции возникновение свободного радикала -инициирование, последовательное присоединение к нему молекулы мономера с сохранением в концевом звене свободной валентности и прекращение роста макрорадикала. Свободный радикал возникает в результате гемолитического разрыва химической связи и представляет собой атом или группу атомов, содержащих неспаренный электрон. Вследствие наличия неспаренных электронов радикалы характеризуются электрофильными свойствами, способны атаковать электронные пары п- или <т-связи мономеров, превращая их в свободные радикалы. Устойчивость радикала зависит от природы заместителя у атома углерода, содержащего неспаренный электрон. Здесь соблюдается принцип чем меньше энергии требуется для образования свободного радикала, тем он более устойчив и наоборот. По устойчивости свободные радикалы располагаются в следующий ряд  [c.20]

    Процесс инициирования заключается в образовании первичного активного свободного радикала из молекулы мономера. Свободные радикалы могут возникать под действием различных факторов тепла - термическое инициирование, света - фотоинициирование, частиц с высокой энергией - радиационное инициирование, специальных химических веществ (инициаторов) - химическое инициирование. Термическое инициирование как таковое применяется крайне редко, т.к. вызывает протекание различных побочных процессов (разветвление, деструкция, сшивание цепей и др.). На практике чаще всего используется химическое или смешанное термохимическое инициирование. [c.21]

    Рост макрорадикалов начинается с момента присоединения молекулы мономера к первичному свободному радикалу и продолжается до тех пор, пока растущая цепь сохраняет свойства свободного радикала. На стадии роста цепи неспаренный электрон переходит от атома углерода (или другого атома) радикала к концевому атому углерода последней присоединяющейся молекулы мономера, превращая растущую цепь в макрорадикал. Каждый акт присоединения ненасыщенных молекул мономера к радикалу сопровождается разрывом тг-связей мономера и образованием а-связи с неспаренным электроном свободного радикала. Второй электрон 71-связи при этом остается неспаренным, и строение активного центра сохраняется, но молекула мономера к свободному радикалу присоединяется лишь в том случае, если изменение свободной энергии системы (Д/ ) мень пе нуля  [c.24]


    Это выражение способно давать как увеличенные, так и уменьшенные значения видимой энергии активации сравнительно с истинной, т. е. с энергией образования активных частиц по реакции (I) ( ). Это, возможно, позволяет понять, почему некоторые радикальные процессы идут с энергией активации, значительно отличающейся от энергии образования свободного радикала. [c.102]

    Выше мы уже рассматривали вопрос об энергии электронных состояний молекулы и об условиях, при которых химическая частица (молекула, молекулярный ион, свободный радикал) может существовать как единое устойчивое образование, не распадающееся самопроизвольно. Здесь мы снова кратко обсудим этот вопрос. Для определения энергии электронных состояний системы, состоящей из ядер и электронов, мы воспользуемся определением квантово-механического среднего, данным выше. [c.102]

    Теперь перейдем к рассмотрению действия у-излучения радиевых источников. Первоначально образуются электроны с высокими энергиями. Они воздействуют на молекулу тремя различными путями, вызывая а) простую ионизацию, б) ионизацию, сопровождаемую распадом с образованием по крайней мере одного свободного радикала на каждый ион, и в) распад на свободные радикалы. Для наших целей наиболее важен случай (б), так как в жидкости имеются благоприятные условия для рекомбинации радикалов, образующихся но механизму (в). [c.232]

    Многие химические процессы протекают через промежуточное образование свободных радикалов, играющих роль активных центров. Свободные радикалы взаимодействуют с валентнонасыщенными молекул ми с малой энергией активации. В результате такого взаимодействия взамен исчезнувшего первичного свободного радикала обязательно возникнет нр-вый свободный радикал (как следствие сохранения свободной валентности при взаимодействии радикала с молекулой углеводорода). [c.175]

    В рассматриваемых комплексах свободный радикал (в нашем случае — атом галогена) является акцептором электронов. Донором электронов служит молекула растворенного вещества или растворителя. Поэтому очевидно, что значение энергии, соответствующей максимуму полосы оптического поглощения комплекса, должно снижаться при уменьшении потенциала ионизации электроно-донорной молекулы [182]. Согласно данным этой работы, возникновение комплексов происходит со скоростью, лимитируемой диффузией. Постулировались свободно-радикальный и ионный механизмы их образования. [c.141]

    Неполярная активация, следующая за присоединением свободного радикала, неизменно приводит к образованию мезомерного радикала, в такой степени стабилизованного резонансом, что энергия активации, необходимая для раскрытия олефиновой связи, снижается приблизительно от 50 ккал до 25 ккал или меньше [c.218]

