Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая проницаемость воды, зависимость от концентрации

    По мнению Глаубермана и Юхновского правильный учет зависимости диэлектрической проницаемости воды от концентрации раствора, а также учет высших приближений бинарной функции распределения должны привести к еще лучшему согласию теории и эксперимента. [c.439]

    Рассмотренный метод аналитической экстраполяции имеет некоторые преимущества перед методом, при котором Рох> находится по зависимости Рг от концентрации, так как производимая экстраполяция, во-первых, имеет линейный ход и, во-вторых, позволяет уменьшить ошибки, возникающие в результате загрязнения раствора примесями. Значение диэлектрической проницаемости растворителя может быть найдено путем экстраполяции зависимости диэлектрической проницаемости раствора от концентрации растворенного вещества к Х2=0. Если между значениями диэлектрической проницаемости растворителя, определенной экстраполяцией и непосредственно измеренной, имеется существенная разница, выходящая за пределы ошибок опыта, то надо полагать, что в растворе находятся примеси. В частности, в процессе проведения опыта растворитель может поглотить пары воды, что приведет к увеличению значения диэлектрической проницаемости. [c.51]


    Недостаточная общность правила Каблукова — Томсона — Нернста, не учитывающего специфику растворяемого вещества, очевидна, так как в одном и том же растворителе, обладающем вполне определенной диэлектрической проницаемостью (например, в воде), одни вещества диссоциируют полностью (НС1), а другие очень слабо (СНзСООН). Часто наблюдается значительная электропроводность раствора при малом значении диэлектрической проницаемости растворителя. Зависимость электропроводности не- водных растворов электролитов от концентрации нередко носит сложный характер. [c.413]

    Отметим, что в противоположность подходу Бейтса и Робинсона, в цитированных работах которых игнорируется изменение диэлектрической проницаемости воды в окрестности гидратируемого иона, авторы работ [94, 95, 97] видят основную причину различной зависимости и у от концентрации электролита как раз в различном изменении диэлектрических свойств растворителя вблизи ионов. Именно указывается, что диэлектрическая проницаемость воды, находящейся в непосредственной близости к иону (гидратная оболочка), будет уменьшаться тем сильнее, чем больше заряд иона и меньше его размеры— вплоть до диэлектрического насыщения соответственно будет возрастать напряженность электрического поля в окрестности иона. Поэтому при одинаковых зарядах электростатическое взаимодействие будет наиболее сильным между ионами малого размера, а при одинаковых ионных радиусах — между ионами с наибольшим зарядом. Поскольку анионы, как правило, обладают большими размерами, чем катионы, то взаимное отталкивание катионов ( - — - -взаимодействие) будет проявляться сильнее, а взаимное отталкивание анионов [c.69]

Рис. У.43. Зависимость диэлектрической проницаемости эмульсии морской воды в мазуте от концентрации дисперсной фазы на частоте 1 кгц (Пирс, 1955) Рис. У.43. <a href="/info/363057">Зависимость диэлектрической проницаемости</a> эмульсии <a href="/info/69623">морской воды</a> в мазуте от <a href="/info/72568">концентрации дисперсной фазы</a> на частоте 1 кгц (Пирс, 1955)
    Таким образом, неприложимость уравнения Робинсона — Стокса не может быть оправдана тем, что в неводных растворах эффект сольватации меньше, чем в воде. Отсутствие минимума в неводных растворах с низкой диэлектрической проницаемостью объясняется тем, что наряду с эффектом сольватации наблюдается и эффект ассоциации ионов. Следовательно, с одной стороны, связывание части растворителя в сольватную оболочку ионов и их частичная десольватация с ростом концентрации повышают коэффициенты активности, но, с другой стороны, ассоциация понижает их. Чтобы описать зависимость коэффициентов активности от концентрации, в этих случаях недостаточно учитывать только явление сольватации, необходимо учитывать также и изменение ассоциации ионов. [c.209]


    Следовательно, наклон зависимости lg V — должен приближаться к — Лг, когда / 2 стремится к нулю. Это предсказание было многократно подтверждено измерениями средних ионных коэффициентов активности и активности растворителя (разд. 2.16), а также влиянием ионной силы на растворимость сильных электролитов и на другие равновесия с участием ионов (см., например, [11 или [21). Установлено, что оно справедливо не только для воды, но и для растворителей со значительно более низкими диэлектрическими проницаемостями. Еще более тщательной проверке было подвергнуто аналогичное предсказание относительно зависимости электропроводности от концентрации (см., например, [31). [c.241]

