Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение химическое также атомность

    Второй уровень информации относится непосредственно к установлению химического строения основного ядра молекул или отдельных его фрагментов, а также атомных группировок обрамления. В настоящее время проведена детальная оценка основных составляющих элементов, на основании которой некоторые авторы берут на себя смелость предлагать среднестатистические, или гипотетические , модели структуры молекулы асфальтенов [45]. В целом эти представления суммируют большое количество эмпирических данных и параметров, полученных на основе новейших достижений аппаратурного анализа. Однако сейчас пока трудно оценить достаточную и объективную аргументированность той или иной модели с точки зрения учета всей совокупности реальных физико-химических свойств асфальтенов из-за отсутствия встречного синтеза предлагаемых структур и отсутствия оценки физических свойств гипотетических структур на основе расчетных [c.238]


    В общетеоретическую часть включены вопросы строения вещества, энергетики и кинетики химических реакций, растворов, окислительно-восстановительных и электрохимических процессов, а также обзор свойств элементов и их соединений. Рассмотрено строение вещества на атомном, молекулярном и надмолекулярном уровне, а также строение кристаллов. Изложены общие закономерности протекания химических реакций, в том числе основы химической термодинамики и химической кинетики. Большое внимание уделено тепловым эффектам и направленности химических реакций, химическому, фазовому и адсорбционному равновесию. Изложены кинетика гомогенных и гетерогенных реакций, цепных и фотохимических реакций и основы катализа. Освещены дисперсные системы, коллоидные и истинные растворы, большое внимание уделено растворам электролитов. Рассмотрены термодинамика и кинетика окислительно-восстановительных и электрохимических процессов, коррозия и защита металлов. Выполнен обзор свойств химических элементов и их простых соединений, рассмотрены строение и свойства комплексных и органических соединений. [c.3]

    Установление электронно-ядерного строения химических соединений и развитие затем квантово-механических представлений о строении молекулярных систем дали возможность трактовки природы атомного связывания, но в квантовой механике само понятие химической связи в классическом понимании не возникает и вообще не является необходимым Речь может идти лишь об интерпретации квантового расчета и о том, какой смысл следует вкладывать в понятие химической связи Здесь, по-видимому, возможны разные подходы Наиболее близок к классическому понятию химической связи подход, при котором результаты квантово-химического расчета интерпретируются на уровне взаимодействия атомов в молекуле Например, полная электронная энергия молекулы представляется в виде суммы вкладов, соответствующих отдельным атомам и парам атомов, вклады таких парных взаимодействий в полную энергию можно сопоставить между собой и выделить главные и второстепенные, что должно соответствовать понятиям химической связи и взаимодействию валентно-несвязанных атомов Однако квантовая механика рассматривает молекулярные системы как состоящие из ядер и электронов, и в этом смысле взаимодействия в молекуле логично интерпретировать также на уровне ядер и электронов, те вложить в понятие химической связи иной смысл, чем в ортодоксальной теории химического строения Возникает вопрос как это можно сделать, как дать наглядную физическую интерпретацию взаимодействиям в молекуле на уровне ядер и элект-ронов > [c.108]


    Некоторые ученые, исходя из положения диалектического материализма о неразрывной связи формы движения с определенным видом материи, считают необходимым указать при определении предмета химии соответствующую материальную структуру (носитель). Так, с точки зрения Я- И. Герасимова, химия есть наука о связи свойств вещества (в основном химических свойств) с составом и строением молекул и об изменении этих свойств с изменением состава и строения молекул При этом Я- И. Герасимов расширительно толкует понятие молекулы, считая, например, что молекулярное строение имеют также и ионные кристаллы, и растворы и т. д. Получается, что одна из важнейших задач химии состоит в выяснении зависимости химических свойств молекул от их химического строения, т. е. от состава молекул, от последовательности связи и пространственного расположения атомных остовов и различных атомных групп в молекуле, от характера их взаимного влияния. К мысли о том, что непременным условием протекания этих процессов (химических.— Н. Б.) является присутствие специфических материальных структур, которые принято называть молекулами приходит и М. И. Шахпаронов. [c.37]