    А. М. Мелешина и Л. П. Залукаев [2] теоретически рассмотрели возможность существования комплекса органическая молекула — свободный радикал. Обсуждалась система фенол-феноксил. В предположении, что энергия комплекса в основном обусловливается взаимодействием между атомами водорода и кислорода, была рассчитана энергия его образования. Она сравнивалась с суммой энергий фенола и фенокси-ла, причем был найден минимум энергии при образовании комплекса и предсказана возможность его существования. В литературе появились сообщения о комплексообразовании подобного типа. [c.10]

    Ультрафиолет иногда приводит к образованию свободных радикалов. При этом молекулы одного вида поглощают фотоны и передают энергию молекулам другого вида, которые диссоциируют на два свободных радикала. В работах [26, 78] добавлялась пере- [c.326]

    При отрыве водорода свободным радикалом важное значение имеет пространственный фактор этим объясняется, почему при действии свободного радикала обычно легче нарушается более прочная С—Н-связь, чем менее прочная С—С-связь (усредненные значения энергий образования связей см. стр., 84). [c.831]

    Из этих данных следует, что реакция протекает тем легче, чем меньше энергии необходимо затратить на отрыв водородного атома от молекулы углеводорода с образованием свободного радикала эта энергия тем меньше, чем устойчивее свободный радикал. Так как устойчивость радикалов уменьшается от третичных к вторичным в первичным, то и скорость хлорирования снижается, как правило, в том же порядке. [c.873]

    Необходимо отметить, что такие подсчеты не обеспечивают действительно удовлетворительного определения относительных вероятностей обеих реакций. Сомнительно, чтобы мог быть замещен атом водорода как таковой. Значительно вероятнее положение, что атом водорода будет удален при помощи другого свободного радикала (X VIII), так что любой суммарный энергетический расчет стадии, определяющей скорость реакции, должен включать определение энергии образования новой связи,, образуемой водородным атомом  [c.463]

    Известно, что за образование химической связи, а равно и за ое преобразование в процессе химической реакции ответственны ня-лентные электроны атомов. Известно также, что одним из очень существенных свойств электрона является спин, или момент вращательного движения электрона, наглядно моделируемый обычно посредством маленького заряженного волчка. Но с вращательным движением заряда всегда связан замкнутый ток, образующий магнит, И, действительно, спину электрона соответствует магнитный момент, равный 0,9273-10 ° эрг-гаусс . Заслуга советских ученых состоит в том, что они нашли разгадку парадокса слабые магнитные воздействия, ничтожные по энергии, оказывают могучее влияние на химические реакции, изменяя спины неспаренных валентных электронов у атомов, входящих в свободный радикал пли ион-радя-кал, и снимая спиновые запреты. Это и открывает новые возможности управления химическими процессами не на энергетической, а на спиновой основе. [c.165]

    Свободный радикал имеет неспаренный электронный спин, который взаимодействует с ядерными спинами. В силу такого взаимодействия в магнитном поле устанавливается определенная заселенность уровней энергии, отвечающая той или иной ориентации ядерных спинов. Когда радикал вступает в реакцию, то он превращается в молекулу, лишенную неспаренного электрона. Однако ориентация ядерных спинов и их заселенность в этой молекуле в момент ее образования такая же, какой она была в радикале, и ЯМР-спекгр продукта отражает это происхождение. Это и лежит в основе химической поляризации ядер (ХПЯ). [c.200]

    Термодинамическая вероятность протекания химической реакции определяется величиной изменения в процессе свободной энергии Гиббса. Необходимым условием протекания реакции деструкции является отрицательное значение энергии Гиббса. Термические реакции протекают по радикальному механизму как цепные, так и не цепные. Вероятность протекания ионных реакций незначительная. Так, гетеролитичес-кий распад, например, связи С-С происходит с затратой энергии 1206 против 360 кДж/моль для гомолитического распада. Согласно радикально-цепной теории, при первичной стадии термического распада парафиновых углеводородов образуются два свободных радикала, которые могут дать начало реакционным цепям. Направление распада молекулы парафинового углеводорода на радикалы зависит от величины энергий связей, которые характеризуются теплотой их образования. [c.127]