    Введение в раствор воды резко замедляет коррозию циркония. При концентрации воды выше 10 % цирконий не корродирует. Следует отметить, что в некоторых спиртах при содержании воды порядка 10 % пассивное состояние циркония не нарушается даже при анодной поляризации. Параметры анодного растворения циркония в области химической поляризации находятся в линейной зависимости от обратной величины диэлектрической проницаемости растворителя [25]. [c.116]

    Кислотно-основные равновесия более чувствительны к изменению диэлектрической проницаемости и основности среды. При уменьшении диэлектрической проницаемости приобретает значение образование ионных пар или ассоциатов более высокого порядка. Кортюм и Андрусов [29] нашли, что относительно неустойчивые ионные пары Бьеррума, присутствующие в метанольных растворах, спектроскопически неразличимы от свободных ионов. В ледяной уксусной кислоте, диэлектрическая проницаемость (6,1) которой значительно меньше, чем у метанола (32,7), цветные реакции индикаторов связаны с ионизацией и с диссоциацией ионных ассоциатов [30, 31]. Для этого растворителя не наблюдается простой зависимости, которая имеет место в воде, между отношением концентраций щелочной и кислой форм индикатора и концентрацией ионов водорода [32]. В апротонном растворителе, например бензоле, свободные ионы, возможно, не играют значительной роли во взаимодействии кислот и оснований, несмотря на перемену окраски индикатора. [c.139]

    В растворителе с низкой диэлектрической проницаемостью потенциал средней точки зависит как от концентрации титруемых компонентов, так и от концентрации солей. Однако при постоянных условиях можно получить линейную зависимость между потенциалом средней точки и значениями р/Са в воде для любого класса соединений  [c.333]

    Подобный же вид зависимости В от состава растворов наблюдается также у растворов вода—перекись водорода [81. Различие состоит лишь в величине отклонений от аддитивности и в концентрациях, при которых имеют место максимальные значения АВ. Нередко встречаются более сложные формы зависимости диэлектрической проницаемости растворов от их состава. На рис.. 36 [c.198]

    Падение потенциала в двойном слое такой модели линейно (рис. 1.1). Эта теория в некоторой степени соответствовала опыту. Известно, что экспериментально найденная емкость двойного слоя обычно изменяется в пределах 20—40 мкф/см . Если предположить, что расстояние между обкладками такого конденсатора равно диаметру молекулы воды, а диэлектрическая проницаемость в двойном слое в водных растворах составляет 10, то на основе уравнения для емкости плоского конденсатора можно получить теоретические величины, хорошо совпадающие с экспериментальными результатами. Однако теория Гельмгольца не объясняет зависимости емкости двойного слоя от концентрации электролита и от потенциала. [c.14]

    Значения собственной растворимости и констант диссоциации определены -лишь для небольшого числа плохо растворимых веществ, представляющих интерес для аналитиков. Большей частью делается допущение, что диссоциация проходит полностью, а значение 5° настолько мало, что не оказывает никакого влияния на общую растворимость. Это допущение часто необосновано, если дело касается воды, и, по-видимому, мало пригодно в случае органических осадков или растворителей с низкой диэлектрической проницаемостью. Зависимость между диссоциацией, константой диссоциации и концентрацией растворенного вещества типа 1 1 [c.143]

    Диэлектрические свойства жидкой фазы — нефти, пресной-воды, электролитов в зависимости от температуры и частоты поляризующего поля изучены рядом авторов [6, 7, 29, 54] Нефть относится к неполярным веществам, поскольку ее диэлектрическая проницаемость колеблется в пределах 2—2,7. Од- нако присутствующие в нефти полярные и неполярные компоненты способствуют приближению ее к слабополярным диэлектрикам. До частоты электрического поля не свыше 50 МГц диэлектрическая проницаемость нефти не зависит от частоты. Исследования Ю. Л. Брылкина и Л. И Дубмана показали, что мезозойские нефти месторождений Западной Сибири имеют диэлектрическую проницаемость 2,2 она остается практически постоянной при изменении температуры от 24 до 100°С и не зависит от частоты внешнего поляризующего поля в пределах 5-10 4-5-10 Гц При повышении температуры от нуля до 100° С диэлектрическая проницаемость воды уменьшается до 40%. С увеличением концентрации солей в воде диэлектрическая проницаемость растворов растет незначительно. [c.109]