    Заполнение 4/ -оболочки оказывает весьма существенное влияние на строение электронных оболочек, атомные радиусы и физико-химические свойства металлов, следующих за лантаноидами (гафний, тантал, рений, вольфрам и т. д.), т. е. лантаноидное сжатие проявляется и за лантаноидами. Действительно, оно приводит, например, к тому, что металлический и ионный радиусы, возрастающие от титана к цирконию, от ванадия к ниобию и от хрома к молибдену, почти не изменяются при переходе к гафнию, танталу, вольфраму. Точно так же почти не увеличиваются металлические радиусы и ионные радиусы, отвечающие высшим валентным состояниям, при переходе от элементов ряда технеций—палладий к их аналогам рению—платине соответственно. Именно лантаноидное сжатие, происходящее в результате заполнения 4/ -оболочки, приводит к сближению свойств 5d- и 4с -переходных металлов, резко отличающихся по свойствам от более легких Зй-переходных металлов. Оно проявляется и на теплотах образования ионных соединений этих металлов и других химических характеристиках (см. главу II). Лантаноидное сжатие, а также заполнение 5й -оболочки, заканчивающееся у платины—золота, приводит к дополнительному сжатию внешних оболочек у последующих элементов ряда золото—радон, что отражается на возрастании ионизационных потенциалов последующих элементов. Вследствие этого потенциалы ионизации франция, радия, актиния оказываются соответственно выше потенциалов ионизации цезия, бария и лантана (см. рис. 6). В результате этого первые более тяжелые элементы оказываются менее электроположительными, чем последние. Сжатие внешних оболочек вследствие заполнения внутренних Af - и 5й -оболочек приводит к повышению энергии связи внешних электронов актиноидов по сравнению с их аналогами — лантаноидами. На это указывают данные, правда, пока довольно ограниченные по их потенциалам ионизации и имеющиеся уже более подробные сведения об их атомных радиусах (см. главу III). [c.51]

    Таким образом, исследование физических свойств газов привело Дальтона к принятию их атомистического строения. Возникло также предположение о различной величине атомов, необходимое для объяснения диффузии газов. С этого времени начинается новый период в научной деятельности Дальтона. Чтобы определить размеры атомов по отношению друг к другу, ему необходимо было знать относительную плотность и относительный атомный вес различных газов. Первая величина определялась легко, нахождение же атомного веса представляло значительные трудности. Знание физических свойств газов было недостаточным для решения этой задачи. Необходимо было обратиться к химическим анализам различных газов, что Дальтон и сделал. [c.42]

    Основным требованием к такому названию является однозначность описания им состава соединения. Лишь в порядке дальнейших уточнений следует стремиться к расширению информации, т. е. к отображению в названии также и других характеристик соединения — его строения, химической функции и т. д. Такое повышение информативности названия может быть в большей или меньшей степени достигнуто путем введения специальных терминов, установления определенного порядка написания формул и т. п. Однако подобные дополнения к основной номенклатуре, как правило, осложняют ее, а потому должны вводиться лишь в меру широко понимаемой целесообразности. Например, присваивать определенной атомной группировке индивидуальное название имеет смысл лишь в тех случаях, если она встречается достаточно часто, по каким-то причинам существенно важна или уже привычна. [c.480]

    Из других важных областей химии следует указать электрохимию, которая изучает использование электрического тока для проведения химических процессов фотохимию, которая рассматривает влияние света на химические процессы. Из других разделов хилши следует назвать коллоидную химию, занимающуюся изучением свойств веществ, когда их частицы находятся в определенных пределах дисперсности, и закономерностей, наблюдающихся для таких состояний веществ (подробнее см. гл. 2) радиохимию, изучающую химическое поведение и важные для химических исследований свойства радиоактивных веществ, а также атомную, или ядерную, химию, которая занимается исследованием превращений атомных ядер и происходящими при этом процессами наряду с изучением свойств и поведения искусственно полученных видов атомов (т. II) далее, металлографию, применяющую особые методы исследования, которые с течением времени проникли и в другие области химии (гл. 12, т. II) затем кристаллохимию — учение о зависимости между строением кристаллов и их химическим составом (гл. 7), область, только что начинающую, развиваться, равно как и геохимию — науку о химическом составе земного шара и о законах распределения в нем различных веществ (т. II). [c.16]


