Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия ароматических углеводородов

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]


    Трициклические ароматические углеводороды. Из двух трициклических ароматических углеводородов — антрацена и фенантрена — последний является более термически стабильным и всегда присутствует в больших количествах в смоле и аналогичных продуктах пиролиза. Большая стабильность фенантрена связана с большей энергией резонанса порядка 110 калорий на моль по сравнению со 104,7 калориями на моль для антрацена. Появление таких углеводородов в крекинг-остатке нефти и угольной смоле может быть результатом пиролиза родственных структур, таких, например, как трициклические нафтены однако они появляются [c.98]

    Для приведенных реакций, за исключением реакции изомеризации н-гек-сана, значения кажущихся энергий активации мало различаются и при наблюдаемых отклонениях близки к 130 кДж/моль. Это обстоятельство заставляет предположить, что повышение температуры в процессе каталитического риформинга не должно приводить к очень большому увеличению селективности реакций, ведущих к получению ароматических углеводородов. Для расчета селективности реакций ароматизации гептанов и дегидроизомеризации метилциклопентана пользовались упомянутым выше методом. При степени превращения метилциклопентана [c.153]

    Как видно из данных, приведенных в табл. 34, в ряду анизол — т.рег/1-бутилфениловый эфир уменьшаются отношения количеств бензола и фенола, а также отношения суммы ароматических углеводородов к сумме фенолов. Следовательно, по мере усложнения алкильного остатка все больше доминирует разрывно связи 2. Это подтверждается также величинами энергий расщепления связей 2 и 2 в соответствующих простых эфирах фенолов (табл. 35). [c.186]

    Из графика видно, что с повышением температуры свободная энергия образования углеводородов различных рядов изменяется различным образом. Быстрее повышается свободная энергия метановых углеводородов и циклопарафинов. Свободная энергия ароматических углеводородов и этиленовых углеводородов увеличивается медленней, В случае ацети.тена свободная энергия уменьшает- [c.116]

    Шварц [39] приводит данные по энергиям некоторых связей в замещенных ароматических углеводородах энергии диссоциации для к-про-пилбензола представлены ниже в ккал/моль. [c.130]

    С точки зрения термодинамики, окисление ароматических углеводородов можно проводить в широком температурном интервале, в котором величина изменения свободной энергии реакции имеет отрицательные значения. [c.169]


    Главная часть углеводорода распадается на углерод и водород, и только небольшое количество конденсируется и дает ароматические углеводороды. Прежде всего происходит адсорбция газа катализатором — явление экзотермическое. Выделяющееся тепло вызывает полимеризацию и разложение ацетилена. За счет внутренней энергии ацетилена возникает вновь разогревание, н реакция продолжается до тех пор, пока выделяющийся на катализаторе уголь не прекратит доступа газа. [c.249]

    В табл. 13 представлены кинетические константы гидрирования некоторых ароматических углеводородов. Из приведенных данных видно, что экспериментально определенная кажущаяся энергия активации реакции гидрирования бензола уменьшается в ряду [c.144]

Рис. 8. Корреляция между энергией активации гидрирования и потенциалом ионизации ароматических углеводородов Рис. 8. <a href="/info/1097645">Корреляция между энергией</a> <a href="/info/383009">активации гидрирования</a> и потенциалом <a href="/info/474236">ионизации ароматических</a> углеводородов
    Непосредственное дегидрирование до ароматических углеводородов пятичленных нафтенов термодинамически невозможно, так как при любых температурах свободная энергия соответствующего ароматического углеводорода больше, чем пятичленного нафтенового (например, для системы бензол — метилциклопентан). [c.214]

    Что же касается ароматических углеводородов, то свободная энергия в расчете на один атом углерода возрастает только от бензола к нафталину. Далее величина ее постепенно уменьшается и для графита снижается до нулевого значения. [c.46]