    Влияние диэлектрической проницаемости на зависимость X от С можно наглядно показать, исследуя растворы какого-либо одного вещества в растворителях с различной е. Были произведены измерения X растворов нитрата тетраизоамиламмония [СНз(СН2)4]4 (N03) в чистой воде и в смесях воды с диокса-ном. Диэлектрическая проницаемость е изменялась при этом от 78,6 до 2,2. Оказалось, что чем меньше е, тем более отчетливо выражен минимум электропроводности и тем больше он сдвинут в сторону малых концентраций, что согласуется с приведенной выше схемой. Если е>10, то минимумов электропроводности в растворах не наблюдается. [c.74]

    Если концентрация кислотных форм в органической фазе известна, то график зависимости IgD от IgQ дает сведения об относительной силе кислот в этом растворителе. Тип повеления, иллюстрацией которого служит кривая d на рис. 1, должен быть ожидаемым случаем для кислородсодержащих, не подобных воде (не спиртовых) органических растворителей с умеренной диэлектрической проницаемостью. Если диэлектрическая проницаемость небольшая, ассоциация (объединение ионов в пары) возрастает до тех пор, пока в органической фазе практически существует только НМХг и нет никаких изменений D (правый горизонтальный отрезок на кривой d, рис. 1). Если диэлектрическая проницаемость органического растворителя высока и приближается к диэлектрической проницаемости воды, ассоциация в органической фазе проходит в небольшой степени, а галогеноводородная кислота НХ, присутствующая в водной фазе в гораздо большей концентрации, чем металл, вероятно, довольно хорошо растворима и сильно диссоциирована в органической фазе и таким образом поставляет основную часть водородного иона органической фазы равным образом для всех практически достижимых концентраций металла . Таким образом, D опять становится постоянной величиной (левый горизонтальный отрезок на кривой d, рис. 1). [c.265]

    На рис. 1 показана зависимость б от частоты для различных значений проводимости о. При расчетах кривых рис. 1 предполагалось, что параметры электролитов мало отличаются от параметров воды (т == 8- 10 сек, Ец = 80 и 8оо — = 1,8). Следует отметить, что в ряде экспериментальных работ имеются противоречивые данные о диэлектрических параметрах электролитов, свидетельствующие о резком росте [7] или уменьшении [8] диэлектрической проницаемости с повышением концентрации электролигов. Однако, согласно теоретическим предпосылкам [6, 9), диэлектрическая проницаемость электролитов должна мало отличаться от диэлектрической проницаемости воды. Из рис. 1 видно, что малые потери будут происходить только у дистиллированной или очень слабо минерализованной воды (о 10 ) в узком пределе частот. [c.51]

    Определения плотности водных растворов сульфата калия при различных повышенных давлениях позволили установить влияние давления на положение минимума кривых зависимости мольных объемов от концентрации. При одной и той же температуре с понижением давления минимумы на кривых мольных объемов становятся более глубокими (рис. 98, в, г и 99). С увеличением давления этот минимум смещается к ординате воды и даже, как, например, на изотерме 300° С при наиболее высоких из исследованных давлений, 1300 и 1500 кПсм , минимум исчезает, т. е. доходит до ординаты воды, и кривая мольного объема приближается к виду кривой при 25° С. Повышение давления производит на контракцию растворов действие, аналогичное понижению температуры. Это обусловлено тем, что с повышением давления сжимаемость растворов значительно уменьшается, как будет показано ниже, а диэлектрическая проницаемость воды,так же как и с понижением температуры,увеличивается [120]. Таким образом, давление приближает свойства растворов, находящихся при высоких температурах, к свойствам их при низких температурах. [c.133]

    Для водных растворов электролитов этот максимум (и, соответст-венио, левая ветвь кривой) лежит в зоне значительных разбавлений [2], что обусловлено высокими значениями диэлектрической проницаемости воды. Действительно, в этой области составов зависимость относительной динамической вязкости от молярной концентрации с (моль- л- ) может быть описана уравнением Джонса — Дола [c.8]