    Двадцатый век открыл дорогу новым аналитическим методам, прежде всего физико-химическим и физическим, основанным на использовании радиоактивности, рентгеновским методам, полярографии, хро.ма-тографии и многим другим. Стало возможным не только детально определить состав исследуемого вещества, но и выяснить строение молекул различных соединений. Для окончательного доказательства существования двух изотопов неона английский физик и химик Ф. Астон в 1919 г. сконструировал масс-спектрограф и тем самым положил начало новому методу анализа. Создание масс-спектрометрии по праву считается одним из крупнейших открытий в химии двадцатого века. В ряд фундаментальных достижений в области теории и практики химического анализа двадцатого века можно поставить создание хроматографии, полярографии, метода меченых атомов и других методов анализа, основанных на радиоактивности, а также атомно-абсорбционной спектро- [c.23]

    Гелий и неон химически неактивны, их атомы не взаимодействуют с другими атомами с образованием соединений. Атомы натрия, имеющего атомный номер 11 и, следовательно, только на один электрон больше, чем неон, крайне реакционноспособны. Атомы фтора, у которых на один электрон меньше, чем у неона, также очень активны. Различия в реакционноспособ-ности всех элементов объясняются различиями в строении их атомов. [c.186]

    Химические методы установления строения основываются на проведении с помощью реагентов таких реакций, которые позволяют судить о наличии определенных атомных группировок (функциональных групп) или ионов в молекуле исследуемого соединения. Физические методы установления строения получают все большее развитие. С их помощью устанавливается не только строение исследуемого соединения, но также оказывается возможным определить детали структуры молекулы, например размеры молекулы, атомные расстояния и углы между связями. Физические методы определения строения имеют не только большие возможности по сравнению со старыми методами классической химии, но также позволяют значительно сократить время исследования. В случае же сложно построенных молекул старые методы установления строения вообще бессильны. [c.132]

    Частицы и волны. Теория Бора, с основными положениями которой мы познакомились в 6 и 7, давая возможность определить положение линий в спектре водородного атома (и некоторых других простейших атомных систем), не могла, как это уже указывалось, объяснить ряд других явлений, например различия в интенсивности этих линий. Она оказалась недостаточной также для объяснения строения атомов более сложных, чем атом водорода, и, что особенно важно для химии, не могла объяснить в общем случае связь между атомами в молекулах, т. е. природу химической связи. [c.43]

    Строение остова отражается структурной формулой соответствующего соединения, которая устанавливается методами химического анализа, синтеза и путем всестороннего исследования свойств вещества. Исходя из структурной формулы, т. е. химического строения, по данным, характеризующим распределение электронной плотности по объему вещества, получаемым методом рентгеноструктурного анализа из интенсивности дифракционных лучей, может быть построена атомная модель любого кристаллического вещества. Как мы отмечали выше, по экспериментальным кривым углового распределения интенсивности можно также определять межатомные расстояния и координационные числа в структуре аморфных веществ. Этим путем, к сожалению, нельзя получать углы между связями, но они могут быть рассчитаны квантовомеханическими методами. Таким образом, оперируя экспериментальными и расчетными данными, можно построить атомарную модель твердого вещества как кристаллического, так и непериодического строения. Особенно интересно создание подобной модели для аморфных веществ, поскольку их структура ре может быть выражена кристаллической решеткой. Построение их модели облегчается наличием остова. [c.163]

    Из сказанного выше вытекает, что кристаллическое состояние является важным и интересным для изучения, но все-таки одним из частных состояний твердого вещества. Не менее важно и интересно не периодическое, но регулярное состояние вещества. В подобном состоянии находятся высокомолекулярные, в частности, белковые вещества. При таком взгляде на твердое вещество кристаллическая решетка перестает быть основой для его изучения. И все наше внимание сосредоточивается на остове твердого вещества, тем более, что, как отмечалось выше, в отличие от абстрактной кристаллической решетки остов — реальный объект — непрерывная цепь, сеть или каркас, построенные из атомов, соединенных атомными связями. Остов может быть выделен в свободном состоянии, если в него входит достаточное количество вещества, равное, как, например, показывает опыт выделения кремнекислородных и углеродных остовов, по крайней мере 40% массы исходного твердого соединения. Остов — это носитель дальнего порядка, задаваемого межатомным взаимодействием. Отсюда следует, что изучение химического строения, конструирование и сборка атомных моделей вещества — старые надежные методы химического исследования — являются главными методами изучения твердого вещества. Вместе с тем настало время для конструирования и химической сборки твердых веществ и притом не только сравнительно простых, но и самых сложных веществ, в том числе различных материалов. При этом, конечно, следует руководствоваться не только химическими соображениями. Необходимо принимать также в расчет выводы теории устойчивости и прочности материала. Эта теория целиком основывается на учете межатомного и межмолекулярного взаимодействия и химического строения. Например, жесткость материала характеризуется модулем Юнга Е. При этом исходят из того, что, нагружая твердое вещество, мы действуем непосредственно на его межатомные связи. Отсюда ясно, что различие величины Е для разных веществ обусловлено различием жесткости самих химических связей. Модуль Юнга равен для алюминия всего 0,8-10 кГ/мм , для сапфира—4-10 а для алмаза 12-Ю кГ/мм . Именно исключительная прочность и жесткость связей С — С в алмазе делает его самым твердым и жестким из твердых веществ. [c.243]