    Здесь мономолекулярная стадия зарождения цепи (1) достаточно быстро идет под действием света. За ней следует бимолекулярная скоростьопределяющая стадия (2) - медленная, так как она сопряжена с разрывом прочной связи Н—Н. Это продолжение цепи, при котором образуется продукт реакции НВг и появляется новая активная частица — радикал Н. После этого возможно дальнейшее продолжение цепи (3) или ее обрыв (4), связанный с рекомбинацией свободных радикалов, а также торможение (ингибирование) образования конечного продукта НВг за счет его взаимодействия со свободным радикалом (5). Отметим, что хотя бром и иод - ближайшие ешалоги в периодической системе, механизмы их реакций с водородом различны. Дело в том, что стадия (2) цепного механизма требует затраты энергии на разрыв связи Н—Н (436 кДж/моль). В случае брома эта затрата в заметной мере окупается за счет образовешия НВг (энергия связи 364 кДж/моль), в случае же иода энергии образования HI (297 кДж/моль) недостаточно для продолжения цепи. [c.152]

    НОСТЬЮ 5—50 р,1час, изучал скорость полимеризации мономеров в чистом виде и в растворе, измеряя также скорость расходования стабильного окрашенного свободного радикала дифенилпик-рилгидразила. Измеряя молекулярные веса и скорости полимеризации, можно было оценить скорости образования радикалов этот результат был проконтролирован по скорости исчезновения дифенилпикрилгидразила, исходя из предположения, что каждый радикал реагировал с одним радикалом дифенилпикрилгидразила. На основании этих оценок и известной мощности дозы можно было определить количество радикалов на 100 эв эти значения приведены во второй графе табл. 4. Исходя из известных значений энергии связи и из предположения о характере разорванных связей, можно было вычислить долю энергии излучения, израсходованной на химические изменения эти значения приведены в третьей графе. [c.57]

    Определяющими факторами второй стадии, основной в процессе получения меченых соединений, являются вероятность образования промежуточного комплекса и степень возбуждения молекулы или комплекса. В зависимости от степени замедления атома отдачи процесс образования соединения, содержащего радиоактивный атом, протекает по механизму упругих или неупругих соударений. В первом случае меченая молекула образуется в результате рекомбинации свободного радикала и атома отдачи, потерявшего всю (предельный случай) или значительную часть энергии в результате упругого столкновения с аналогичным стабильным атомом молекулы. Такое взаимодействие приводит к получению меченых молекул, являющихся продуктами замещения равноценных или близких по массе атомов на атомы отдачи. Во втором случае — случае неупругих соударений — атом отдачи воз--буждает молекулу в целом, что иногда приводит к образованию промежуточных комплексов с избыточной энергией. [c.58]

    Наличие в молекуле полимера атомов, легко отщепляемых под действием свободных радикалов, способствует протеканию процесса по этому механизму [18]. Водородные атомы, находящиеся в а-положении к боковым группам виниловых полимеров, обладают пониженной устойчивостью к действию свободных радикалов. Боковые группы часто обладают способностью резонансно стабилизировать свободный радикал, образующийся при отрыве атома водорода. Представления о механизме образования водорода при взаимодействии соседних цепей в твердой фазе подтверждаются тем, что допускают возможность непосредственной близости свободных радикалов, необходимой для образования поперечных связей. В связи с этим отпадает необходимость допущения дмиграции макрорадикалов в облученном полимере. Имеются указания [19—22] на то, что активные центры, а также свободные радикалы, обладающие избыточной энергией, обладают способностью к миграции. [c.168]

    По обоим методам (реакция с кислородом и окисью азота) энергия активации диссоциации гексафенилэтана оказалась равной 19 ккал (+1%). Циглер обратил внимание на тот факт, что энергия активации, требуемая для разрыва центральной связи С — С в гексафенилэтане, значительно больше теплоты диссоциации (ДЯ), которая составляет только 11 ккал (4 1%). Он указал, что у свободного радикала трифенилметила в растворе энергия, повидимому, на 3—4 ккал меньше, чем в момент образования. Вычисления Конанта показывают, что в ряду диксантила энергии активации (Е) также отличаются от теплот диссоциации ( А Я), но, к сожалению, его значения Д// основаны на весьма сомнительных теоретических предположениях [c.67]

    К специальным приемам, используемым при определении радикалов, относятся приготовление и смешивание реагирующих веществ для последующего получения радикалов. В работе [658J описана методика смешения атомного водорода и молекулярного кислорода для получения радикалов НОг- При помощи масс-спектрометра исследовано множество реакций, приводящих к образованию радикалов [148, 1264, 1269, 53, 90, 148, 170, 289, 378, 577, 578, 624—628, 657—659, 661, 662, 853, 922, 1019, 1020, 1034, 1035, 1048, 1217, 1229, 1263, 1265—1267, 1269, 1270, 1351, 1544, 1657, 1708, 1709, 2Э51, 2052]. Эти исследования относятся к идентификации свободных радикалов, измерению их потенциалов ионизации или скоростей реакций. В ряде случаев измерения потенциалов ионизации свободных радикалов проводились в присутствии молекулярных соединений, являющихся неизбежными примесями, и поскольку, как правило, потенциал ионизации свободного радикала ниже, чем молекулы, то энергия бомбардирующих электронов подбиралась таким образом, чтобы обеспечить ионизацию радикалов, но была ниже потенциала ионизации всех присутствующих молекул. Свободные радикалы могут быть определены в присутствии нейтральных молекул даже при использовании высоких энергий ионизирующих электронов. Для количественного определения свободных радикалов обычно применяют энергии около 50 эв, поскольку при этой энергии достигается наибольшая чувствительность определений, и измерения мало зависят от небольших колебаний энергии или контактной разности потенциалов. [c.452]