    При переходе от воды к нeвoдны г растворителям с высокой диэлектрической проницаемостью существенных изменений в зависимости электропроводности от концентрации не наблюдается. Однако в растворах с низкой диэлектрической проницаемостью, например в смеси диоксана с водой, обычный для водных растворов ход кривой молярная электропроводност — концентрация нарушается, и на ней появляются экстремумы. На рис. 4.5 показана зависимость молярной электронроводности от разведения, типичная для таких растворов. [c.113]

    Наиболее распространены приборы автоматического действия, основанные на линейной зависимости диэлектрической проницаемости тоилива от содержания в нем воды. Из влагомеров данного типа представляет интерес установка Микроскан , выпускаемая фирмой Миллипор (США) с 1963 г. и предназначенная для непрерывного конт1роля за содержанием воды и механических примесей в потоке реактивных топлив с помощью емкостного датчика. При прохождении механических частиц (или частиц воды) между пластинками конденсатора (детектор Микро-Скан ) его емкость изменяется пропорционально объемной концентрации частиц. Изменение емкости преобразуется в сигнал с постоянной амплитудой и частотой, который усиливается в многокаскадном усилителе и подается на указатель концентрации примесей в топливе. Прибор реагирует на суммарное содержание примесей воды и механических частиц и нечувствителен к воздушным и паровым пузырькам. Установка обладает высокой чувствительностью по воде 0,000001% по механическим примесям 0,02632 мг/л по размеру частиц 5 мкм [149, 154]. Используют установку на автотопливозаправщиках и гидрантных тележках, а также на трубопроводах и стационарных резервуарах. Для отсечения потока топлива при загрязненности его выше установленного уровня предусмотрено использование дополнительного сигнала самописца и автоматических механизмов. [c.176]

    Выше теоретически предсказывается, что в эмульсиях М/В может наблюдаться диэлектрическая дисперсия при условии, если масляная фаза имеет высокую диэлектрическую проницаемость. Чтобы обнаружить это явление, Ханаи, Коицуми и Гото (1962а) исследовали диэлектрические свойства эмульсий нитробензола в воде, приготовленные с помощью эмульгатора твин 20. На рис. У.49 показана частотная зависимость е и х этих эмульсий при 70%-ной объемной концентрации. Быстрый рост 6 на частотах < 30 кгц происходит в результате электродной поляризации. С увеличением частоты (> 100 кгц) можно [c.379]

Рис. У.51. Зависимость предельной диэлектрической проницаемости на высоких (е/,) и иа низких (е/) частотах от концентрации дисперсной фазы эмульсии нитробензол — вода (Ханап, Копцумп и Гото, 1962а) Рис. У.51. Зависимость <a href="/info/1038817">предельной диэлектрической проницаемости</a> на высоких (е/,) и иа низких (е/) частотах от <a href="/info/72568">концентрации дисперсной фазы</a> эмульсии нитробензол — вода (Ханап, Копцумп и Гото, 1962а)
    Целью настоящей работы является установление характера зависимости удельной электропроводности раствора электролита от концентрации неэлектролита, диэлек рической проницаемости раствора и предельной высокочастотной электропроводности растворителя. Значительный интерес представляет изучение этих зависимостей для водно-органических смесей, диэлектрическая проницаемость которых уменьшается (вода — спирт, вода — ацетон) и увеличивается (вода—мочевина, вода тпомочевина) с ростом крнцентрации неэлектролита. [c.84]

    Карбоновые кислоты относятся к слабоионизированным средам. Вследствие их низкой диэлектрической проницаемости растворенные в карбоновых кислотах сильные минеральные кислоты и соли находятся в основном в виде ионных пар с низкими константами диссоциации. Поскольку индикаторные основания Гаммета протонируются и протонами, входящими в состав ионных пар, и протонами, находящимися в растворе отдельно, линейную зависимость IgA от Hq раствора следует трактовать как зависимость константы скорости реакции от суммарной прото-нодонорной способности среды. Изменение Яд в изученных растворах достигалось при изменении и концентрации минеральных кислот, и концентрации воды при этом все данные зависимости gk2 от Hq описывались общей прямой линией. Это позволяет сделать вывод, что катализ осуществляется протонированиём одного из реагентов, а не в результате ассоциации его с молекулой катализатора. [c.303]