    Для соединений с двухэлектронными химическими связями электроны могут находиться либо на а-орбиталях, либо на л-орби-талях, либо в виде неподеленных пар на соответствующих атомных орбиталях (п-орбиталях). На рис. 64 схематически представлено относительное расположение энергетических уровней для этих трех орбиталей, а также для ближайших вакантных разрыхляющих орбиталей а и я. Вакантная л -орбиталь, как уже говорилось при рассмотрении строения двухатомных молекул, расположена по энергии ниже ст -орбитали. [c.174]

    При выводе уравнения Ленгмюр исходил из молекулярно-кинетических представлений, физическая сущность которых заключается в следующем. Поверхность каждого адсорбента неоднородна. Адсорбция происходит не на всей поверхности, а лишь на активных центрах этой поверхности. Число активных центров определяется числом молекул, атомов или ионов с некомпенсированными межмолекулярными, межатомными или межионными силами, за счет которых и происходит адсорбция хаотически движущихся частиц адсорбтива. Ленгмюр считал, что ненасыщенные, или некомпенсированные, силы адсорбционных центров адсорбента являются либо типичными валентными силами (в случае твердых адсорбентов с ионными и атомными решетками), либо особыми межмолекулярными силами (в случае жидких и твердых адсорбентов молекулярного строения), которые он также отождествлял с химическими силами. [c.286]

    Химические свойства электронов и характер их атомных спектров также периодически повторяются. Сама структура таблицы Менделеева определяется строением внешних электронных оболочек атомов. [c.37]

    Как известно, Франкланд (1853) впервые экспериментально установил свойство атомности, или значности , выраженное позднее термином валентность (от латинского valentia —сила). Ныне под этим понимается свойство атома данного элемента присоединять или замещать определенное число атомов другого элемента В познании строения химического соединения это было раскрытие сущности первого порядка, нашедшее свое отражение в образовании понятия валентность . Основанное на атомистических представлениях, это понятие позволило объяснить многие экспериментальные факты, касающиеся состава и строения соединений, глубже понять сущность закона кратных отношений, предвидеть ряд других фактов, также подтвержденных в последующем. С уточ- [c.255]

    Понятие о структуре химического вещества, или его строении, включает также характер или способ связи частиц в молекуле. Ибо не только порядок связей и оро-странствен ное размещение атомов и атомных групп относительно друг друга, но и способ их связи (ионная, ковалентная, водородная, металлическая) обеспечивают реальное существование данной молекулы. [c.278]

    С ГЛ. 6). Из школьного курса. химии вы должны были усвоить понятия химических символов, атомных весов и молярных величин, получить представление о периодической системе элементов и химических формулах, узнать о динамическом равновесии, растворимости, кислотно-основных и окислительно-восстановительных реакция.х, о константах равновесия, основах современной оиисательной химии, природе химической связи и о связи между строением и свойствами молекул. Предполагается также, что из школьного курса физики вы должны были получить представление о волновой и корпускулярной теориях света (соотношение Е = /IV), о законе Кулона (Е = д21г ), существовании и свойствах электронов, ядерной модели атома, кинетической энергии (равной ту2/2), силе, давлении, механическом имяульсе и абсолютной температуре. Предварительное или параллельное изучение физики в институте, несомненно, поможет извлечь из данного курса химии гораздо большую пользу. В средней школе вы должны быти научиться решать простые алгебраические уравнения, записывать с помощью алгебраических символов задачи, сформулированные обычным языком, и после их решения делать выводы снова в описательной форме. Начиная с гл. 6 предполагается, что вы уже прослушали или слушаете параллельно курс вычислительной математики. [c.9]