    Особенности физических и химических свойств ароматических углеводородов определяются наличием в них сопряженной структуры, я-электроны которой образуют замкнутую электронную систему. В молекуле бензола в результате делокализации орбиталей происходит выравнивание всех связей, в цикле отсутствует напряженность — и это способствует стабильности молекулы. Оценку энергии делокализации проводят сравнением энергий реакции гидрирования бензола и циклогексена. При гидрировании циклогексена выделяется 120 кДж/моль. Если бензол считать циклогексатриеном, то при гидрировании его тепловой эффект должен быть равен 360 кДж/моль, а фактически эта величина достигает лишь 209 кДж/моль. Следовательно, энергия делокализации составляет 151 кДж/моль. Для нафталина, антрацена и фенантрена значение этого показателя равно 255, 349 и 382 кДж/моль соответственно. [c.8]

    Подсчеты изменений свободной энергии реакций синтеза показывают, что при температурах 200—325° возможно достигнуть высоких равновесных выходов всех парафинов, олефинов и спиртов, за исключением метанола. Равновесные выходы для нафтенов и ароматических углеводородов имеют меньшие значения, чем для парафинов. Расчеты показывают также, что равновесные степени превращения (при синтезе углеводородов выше j) растут с увеличением рабочего давления при постоянной температуре в пределах 200—400°. Образование заметных количеств ацетилена термодирамически невозможно при обычных условиях синтеза (250—325°, 1—50 ат). Парафины и олефины, получающиеся в синтезе, имеют преимущественно нормальное строение, а олефины являются глав- [c.520]

    Для решения теоретических и практических задач весьма важно определить лимитирующую стадию реакции. Использование с этой целью ароматических углеводородов, содержащих вместо атомов водорода дейтерий или тритий, позволяет в несколько раз снизить скорость 2 второй стадии реакции, т. е. отрыва Н+. Подобный кинетический изотопный эффект объясняется большей энергией связи С—D и С—Т по - сравнению со [c.44]

    Деалкилирование ароматического кольца. Процессы деалкилирова-ния ароматических углеводородов представляют особую важность для производства бензола, толуола, нафталина и прочих ценных ароматических углеводородов. Реакции де алкилирования являются реакциями, обратными алкилированию и, так как изменение свободной энергии последних до 540° С остается отрицательным, то для проведения деалкилиро-вания большинства ароматических углеводородов обычно требуются относительно высокие температуры. [c.104]

    На каждой стадии конкурируют реакции распада (в схеме показаны не во всех случаях), замещения и присоединения. Наименьшую энергию активации имеют реакции присоединения и с понижением температуры их роль возрастает, что приводит к повышению выхода высокомолекулярных конденсированных ароматических углеводородов. [c.80]

    Алкилароматические углеводороды могут, с точки зрения термодинамики, деалкилироваться и подвергаться распаду алкильных цепей, незамещенные ароматические углеводороды — распаду до элементов, раскрытие бензольного кольца возможно только при очень высоких температурах. Ниже приведены температуры, при которых в стандартных условиях приведенные реакции протекают с уменьшением энергии Гиббса  [c.82]


    Для рещения этого вопроса на рис. 20 приведена зависимость изменения свободной энергии образования- некоторых углеводородов от температуры в пределах 300—1200 К. Эти данные позволяют установить относительную стабильность углеводородов. Повыщение температуры снижает прочность углеводородов. Как видно из рис. 20, метан при всех температурах устойчивее других соединений термическая устойчивость парафиновых углеводородов понижается при переходе к высшим членам гомологического ряда. Следовательно, при нагревании в первую очередь расщепляются углеводороды с длинной цепью. Место разрыва связи с повышением температуры сдвигается к краю цепи, и образуются более устойчивые углеводороды с короткими цепями вплоть до метана. Однако и метан выше 820 К начинает разлагаться на углерод и водород. Метановые и нафтеновые углеводороды при низких температурах (ниже 500 К) более стабильны, а при высоких температурах более устойчивы ароматические углеводороды и олефины и поэтому при высоких температурах они будут накапливаться в продуктах расщепления. [c.63]

    Одновременно с этим температура существенно влияет на скорость процесса, поскольку крекинг протекает в кинетической области. Зависимость скорости реакции от температуры выражается уравнением Аррениуса. Температурный коэффициент реакции р близок к двум. Энергия активации для парафиновых и нафтеновых углеводородов составляет величину порядка 200—300 кДж/моль, а для ароматических — 300—400 кДж/моль. Исходя из этого скорость превращения отдельных групп углеводородов располагается в такой последовательности парафиновые — нафтеновые—ароматические углеводороды. Описание процесса крекинга общим кине- [c.63]