    На основании изучения температурной зависимости электропроводности поливинилацетатных и эпоксидных пленок, погруженных в раствор Na l, и сопоставления энергии активации электропроводности с энергией активации диффузии газов сделан вывод о том, что механизм диффузии газов и ионов идентичны. В обоих случаях имеет место активированная диффузия. Предполагается, что перенос ионов происходит путем перескока из одного элемента объема с высокой диэлектрической проницаемостью (капельки) в другой. Чем больше плотность распределения капелек, тем легче происходит диффузия. Электропроводность покрытий на основе эпоксидной смолы снижается с ростом концентрации контактирующих с ними растворов Na l и почти пропорциональна концентрации воды в пленке т. е. имеет место обратная зависимость между сопротивлениями пленки и раствора. В случае лакокрасочных пленок сложного состава помимо механизма, указаного выше, может иметь место и другой механизм. При большом водопоглощении в пленке образуются каналы. Через них ток переносится так же, как через водный раствор температурный коэффициент при этом мал, а сопротивление пленки меняется симбатно с сопротивлением внешнего раствора. Эти явления уже характерны для переноса электролитов в гидрофильных пленках. [c.217]

    В работе [80] рассматривается зависимость ионного обмена в цеолите А на щелочные ионы (литий, натрий и т. д.) в смешанных растворителях (система вода — метанол) от диэлектрической проницаемости раствора. Добавление метанола в раствор повышает кажущуюся константу равновесия для всех катионов, кроме лития. В случае лития константа равновесия снижается с увеличением концентрации метанола, что может быть связано с высокой энергией гидратации ионов лития. Значения исправленных коэффициентов селективности линейно зависят от содержания катиона в обменнике в соответствии с уравнением Килланда — Баррера. Стандартная свободная энергия обмена во всех случаях — величина положительная, как и при обмене натрия в цеолите NaA на другие щелочные катионы в водном растворе. Это позволило сделать вывод, что цеолит А более избирателен по отношению к натрию, "чем к другим щелочным катионам, вне зависимости от того, проводится ли обмен в воде или в смешанном растворителе [80]. [c.602]

    В последнее время А. М. Сухотин систематически исследовал проводимость растворов минеральных солей в неводных смешанных растворителях с различной диэлектрической проницаемостью. Исследовалась электропроводность NaJ в смесях этанола с четыреххлористым углеродом (О от 2,3 до 24) и в смесях диоксана с водой, а также проводимость Li l, LiBr, LiJ, (С5Нц)4Ш и H l в смесях бутанола с гексаном D от 2,1 до 19) в широком интервале концентраций. Характер зависимости электропроводности от коицентрации и диэлектрической проницаемости во всех случаях одинаков и подобен зависимости, найденной Сахановым и Фуоссом и Краусом. [c.269]

    Можно ожидать, что эффект сольватации в неводных растворах будет сказываться в большей степени, чем в воде. В 1000 г воды находится 55 молей, а в этиловом спирте, молекулярный вес которого равен 46, в 1000 г находится только 22 моля, и сольватация должна сказываться на изменении концентрации в большей степени, чем в воде. Таким образом, неприложимость уравнения Робинсона—Стокса не может быть оправдана тем, что в неводных растворах эффект сольватации меньше, чем в воде. Отсутств.ие минимума в неводных растворах с низкой диэлектрической проницаемостью объясняется тем, что наряду с эффектом сольватации аблю-цается и эффект ассоциации ионов. Следовательно, с одной стороны, связывание части растворителя в сольватную оболочку ионов и их частичная десольватация с ростом концентрации 1т0вышают коэффициенты активности, ио, с другой стороны, ассоциация понижает нх. Чтобы описать ход зависимости коэффициентов активности от концентрации, в этих случаях недостаточно учитывать только явление сольватации необходимо учитывать и изменение ассоциации ионов. [c.392]