    В этих радикалах имеется длинная углеродная цепь она может быть извитой и также образовывать изомеры. Так, 1-цетнльиый радикал может изомеризоваться с образованием свободного радикала, в котором водородная вакансия может находиться при любом атоме углерода — от 5-го до 16-го. Изомеризация Ьцетильного радикала в 2-, 3- или 4-цетильные радикалы при помощи такого механизма маловероятна из-за геометрических трудностей, Райс и Косяков принимают, что для возможности изомеризации на второй стадии разность энергий активации для внутренней передачи атома водорода между первичным и вторичным положениями равна 4000 кал/моль и, следова-тел ано, больцмановский коэффициент равен 8,87 при 922 °К. Принимая, что образуются одинаковые количества различных вторичных радикалов, в результате изомеризации радикала С д (нижний индекс указывает длину цепи радикала, верхний — положение отщепляемого водорода), можно получить  [c.74]

    Анализ последнего значения совместно с указанным выше потенциалом появления заставляет предположить, что при диссоциации образуются не положительный ион радикала и свободный радикал, а другие осколки, так как иначе энергия диссоциации связи должна была бы иметь неправдоподобное значение (около 50 ккал/моль). Другой вероятный процесс диссоциации может заключаться в образовании положительного и отрицательного ионов дифторметиленового радикала. Указанную величину можно принять, если бы электронное сродство иона дифторметиленового радикала превышало его ионизационный потенциал. Единственное иное объяснение заключается в том, что измеренный ионизационный потенциал радикала слишком высок. [c.365]

    При изучении механизма реакций окисления широко используют фотохимическое инициирование. Для образования свободных радикалов под действием квантов света необходимо, чтобы кванты поглощаемого света обладали достаточной энергией. Кванту света с длиной волны 6000 А соответствует энергия 48 кжaл/N, где N — число Авогадро кванту света с длиной волны 3000 А — энергия 96 квал/К. Следовательно, облучение светом с длиной волны 2500—4000 А может вызывать диссоциацию связей С—С или С—Н в углеводородах. Однако большинство углеводородов очень слабо поглощает свет в этой области, поэтому приходится вводить в систему сенсибилизаторы — вещества интенсивно поглощающие свет с последующей передачей энергии молекулам реагента, распадающегося на свободные радикалы. Для тех же целей можно использовать вещества, способные распадаться на радикалы под непосредственным воздействием света, например, перекиси и гидроперекиси. При облучении светом с длиной волны меньше 3000 А (ультрафиолетовая область) перекись распадается на два радикала но связи О—О. Радикалы выходят в объем из клетки растворителя и начинают цепное окисление. Азодиизобутиронитрил имеет максимум поглощения при 3450 А и заметное поглощение на участке до 4000 А. Поглотив квант света, возбужденная молекула динитрила распадается на молекулу азота и два свободных радикала. Эффективность первичного распада азодиизобутиронитрила под действием квантов света составляет 0,43 в бензольном растворе [18]. В качестве сенсибилизаторов используют также красители (антрахинон, эозин). Под действием поглощенного кванта света молекула красителя (эозина) переходит в возбужденное, триилетное (бирадикальное) состояние. Бирадикал присоединяет к себе молеку.лу кислорода, давая перекисный радикал, который затем реагирует с молекулой углеводорода и приводит к появлению радикала В. Перекисная форма красителя отщепляет НО2 и переходит в исходное состояние [19]. Схематически такой механизм действия сенсибилизатора — красителя можно записать следующим образом (А — краситель)  [c.193]


Смотреть страницы где упоминается термин Свободные радикалы энергия образования: [c.219]    [c.143]    [c.180]    [c.243]    [c.21]    [c.211]    [c.78]    [c.306]    [c.547]   
Успехи общей химии (1941) -- [ c.246 ]




ПОИСК





Смотрите так же термины и статьи:

Свободная энергия

Свободные радикалы

Свободные радикалы ион-радикалы

Свободные радикалы образование

Энергия образования

Энергия свободная образования



© 2025 chem21.info Реклама на сайте