    Предложен нефтехимический вариант процесса нефтепереработки [14], обеспечивающий максимальные выходы основных продуктов нефтехимического сырья олефинов (47,4—52,2%) и ароматических углеводородов (9,8—10,9%), сырья для производства сажи и игольчатого кокса (смесь пиролизной смолы и тяжелого дистиллята каталитического крекинг-мазута). Строго говоря, этот вариант нельзя отнести к процессам переработки тяжелых нефтяных остатков, это скорее процесс безостаточной комплексной переработки нефти, как бы в обход процессов, ведущих к созданию тяжелых остатков. В основе его лежит несколько модифицированных технологических процессов, широко применяемых в современной нефтеперерабатывающей промышленности. Конечный (хвостовой) продукт процесса прямой перегонки пефти (мазут) становится сырьем для второго процесса — процесса каталитического крекинга. Продукты прямой атмосферной перегонки, выкипающие до 343° С, подвергаются пиролизу для получения олефинов. Прямогонный (60%-ный) мазут подвергается каталитическому крекингу на цеолитном катализаторе с резко выраженной крекирующей (и слабее — дегидрирующей) активностью. Обычно в качестве сырья для каталитического крекинга берут дистиллятные фракции нефти, чтобы избежать интенсивного закоксовывания катализатора, обусловленного наличием в сырье смолисто-асфальтеновых веществ нефти. Здесь не боятся интенсивно протекающего процесса коксования, так как выжиг кокса служит источником энергии для компенсации затрат энергии на осуществление процесса крекинга, а также для производства технологического пара. Кроме того, интенсивно протекающий процесс коксования в сильной степени освобождает сырье от асфальтенов и конституционно связанных с ним атомов металлов (V и N1). Процесс крекинга мазута осуществляется в системе флюид. Он характеризуется высокими выходами пропилена и бутиленов, а также легких и средних дистиллятных фракций, которые после гидроочистки и освобождения от содержащихся в них ароматических углеводородов поступают на пиролиз. Тяжелые дистилляты могут быть использованы как ко- [c.251]

    Высокая энергия делокализации радикалов по сравнению с бензолам и его гомоло гами, низкий потенциал ионизации и наличие нескольких мест с высоким индексом реакционной способности приводят к значительной стабильности радикалов, образующихся при взаимодействии многоядерных ароматических углеводородов с кислородом и объясняет их неспособность продолжать цепной процесс окисления и склонность к рекомбинации с образованием смолистых веществ [53, 68]. Окисление в среде поляр- [c.43]

    На рис. 1 показаны свободные энергии реакций дегидрирования к-алканов С5—Сц до м-алкенов-1, и циклизации -гексана и м-гентана соответственно в бсмьзол и толуол. Как видно из графика, реакция циклизации является более благоприятной, чем дегидрирование до олефинов. Однако давление действует на первую реакцию сильнее, чем на последнюю. Кроме того, из алканов или С, могут быть получены несколько различных олефинов и лишь один определенный тип ароматической молекулы. Таким образом, учитывая оба этих факта (4), при температуре 800° К и рабочем давлении около 10 ат, можно, по-видимому, ожидать получения равных выходов ароматических углеводородов и смеси трех, вероятно, в равных концентрациях олефинов, если разность величин изменения свободной энергии не превышает примерно 8 ккал. В действительности эта разность при 800° К составляет около 25 ккал, т. с. в присутствии вещества, катализирующего обо реакции, должен преобладать процесс циклизации. [c.166]