    Следует упомянуть о методе ван дер Гейджа и Дахмена , который может послужить эмпирическим руководством в вопросе выбора растворителя. Авторы измеряли с помощью стеклянного и каломельного электродов интервал изменения потенциала в каждом растворителе от крайних значений кислотности до крайних значений основности. Они исследовали кислые раство- рители (уксусную и трифторуксуспую кислоты), нейтральные (хлорбензол, ацетонитрил, ацетон, метиловый и изопропиловый спирты,воду) и основные (н-бутиламин, этилендиамин, пиридин, диметилформамид). Пригодность для титрования определялась отношением так называемого потенциала полунейтрализации данной кислоты или основания к крайним величинам потенциалов в данном растворителе. Для смесей разница между потенциалами полунейтрализации в 200—300 мв в большинстве случаев оказывается достаточной для осуществления избирательного титрования. Из соображений, высказанных по поводу кислотно-основного равновесия в уксусной кислоте (раздел 4-5), ясно, что в растворителях с очень низкой диэлектрической проницаемостью потенциал полунейтрализации должен находиться в прямой зависимости от концентрации. Более того, сила основания, очевидно, зависит от силы нейтрализующей его кислоты и наоборот . Поэтому концепция потенциала полунейтрализации может найти лишь ограниченное применение. [c.121]

    Систематические исследования влияния изменений характера или концентрации солевого фона на константы устойчивости производятся обычно для нахождения отношения активностей (см. раздел II, 1, А). Изменения термодинамических функций можно рассмотреть с точки зрения конкурируюхцих реакций комплексообразования [240] или изменения коэффициентов активности, входяш их в уравнения (5), (6), (31)— (33). Устойчивости комплексов ионов металлов изучались в смесях водных и неводных ( смешанных ) растворителей главным образом по двум причинам. Во-первых, изменение констант ассоциации в зависимости от диэлектрической проницаемости среды рассматривали как способ проверки представлений Бьеррума—Фуосса об ионных нарах [62]. Во-вторых, многие органические лиганды и их комплексы настолько плохо растворимы в воде, что соответствующие равновесия можно изучать только в смешанных растворителях. [c.69]

    Использование смешанных растворителей приводит к появлению двух общих проблем. Если происходит селективная сольватация [11, 181а], то константы ассоциации, полученные в двух разных средах, относятся к разным реакциям. Вероятно, если молярная доля воды больше, чем примерно 0,8, селективной сольватации комплексов металлов не происходит, так как вальденовское произведение предельной электропроводности и вязкости постоянно для ряда систем с большим содержанием воды [75, 148, 149]. В неводных средах ионы металлов и их комплексы не гидратируются и, вероятно, даже не сольватируются, и многие реакции ассоциации были изучены в безводных средах [86, 152, 199, 224, 257, 301]. Стандартное состояние для стехиометрических констант ассоциации выбирается для каждой конкретной среды (растворенные вещества плюс растворители). Предпринимались попытки элиминировать зависимость от концентрации электролита (вторичный эффект среды по Оуэну [123]), с тем чтобы относить стандартное состояние только к смеси растворителей [62, 75, 148, 149], но эти попытки вызывают возражения, изложенные в разделе II, 1, А. За исключением, возможно, амминов металлов, константы ассоциации большого числа разнообразных комплексов металлов, содержащих неорганические [284] и органические [283] лиганды, возрастают при уменьшении диэлектрической проницаемости среды. Это изменение происходит в направлении, ожидаемом на основании электростатических соображений, но влияние органических растворителей (первичный эффект среды по Оуэну [123]) на константы ассоциации не проанализировано. [c.69]

    Как видно из табл. 5, зависимость Д// с = f T) для растворов Ка и галогенидов тетраалкиламмония в спиртах носит экстремальный характер. Объяснение этому факту можно дать, рассмотрев основные вклады в процесс растворения от разрушения структуры растворителя ионами электролита и от сольватации (взаимодействия ионов с молекулами растворителя). Следует отметить, что температурная зависимость Д// с Для растворов электролитов в неводных растворителях изучена мало, а имеющиеся немногочисленные данные противоречивы. Так, в работах [18, 19] установлено возрастание экзотермичности при растворении На в метаноле и этаноле при Т > 283 К. Связывается это представление с отсутствием у спиртов такой выраженной структуры, какой обладает вода. Измерения, выполненные Мастрояни и Криссом [20] для ЫаСЮа в метаноле в интервале температур 268—323 К, показали, что для этой соли Д// с увеличиваются с понижением температуры. Отмечена инверсия зависимостей ДЯ с = /("О при разных температурах в области малых концентраций соли ( 0,005 т), которая объясняется авторами сильным влиянием температуры на предельный ограничительный наклон (вследствие изменения с температурой диэлектрической проницаемости растворителя). Обнаруженное увеличение экзотермичности растворения электролитов в метаноле, этаноле и н-пропаноле при пош1женных температурах позволяет предполагать, что разрушение структуры спиртов ионами электролита носит локальный характер. В случае ацетона это выражено более явно. [c.163]