    Отсутствие отчетливого разграничения между взглядами Кекуле и теорией химического строения Бутлерова имело и своп объективные причины. В первую очередь это произошло потому, что теория химического строения опиралась также и на теорию атомности и особенно па положения о четырехатомности углерода и способности его атомов соединяться друг с другом,— положения, которые введены были в науку екуле (вместе с Кольбе и Купером). [c.266]

    В сентябре 1896 г. группа профессоров Казанского университета обратилась в физико-математический факультет со следующим представлением С именем итальянского химика С. Канниццаро тесно связан тот прогресс в химии, который привел к современным представлениям о химических индивидуумах, т. е. о частицах и атомах. Только после строгой установки их величин могли явиться теории атомности и химического строения, а также периодический закон химических элементов. Всем этим обобщениям, определяющим состояние химии настоящего временн, положена основа трудами профессора Римского университета Станислао Канниццаро. Ввиду такого важного значения заслуг этого ученого, мы, нижеподписавшиеся, имеем честь просить факультет ходатайствовать о возведении его в звание почетного члена нашего университета, что особенно желательно ко времени чествования Канниццаро по поводу его юбилея 70-летнего возраста в нредстоящем ноябре текущего 1896 г., именно 27 числа нов. стиля . Представление было под- [c.197]

    Несмотря на наличие большого количества работ, посвященных исследованиям структуры силикаалюмогелей [167], не существует единой тачки зрения относительно механизма образования их к ем-неалюмокислородного скелета, его химической и атомной структуры и состояний Л1 в скелете. Общепризнанными являются, по-видимому, лишь представления о корпускулярном строении скелета силикаалюмогелей, основанные на непосредственных электронномикроскопических наблюдениях [168—171]. Из этих представлений следует, что такие смешанные гидрогели должны состоять из скелета, образованного контактирующими глобулами (мицеллами) и интермицеллярной жидкости, заполняющей пространства между частицами. В свежеосажденных щелочных силикаалюмогелях пространство между частицами скелета, а в случае пористых частиц также и поры в частицах заполнены остаточным щелочным раствором. Находящаяся в свежеосажденных силикаалюмогелях щелочь неодинаково прочно связана со скелетом геля. [c.78]

    Коксы и твердые горючие ископаемые имеют сложную структуру. Веселовский [209] рассматривает строение углей с позиций мак-ромолекулярной теории, согласно которой частички углей представляют собой гигантские пластинчатые молекулы (графитосомы), в основе которых лежит один атомный слой графитовой решетки, а по его краям имеются химически связанные атомные группировки, содержащие в различных сочетаниях, кроме углерода, также водород, азот, кислород и серу в виде боковых цепей ( бахрома ). Указанные представления позволяют автору рассматривать структурные изменения при метаморфизме углей и при их нагревании до вы соких температур вплоть до образования графита. [c.151]

    Наряду с этим Д. И. подверг критике структурную теорию и само понятие атомности (валентности), причем главное свое возражение он направил против признания постоянства атомности, на чем метафизически настаивали Кекуле и его сторонники. Например, рассматривая типы аммиачных соединений платины, Д. И. указывает, что допущения, которые принимают сторонники учения об атомности для объяснения строения этих соединений, разрушают всю постройку, основанную на допущении связи элементов по их атомности... Это безысходный круг принимается атомность Н=1, С1 = 1, 0=2, на основании этого находят атомность R = m, а, приняв это, видят, что или ее надо допустить больше, чем нашли, или для Н, I, О нужно допустить иную атомность. Так ведь и доказывается в точных знаниях, неприменимость известных допущений. Потому-то мы и не признавали во всем этом сочинении понятия об атомности элементов, как исходной точки для отправления в химических рассуждениях. То, что мы называем типом или стадией соединения, есть не что иное, как представление о замещаемости, выводимое прямо из факта (т. XIV, стр. 835). Говоря в заключении Основ химии об известных формах соединений, Д. И. поясняет Это называют также атомностью элементов,, но так как с этим понятием соединяется ряд иных представлений (постоянство форм, разделение соединений на атомные и частичные, связь элементов определенным числом сродств и т. п.), которые мы считаем неудовлетворительными,то мы и не употребляем, для избежания двусмыслия, слова атомность (т. XIV, стр. 907, примечание). (В т. XIV в этом месте допущена грубая опечатка, искажающая весь смысл примечания— пропущена частица пе перед словом употребляем . — Ред.). [c.716]