    Ароматические углеводороды масляных фракций растворяются как в парафино-нафтеновых углеводородах, так и в полярном растворителе, за счет действия однотипных дисперсионных сил. В последнем случае при контакте с неполярной частью молекул растворителя ароматические углеводороды растворяются в нем вследствие дисперсионного притяжения при соприкосновении с функциональной группой в молекулах этих углеводородов индуцируется дипольный момент и растворение происходит в результате ориентации диполей. Следовательно, преимущественное растворение ароматических углеводородов в шолярном растворителе объясняется большей энергией притяжения диполей по сравнению с энергией взаимодействия неполярных соединений и, кроме того, наличием дисперсионных сил между неполярной частью молекул распворителя и молекулами этих углеводородов. В связи с вышеизложенным растворимость ароматических углеводородов в полярных растворителях при прочих равных условиях уменьшается по мере увеличения длины боковых цепей и усложнения их структуры (рис. 6), так как при этом затрудняются индуцирование в их молекулах дипольного момента и ассоциация с молекулами растворителя [5]. В этом случае растворение является в основном следствием дисперсионного взаимодействия молекул. Повышение степени цикличности ароматических углеводородов приводит к увеличению их растворимости в результате большей поляризуемости таких м олекул, и энергия притяжения диполей превышает энергию дисперсионного цритяжения молекул. [c.49]

    Введение алкильного заместителя изменяет свободную энергию, причем это изменение зависит от числа атомов углерода в алкильной группе. Удлинение углеродной цепи приводит к росту энергетического уровня, а изомеризация ее — к снижению свободной энергии. Парафиновые углеводороды имеют более низкий уровень свободной энергии, поэтому с увеличением длины алкильного заместителя при общем повышении роста энергетического уровня молекулы благодаря снижению роли ароматического ядра свободная энергия в пересчете на атом углерода падает. [c.13]

    Большое значение оказывают количество и активность катализатора, При небольших количествах катализатора и мягких условиях образуются в значительной,степени орто- и пара-то-меры. С увеличением количества катализатора возрастает содержание мета-томера. Кроме того, образование лега-изомера при мягких условиях наблюдается при высокой реакционной способности и низкой избирательности карбокатионов. В присутствии больших количеств катализатора ароматические углеводороды почти количественно превращаются в 1,3-диалкил- и 1,3,5-триалкилбензолы, что объясняется их большой основностью и соответственно стабильностью соответствующих сг-комплексов. Многочисленными примерами показано, что чем выше энергия у реагента (больше дефицит электронов), тем меньше его селективность как при атаке различных по основности ароматических углеводородов, так и отдельных положений монозамещенных ароматических соединений. Например, молекулярный бром (слабая кислота Льюиса) реагирует с толуолом в 600 раз быстрее, чем с бензолом, тогда как бром-катион из гипобромида (сильная кислота Льюиса) лишь в 36 раз. Подобный же эффект наблюдается для этих реагентов и при атаке различных положений толуола. В табл. 2.4 приведены факторы парциальных скоростей нитрования и галогенированЕя толуола и трет-бутилбензола. [c.42]

    В первых работах по изучению изомеризационных превращений ароматических углеводородов было высказано мнение, что изомеризация алкилбензолов не является самостоятельным процессом, а обусловлена комбинацией реакций деалкилирования и алкилирования. Однако, на основании исследований Хейзе и Толя было установлено, что изомеризация метильных групп — реакция самостоятельная, практически не зависящая от их межмолекулярного переноса, протекающего значительно медленнее. Исследования многих ученых позволили выяснить количественные закономерности изомеризационных превращений метилбен-золов и сделать вывод о внутримолекулярном ступенчатом сдвиге метильных групп. Кинетические исследования были подтверждены экспериментами с мечеными атомами. Было показано, что при контакте с А1Вгз-НВг миграция метильной группы в [1- С] толуоле протекает в результате 1,2-перемещения вдоль ароматического цикла с энергией активации, равной 91,6 кДж/моль. [c.163]

    СгНд, СбНб и атомами водорода. Реакции этих радикалов с различными углеводородами, которые могут находиться в нефтяных смесях, отличаются энергиями активации (для различных углеводородов) в пределах 21 кДж/моль (5 ккал/моль), что для обычных при пиролизе температур соответствует различию в константах скоростей на один порядок. Это значительно меньшее различие, чем между скоростями термического разложения индивидуальных углеводородов. Из углеводородов нефтяных фракций слабейшие связи, по-видимому, содержат ароматические углеводороды связи типа СбНзСНа—К имеют в зависимости от вида прочность 230—260 кДж/моль (55—62 ккал/моль) энергия связи уменьшается при увеличении числа атомов углерода в К.  [c.85]