    Растворы перекиси водорода в воде не являются идеальными, что обнаруживается при исследовании любым из трех обычно применяемых методов объем раствора меньше, чем сумма объемов составляющих компонентов, смешение происходит с заметным тепловым эффектом и величины давления пара растворов не подчиняются закону Рауля. Дальнейшими доказательствами являются неправилыпзю зависимости между концентрацией раствора и такими свойствами, как вязкость, поверхностное натяжение и диэлектрическая проницаемость. Характер отклонения от идеальности в каждом отдельном случае говор ит об увеличении либо числа молекул, либо сил притяжения между молекулами при образовании растворов, что выражается в уменьшении общего объема и давления пара и выделении тепла при смешении. Аналогия между водой и перекисью водорода в отношении природы и размеров межмолекулярных сил приводит к логическому выводу, что это поведение обусловлено образованием дополнительных водородных связей иначе говоря, можно предполагать, что водородные связи между молекулами воды и перекиси водорода более стабильны, чем сиязи между молекулами каждого из этих веществ в отдельности. Это подтверждают и измерения Уинн-Джонса П171 по изменению основности водных растворов перекиси водорода с концентрацией. [c.292]

    В области температуры выше 100 °С температурная зависимость проводимости гораздо сложнее даже для растворов сильных электролитов. Кондратьев и сотр. [11] установили, что в водных растворах хлоридов щелочных и щелочноземельных металлов удельная и эквивалентная проводимости в интервале температур до 300°С (под давлением) максимальны при концентрации 0,5 моль-л и температуре 250 °С, С ростом концентрации раствора максимум проводимости смещается в сторону более низкой температуры. Снижение проводимости после максимального значения объясняется возрастанием с подъемом температуры степени ассоциации, вызванным дегидратацией ионов и соответствующим сокращением их эффективного диаметра. Так как при повышении температуры диэлектрическая проницаемость снижается, создаются условия для более тесного сближения ионов и образования ионных пар. По данным Максимовой и Юшкевич [12], в 20%-ном pa TiBope NaOH проводимость максимальна при 220 °С. В интерпретации этого явления подчеркивается водородные связи в структуре воды вследствие совместного действия высокой температуры и электрического поля ионов раз- [c.395]

    Это выражение чисто электростатического характера и оно ограничено в том отношении, что не учитывает ни влияния специфических взаимодействий, ни диэлектрического насыщения. Подобно уравнению Борна, выражение (4-26) может быть использовано лишь для получения приближенных значений величины д. На рис. 4-2 представлена предсказанная линейная зависимость между константой образования соли (определяемой по данным электропроводности) и величиной, обратной диэлектрической проницаемости растворителя [50]. Из рис. 4-2 видно, что в растворителях с низкой диэлектрической проницаемостью константы диссоциации невелики. На практике электролиты типа 1 1 при концентрации М и выше в воде, а в других растворителях с диэлектрической проницаемостью менее 40 при концентрациях выше 10 М диссоциированы не полностью. Даже в воде электролиты типа 2 2 не полностью диссоциированы, несмотря на сильные специфические взаимодействия между растворенным веществом и растворителем и высокую диэлектрическую проницаемость. Согласно представлениям Грюнвальда и Киршенбаума [51], можно считать, что при обычных аналитических концентрациях основные частицы, присутствующие в растворе, — это ионные пары, если константа диссоциации меньше 10 , и свободные ионы, если константа выше 10 . [c.82]


Смотреть страницы где упоминается термин Диэлектрическая проницаемость воды, зависимость от концентрации: [c.31]    [c.16]    [c.66]    [c.283]    [c.357]    [c.102]    [c.248]    [c.520]    [c.70]    [c.444]    [c.142]   
Кинетика реакций в жидкой фазе (1973) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость

Проницаемость и концентрация



© 2025 chem21.info Реклама на сайте