    Лбкого от отношений, суш ествующих между химией и физикой, способной возрождать химические атомы из элементарных частиц. Во-вторых, отсутствие автоматизма в процессе начального появления в генетической природе гетеросинтеза ферментов, способных обеспечить устойчивость генов в небиологическом окружении. Генам необходимы не только новый, дискретный потенциал с его подъемом до завершенного атомного строения, но также ферменты — первое условие нормированной внутренней среды, без которой гены потеряны для живого. Новое материальное поле не только имеет право на свой атомизм, но должно его реализовать в другом виде биологического катализа, который стоит на ступень ближе к химической среде. [c.78]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    В апреле 1914 г. Мозли опубликовал результаты исследования 39 элементов, от 1зА1 до 7,Ли. (Напомним, что порядковый номер элемента указывается индексом слева внизу от символа элемента.) Часть полученных им данных воспроизводится на рис. 7-2. Мозли писал Спектры элементов представляют собой равноотстоящие друг от друга горизонтальные линии. Выбранная последовательность расположения элементов соответствует возрастанию их атомных весов (масс), за исключением случаев Аг, Со и Те, когда она не согласовывалась с последовательностью изменения их химических свойств. Между элементами Мо и Ки, а также между Nd и 8т и между XV и Оз остаются вакантные места для спектральных линий, но элементы, которым могли бы соответствовать линии в этих местах, неизвестны... Все это эквивалентно тому, как если бы мы приписали последовательным элементам ряд характеризующих их последовательных целых чисел... Тогда, если бы какой-либо элемент не удавалось охарактеризовать такими числами или произошла ошибка в составлении последовательности элементов либо в нумерации мест, оставленных для еще неизвестных элементов, установленная закономерность (прямолинейная зависимость) оказалась бы сразу же нарушенной. Это позволяет на основании одних лишь рентгеновских спектров заключить, не пользуясь никакой теорией строения атома, что указанные выше целые числа действительно могут характеризовать элементы... Недавно Резерфорд показал, что наиболее важной составной частью атома является расположенное в его центре положительно заряженное ядро, а Ван-ден-Броек выдвинул предположение, что заряд этого ядра во всех случаях представляет собой целочисленное кратное от заряда ядра водорода. Есть все основания предполагать, что целое число, определяющее вид рентгеновского спектра [элемента], совпадает с числом единиц электрического заряда в ядре [его атомов], и, следовательно, данные эксперименты самым серьезным образом подтверждают гипотезу Ван-ден-Броека . [c.312]

    С другой стороны, исследования в области органической химии, относящиеся ко второй половине прошлого столетия, также привели к качественному наглядному представленик> о пространственных затруднениях при реакциях, связанных с химическим строением реагирующих частиц. В органической химии к понятию о стерических факторах пришли в результате изучения влияния атомов и групп атомов в молекулах-, не связанных непосредственно с реагирующими группами в молекуле, на реакционную способность молекул, т. е. в свя-зи с изучением проблемы взаимного влияния атомов и атомных групп, поставленной в работах отечественных классиков. [c.165]

    Исследованиями ученых многих стран установлено, что к соединениям переменного состава относятся не только оксиды, но н субоксиды, халькогениды, силициды, бориды, фосфиды, нитриды, многие другие еорганические вещества, а также органические высокомолекулярные соединения. Во всех случаях, когда сложное вещество имеет молекулярную структуру, оно представляет собой соединение постоянного состава с целочисленными стехиометриче-скими индексами. Некоторые ионные кристаллы и даже атомные кристаллы и металлы могут также подчиняться законам стехиометрии. Но в случае немолекулярных кристаллов, как отмечает Б. Ф. Ормонт, уже не молекула, а фаза т. е. коллектив из Л/о (числа Авогадро) атомов, определяет свойства кристаллической решетки . Он предлагает для подобных веществ расширить формулировку закона постоянства состава Если... в твердом агрегатном состоянии соединение не имеет молекулярной структуры, то в зависимости от строения атомов и вытекающего отсюда строения фазы и характера химической связи в ней состав соединения и его свойства могут сильно зависеть от путей синтеза. Даже при одном и том же составе свойства могут сильно зависеть от условий образования . Б. Ф. Ормонт подчеркнул необходимость исследования зависимости условия образования—состав — строение — свойства,— направленного. на установление связи между условиями образования, химическим и фазовым составом системы, химическим составом и строением отдельных фаз и их свойствами. Нетрудно заметить, что добавление к обычной формуле, закона постоянства состава слов состав срединения зависит от условий его образования ,— лишает закон постоянства состава его смысла. В то же время указание на важность изучения в связи с проблемой стехиометрии не только состава, но и строения твердых веществ представляется очень существенным. [c.165]