    Температуры, при которых первая стадия крекинга переходит из кинетической во внутридиффузионную область и из внутри- во внешнедиффузионную, зависят от свойств сырья, активности катализатора, размера его пор и частиц. Для данного катализатора утяжеление сырья, повышая скорость реакции и снижая скорость диффузии, уменьшает температуры перехода. Для сырья заданного фракционного состава повышение в нем концентрации олефиновых и ароматических углеводородов, крекирующихся с большой скоростью, дает такой же эффект. При сырье заданного состава и катализаторе заданной активности переход реакции из кинетической области во внутридиффузионную осуществляется тем при меньшей температуре, чем меньше средний диаметр пор. На температуру пере.хода из внутридиффузионной области во внешнедиффузионную размер пор влияния Не оказывает. Этот переход осуществляется при катализаторе данной активности для данного сырья тем при, меньшей температуре, чем больше размеры частиц катализатора. Таким образом, максимально допустимая температура крекинга, при которой достигается переход первой стадии реакции во внешнедиффузиопную область, зависит от свойств сырья, активности катализатора и размера его частиц. На микросфериче-ском катализаторе при крекинге сырья, выкипающего в пределах 300—500 °С, внешнедиффузионная область достигается при 540— 560°С, на шариковом катализаторе зернением 3—5 мм —при 480—510°С. В кинетической области первая стадия крекинга имеет энергию активации около 30 ккал/моль. [c.221]

    Температура. С повышением температуры увеличиваются содержание ароматических углеводородов в катализате и его октановое число. Содержание ароматических углеводородов в катализате возрастает вследствие не только углубления ароматизации, но и увеличения разложения неароматизовавшихся углеводородов до газообразных при реакциях гидрокрекинга. По данным работы промышленных и полупромышленных установок платформинга, использующих различное сырье, катализаторы и режимы работы, кажущаяся энергия активации ароматизации составляет 22— 38 ккал/моль (для сырья с высоким содержанием циклопарафинов кажущаяся энергия активации ароматизации ниже), а газообразования— на, 6—15 ккал/моль выше. Повышение температуры увеличивает выход газообразных продуктов гидрокрекинга в несколько большей степени, чем выход ароматических углеводородов. Верхний температурный предел процеоса связан с кислотной активностью катализатора температуры выше 530°С, по-видимому, не применяются. [c.257]

    Кинетика реакций гидрокрекинга. Кинетика реакций, проходящих при гидрокрекинге, изучена очень мало. Энергия активации гидрирования ароматических углеводородов на различных катализаторах имеет один порядок — около 42 кДж/моль (10 ккал/моль). Для кажущейся энергии активации бензинообразования при гидрокрекинге вакуумного газойля — величине в общем фиктивной — в литературе приведены значения порядка 125—210 кДж/моль (30—50 ккал/моль). Некоторое представление о соотношении скоростей различных реакций гидрокрекинга легкого газойля каталитического крекинга на катализаторе с высокой кислотной активностью при 10,5 МПа (105 кгс/см ) дает следующая схема (цифры на стрелках — значения относительной константы скорости)  [c.297]

    При реализации математической модели гидроочистки в профамме использовался объектно-ориентированный подход для анализа сложных систем. Эго позволило подставлять любые параметры модели в алгоритм оптимизации без дополнительных изменений в Ешгоритмах. При разрабо ке математической модели были найдены еле,дующие кинетические составляющие математического описания предэкспоненциальные множители, порядки реакций по водороду, тешовые эффекты реакций, энергии активации. Решение данной задачи можно рассматривать как задачу на (ождения минимума функции отклонений расчетных от экспериментальных данных. Построенная модель позволяет прогнозировать содержание сернистых соединений н ароматических углеводородов в продукте. [c.228]

