Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Коэффициент физической активности

    Степень и избирательность адсорбции из смесей зависит от химической природы жидкостей и твердых веществ, а также от физических условий, определяемых температурой и давлением. Равновесие устанавливается между объемной жидкой фазой и адсорбированной жидкой фазой, последнюю можно рассматривать как существующую в двух измерениях, на свойства которой влияет природа поверхности твердого вещества. Если поведение фаз неидеально, эти виды фазового равновесия, как и любые другие, количественно можно выразить через коэффициенты фугитивности и активности. Влияние природы поверхности твердого вещества на адсорбцию удобнее всего рассмотреть на примере силикагеля. Способность силикагеля адсорбировать углеводороды убывает в следующем ряду многоядерные ароматические соединения > соединения бензольного ряда > диолефины > парафины. При адсорбции на активных углях этот порядок нарушается. На рис. 9.1 показано влияние температуры и давления, а также природы [c.443]


    Уравнения материального и теплового баланса с эмпирическими коэффициентами массо- и теплопередачи повсеместно применяются при расчете гетерогенно-каталитических процессов, скорость которых лимитируется диффузией реагентов к поверхности частицы катализатора и теплообменом между потоком и активной поверхностью. Строго говоря, использование эффективных коэффициентов обосновано только когда поверхность катализатора равнодоступна (см. п. 2). Более тонкие эффекты могут определяться явлениями термодиффузии и диффузионной теплопроводности, возникающими при наложении и взаимном влиянии процессов тепло- и массопереноса, а также изменением физических свойств пограничного слоя, а следовательно и значений коэффициентов диффузии и температуропроводности в результате химических превращений. Ошибка, допускаемая в результате пренебрежения этими явлениями, в условиях большинства химических реакций мала. В некоторых процессах значительную роль играет так называемый стефановский поток, возникающий вследствие неравной скорости диффузии исходных веществ и продуктов реакции или изменения объема в ходе химических превращений. Влияние стефановского потока на скорость химической реакции рассматривается в п. 2. [c.116]

    Крупные работы в области физической химии выполнены немецким ученым Ф. Кольраушем он установил законы независимого движения ионов. Шведский ученый С. Аррениус разработал теорию электролитической диссоциации американский ученый И. Лэнгмюр развил учение об адсорбции, а Г. Льюис создал теорию термодинамической активности, он ввел также понятия летучести, активности, коэффициента активности веществ. [c.8]

    Разность потенциалов ф"—ф. как было упомянуто в 48, нельзя измерить. Коэффициенты активности также нельзя измерить ни порознь, ни в комбинации 1п/,- —Поэтому уравнение (50.6) не представляет собой экспериментально проверяемого соотношения между измеряемыми величинами. Однако в принципе можно рассчитать методами статистической термодинамики, и можно показать, что разность потенциалов ф"—ф определяется уравнением (50.6) как величина, имеющая физический смысл. Правда, практически ситуация несколько иная, поскольку до сих пор точный расчет Д. удается провести только для предельного случая бесконечного разбавления. Для разбавленных растворов электролитов существуют приближенные формулы, при помощи которых можно примерно определить ф"—ф. Для концентрированных растворов электролитов в настоящее время нужно ограничиваться утверждением, что ф"—ф, по крайней мере в принципе, является физически определяемой величиной. Аналогичные рассуждения справедливы в особенно важном случае, когда одна фаза является раствором электролита, а другая металлическим проводником. Тогда разность потенциалов называется потенциалом отдельного электрода. Этот вопрос будет рассмотрен в 52. [c.247]


    В этом смысле коэффициентам активности ионов можно приписать физическое значение также и в рамках термодинамики. [c.248]

    Упругость насыщенного пара является физическим свойством только разделяемых веществ и не зависит от свойств жидкой фазы, тогда как коэффициенты активности зависят от свойств и тех, и других. Поэтому при решении большинства задач разделения следует учитывать различия в упругости насыщенного пара или в температуре кипения разделяемых веществ, а также из различия коэффициентов активности. Соответственно этим различиям определяется и очередность разделения компонентов. [c.189]