    Как мы уже отмечали, макрорадикальный характер твердых тел атомного строения предопределяет их высокую химическую активность, которая проявляется в виде хемосорбции. Но хемосорбция часто является только первым актом дальнейших сложных процессов. К таким процессам относятся, например, процессы молекулярного наслаивания, позволяющие осуществлять направленный синтез атомных твердых веществ с гарантированной воспроизводимостью. Но еще задолго до использования этих процессов внимание исследователей и производственников привлекали процессы гетерогенного катализа, относительно которых известно, что они также начинаются с актов хемосорбции, по крайней мере одного из катализируемых веществ. В определенных случаях твердое тело играет только роль инициатора (или, нередко, ингибитора) реакции, которая при этом развивается по законам цепных реакций, открытым Н. Н. Семеновым. Зная, что твердое тело является макрорадикалом, нетрудно себе представить, что соударение с ним молекул должно непрерывно генерировать радикалы — осколки этих молекул, обладающие неспаренными электронами, если свободные валентности твердого тела возрождаются. То же условие самовозобновления макрорадикала, а в более общем случае самовоспроизведение определенного набора функциональных [c.244]

    Вследствие неоднородности химического строения полимерных цепей, а также различия структур, которые образованы однотипными молекулами, рассматриваемый процесс представляет собой совокупность одновременно протекающих локальных процессов, характеризующихся своими энергиями активации. Скорость протекания данного процесса выражается суммой скоростей элементарных актов перескоков атомных групп через потенциальный барьер. Еслн распределение по врем енам релаксации (по энергиям активации) в локализованных участках является нормальным (гауссово распределение), то для предэкспоненциального множителя можно записать соотношение [c.190]

    Зависимость скорости реакции от природы реагирующих веществ. Влияние природы реагирующих частиц определяется их атомным составом, пространственным строением и молекулярными свойствами. Скорость химической реакции определяется скоростью разрыва одних и образования других химических связей. Эти превращения происходят в элементарном акте реакции. Мы знаем, что изменение длины химической связи, валентных углов и других геометрических параметров молекулы сопровождается изменением ее потенциальной энергии. Поэтому и взаимодействие частиц в элементарном акте реакции также должно характеризоваться изменением потенциальной энергии всей системы. Поскольку реагирующие молекулы обьгчно содержат много атомов, то элементарный акт химической реакции характеризуется многомерной поверхностью потенциальной энергии. На этой поверхности потенциальной энергии отражается влияние изменения каждого геометрического параметра одной молекулы на энергии ее взаимодействия с другой молекулой и наоборот. [c.189]

    XIX в., когда ошибочно считали, что минералы, содержащие элементы двух подгрупп цериевой (Ьа, Се, Рг, Кс1, Зт) и иттриевой (V, Ей, Сё, ТЬ, Оу, Но, Ег, Тп1, УЬ, Ей), редко встречаются в природе. На самом деле Р. э. не являются редкими. По своим физическим и химическим свойствам Р. э. очень сходны, что объясняется одинаковым строением внешних электронных оболочек их атомов. Р. э. применяют в различных отраслях техники радиоэлектронике, приборостроении, атомной технике, машиностроении, химической промышленности, металлургии и др. Еа, Се, N(1, Рг используют в производстве стекла. Эти элементы повышают прозрачность стекла, входят в состав стекла специального назначения, пропускающего инфракрасные и поглощающего ультрафиолетовые лучи, а также в состав кислото-и жаростойкого стекла. Р. э. и их соединения широко применяются в химической промышленности для производства пигментов, лаков и красок в нефтяной промышленности в качестве катализаторов, в производстве специальных сталей и сплавов как газопоглотители (см. Иттрий. Лантаноиды). [c.212]


Смотреть страницы где упоминается термин Строение химическое также атомность: [c.207]    [c.533]    [c.23]    [c.263]    [c.263]    [c.129]    [c.3]    [c.141]    [c.10]    [c.151]    [c.194]    [c.19]   
Сочинения Теоретические и экспериментальные работы по химии Том 1 (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Строение химическое



© 2025 chem21.info Реклама на сайте