    Для увеличения скорости процесса вдвое надо повысить температуру на 11—14 град в интервале 400—450° С и на 14—20 град в диапазоне 500—520° С. Величины энергии активации для керосино-газойлевых фракций составляют 55 ккал моль, для лигроиновых около 70 ккал молъ, а для ароматических углеводородов достигают 90 ккал моль и выше. Так как крекинг псевдомономолекулярный процесс, то давление не влияет на скорость распада молекул. Но вторичные реакции полимеризации и конденсации протекают по [c.224]

    Так как углеводороды олефинового и парафинового рядов являются лишь растворяющей средой и не в состоянии дать вязких продуктов (по крайней мере, при не слишком длительном воздействии разрядов, т. е. без заметного крекинга), то перед вольтализацией к ним целесообразно добавлять известное количество нафтеновых или ароматических углеводородов Варьируя количество добавляемых нафтеновых или ароматических углеводородов, можно получать масла желаемой степени вязкости прп больших плп меньших затратах электроэнергии и с более высокими или более низкими индексами вязкости. Чем выше молекулярный вес сырья, тем ниже (при прочих равных условиях) затраты энергии на получение воль-тализированных масел данной вязкости. Расход энергии также тем ниже, чем выше содержание нафтеновых и ароматических углеводородов в исходном сырье но чем выше содержание этих углеводородов, тем менее б,лагоприятным будет индекс вольта.лизированного масла. [c.435]

    Конденсированные ароматические соединения отличаются от бензольных углеводородов большей реакционной способностью и меньшей а,роматичностью. Это определяется тем, что в конденсированной системе невозможно такое равномерное распределение ароматических я-электрюнов по отношению к углеродным атомам,, как Б бензоле и его гомологах. К тому же, вступая в реакции присоединения, конденсированные ароматические углеводороды сохраняют бензольное ароматическое колыцо, а поэтому и значительную часть энергии сопряжения. [c.20]

    При последовательном гидрировании ароматических углеводородов с конденсированными кольцами образуются полностью или частично гидриро(ва,нные соединения. При этом на каждой из стадий промежуточного гидрирования получаются соединения, сохраняющие наибольшие энергии сопряжения. При гидрировании нафталина, например, в мягких условиях (амальгама натрия в водном спирте) образуется 1,4-дигидронафталин с примесью 1,2-днгидро,нафталина при каталитическом гидрировании на первой стадии образуются последовательно тетралин, сохраняющий одно бензольное кольцо и два стереоизомера декагидронафталина (декалина). [c.36]

    Относительно невысокая энергия связи Саг—Н, а также малая стабильность продуктов присоединения кислорода к лишенным заместителей ароматическим углеводородам приводит к тому, что при некаталитическом окислении полициклических ароматических углеводородов развиваются процессы окислительной де-гидрополиконденсации, ведущие к образованию высокомолекулярных продуктов. [c.45]

    Значительный интерес представляют гидрогенизационные методы очистки, сочетающие гидрогенолиз сернистых и крекинг насыщенных углеводородов. Гидрокрекинг в широком диапазоне температур и давлений имеет более высокую энергию активации, чем гидрирование ароматических углеводородов (73,2 и 60,7 кДж/моль соответственно [60]), поэтому в таких условиях невозможна достаточно полная конверсия примесей без одновременного гидрирования ароматических углеводородов. Кинетика совместных превращений тиофена и насыщенных углеводородов изучалась на алю-момолибденовом катализаторе при давлениях 0,5—1,5 МПа [61]. Установлено, что гидрокрекинг насыщенных углеводородов протекает в более жестких условиях по сравнению с гидрогенолизом тиофена. При малом содержании нафтенов и парафинов в бензоле их заметная конверсия (пе менее 50% от первоначального содержания) начинается при 480—510°С и развивается с повышением температуры и снижением объемной скорости. В соответствии с более высокой энергией активации наиболее стоек к разложению н-гептан. [c.229]


Смотреть страницы где упоминается термин Энергия ароматических углеводородов: [c.485]    [c.131]    [c.335]    [c.138]    [c.429]    [c.50]    [c.150]    [c.182]    [c.29]   
Введение в химию и технологию органических красителей (1971) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия углеводородов



© 2025 chem21.info Реклама на сайте