    Скорость вращения суспензии при кристаллизации (в результате механического воздействия мешалки) является одним из важнейших факторов, определяющих размер получаемых кристаллов (см. также гл. 9). Обработка данных (табл. 4.7) для одной и той же мешалки [128] с учетом Уо, Л и фа показывает, что уменьшение размеров кристаллов при усилении перемешивания наблюдается для тех веществ, которые в растворе характеризуются меньшим коэффициентом активности, а твердая соль — большим структурным показателем. Кроме того, значение фц становится больше, а Ата, наоборот, уменьшается. При исследовании влияния перемешивания на кристаллизацию до сих пор уделяли внимание главным образом частоте вращения мешалки, без учета указанных физико-химических характеристик раствора и твердого вещества. Согласно [202], имеется взаимосвязь между линейной скоростью роста кристалла, интенсивностью перемешивания и рядом таких физических характеристик раствора и растущего кристалла, как коэффициент диффузии О, вязкость т), плотность раствора рр и твердой фазы р. . [c.110]

    Стратегия использования различных методов НК основана на том, что мина, внесенная в почву, обладает иными, по сравнению с почвой, физическими свойствами (плотностью, теплоемкостью, электропроводностью и т.п.), а также изменяет локальную структуру почвы. С точки зрения ТК важно, что мины обладают специфическими ТФХ, а процесс их внесения сопровождается образованием воздушной рубашки вокруг мины, изменениями влажностного режима почвы, коэффициента излучения и структуры растительного покрова. Принципы активного и пассивного ТК могут быть применены, если соответствующие идентификационные параметры (температура или коэффициент излучения) обеспечивают сигнал, превышающий уровень помех. [c.353]

    Структура этого уравнения отражает сходство ТПС с двухфазной системой жидкость-твердое тело. Присутствие газовой фазы выражено при помощи коэффициента газосодержания, учитывающего уменьшение объема реактора, занимаемого жидкой фазой. Дополнительный член выражает активное участие газовой фазы в процессе псевдоожижения. Влияние плотности и размера твердых частиц, а также физических свойств жидкости на скорость начала псевдоожижения в ТПС скрывается в величине . [c.115]

    Определение фазы, кинетика массообмена в которой лимитирует процесс массопередачи, является обязательным условием при конструктивном и технологическом оформлении ректификации. В зависимости от контролирующей фазы ректификации по-разному сказывается влияние различных факторов на эффективность разделения и очистки веществ. К их числу в первую очередь следует отнести влияние давления (температуры) на кинетику процесса [54], влияние распределения жидкости по насадке на ВЕП [55], влияние поверхностно-активных веществ [56] и др. Кроме того, расчленение общего коэффициента массопередачи на коэффициенты массоотдачи является необходимым этаном при обобщении экспериментального материала по ректификации различных веществ. При этом совершенно четко выявляется влияние гидродинамических режимов и физических свойств фаз, а также конструктивных элементов аппарата на скорость массоотдачи в каждой фазе. [c.93]

    По физическому смыслу коэффициент проницаемости по отношению к электролитам — это количество вещества, переносимого за единицу времени через единицу поверхности полимерной пленки единичной толщины при активности электролита во внешнем растворе, также равной единице. [c.56]

    Наша задача в этой главе рассмотреть специфические химические и физические факторы, влияющие на растворимость осадка в данном растворителе, В интересах простоты мы не будем учитывать коэффициенты активности. Ориентировочную поправку на влияние активности можно установить путем расчета коэффициентов активности при наибольшей ионной силе из числа встречающихся на опыте и определения соответствующего произведения растворимости. Однако большей частью это влияние оказывается незначительным в сравнении с неопределенностью, обусловленной неучтенными или неизвестными побочными реакциями, а также тем, что произведение растворимости осадка может изменяться в зависимости от кристаллического состояния, степени гидратации и даже от продолжительности существования (старения) осадка. [c.129]


    Применение коэффициентов активности. Нельзя заранее решить, какое из уравнений (Ван-Лаара или Маргулиса) точнее определяет зависимость коэффициента активности от состава для данной бинарной системы затруднительно также связать величины констант А с любым сочетанием физических свойств чистых компонентов. Поэтому необходимо знать методы оценки экс- периментальных данных для бинарных систем.  [c.321]

    Ряд методов, все еще широко используемых для определения состава и констант устойчивости комплексов, были впервые разработаны для случая образования только одного комплекса. Попытки распространения их на более сложные системы не были достаточно успешными, и в лучшем случае эти методы имеют ограниченное применение. Хотя главным образом измерялась оптическая плотность, иногда использовали и другие физические свойства X, а также и коллигативные свойства. Результаты оказываются неудовлетворительными при использовании свойств, которые нельзя адекватно описать уравнением (3-19), или, если невозможно контролировать коэффициенты активности [24]. Теоретические основы этих методов описаны ниже. [c.66]

    Давление пара является физическим свойством компонента и зависит только от температуры. Коэффициент активности является мерой межмолекулярного взаимодействия рассматриваемого компонента с другими компонентами смеси и является функцией ее состава, а также зависит и от температуры. Для идеальных смесей коэффициенты активности компонентов равны единице и для расчета условий равновесия между жидкостью и паром достаточно сведений о давлении паров компонентов. Методы расчета равновесия между жидкостью и паром в неидеальных системах подробно рассматриваются в монографии [30]. [c.12]

    При проектировании сооружений биохимической очистки сточных вод и анализе их работы обычно используют следующие расчетные параметры скорость биологического окисления, стехиометрические коэффициенты для акцепторов электронов, скорость роста и физические свойства биомассы активного ила. Изучение химических изменений во взаимосвязи с биологическими превращениями, происходящими в биореакторе, дает возможность получить достаточно полное представление о работе сооружения. Для анаэробных систем, к которым можно отнести анаэробные фильтры, такие сведения нужны, чтобы обеспечить оптимальное значение pH среды, являющегося основным фактором нормальной работы очистных сооружений. В некоторых аэробных системах, например, в таких, в которых происходит нитрификация, контроль pH среды также необходим для обеспечения оптимальной скорости роста микроорганизмов. Для закрытых очистных сооружений, вошедших в практику в конце 60-х годов, в которых используется чистый кислород (окси-тенк), изучение химических взаимодействий стало необходимым не только для регулирования pH, но и для инженерного расчета газопроводного оборудования. [c.331]

    Эти результаты не противоречат физическому смыслу коэффициента активности, как величины, связанной с силами межионного взаимодействия. Действительно, при бесконечном разбавлении, когда ионы удалены друг от друга на большие расстояния, сил взаимодействия между ними не существует. Раствор ведет себя подобно идеальной системе, концентрация не отличается от активности и коэффициент активности, следовательно, должен быть равен единице. По мере увеличения концентрации ионы сближаются, между ними возникают силы взаимодействия, в первую очередь силы взаимного притяжения, и коэффициент активности уменьшается. При определенных концентрациях наряду с силами притяжения появляются также силы отталкивания. Когда эти силы уравновесятся, что, в известной мере, эквивалентно отсутствию взаимодействия между ионами, коэффициент активности вновь будет равняться единице. В еще более концентрированных растворах силы отталкивания становятся преобладающими, и коэффициент активности принимает значения больше единицы. [c.40]

    Замечательная особенность газовой хроматографии, связанная с возможностью разделения малых количеств сложных смесей соединений, стимулировала расширение исследований по идентификации чрезвычайно малых количеств соединений, выделенных в чистом виде. Слишком часто бывает так, что после дорогостоящей обработки большого количества вещества химик получает на сложной хроматограмме лишь единственный маленький пик, соответствующий интересующему его активному компоненту, и не имеет возможности установить природу или структуру этого компонента. Однако благодаря недавним достижениям в этой области в настоящее время почти ежедневно поступают сообщения о преодолении трудностей подобного рода, а также об идентификации совершенно новых соединений. В связи с этим нельзя переоценить значение спектрометрических методов анализа (инфракрасная спектроскопия, масс-спектрометрия, спектроскопия ядерного магнитного резонанса), которые позволили значительно уменьшить необходимое для анализа количество вещества и увеличить объем получаемой информации о структурах молекул. С большим успехом применяли и методы, связанные с учетом времени удерживания, с использованием специфических детекторов, которые чувствительны к определенным элементам или группам в молекуле, с учетом физических свойств веществ (например, коэффициентов распределения), с образованием производных соединений и использованием других химических реакций, проводимых в комбинированной хроматографической системе до колонки, внутри колонки или после нее. Особенно эффективны комбинации этих методов друг с другом и использование их параллельно с другими формами хроматографии. [c.104]

    Сложность описания нелинейных зависимостей констант фазового и химического равновесий, а также коэффициентов активности в многокомпонентных смесях от состава и температуры приводит часто к существенным оншбкам в расчете равновесий либо к получению физически неверных решений в случае их множественности. В связи с этим рассматривается новых подход к моделированию и расчету фазовых и химических равновесий на основе использования гибридных нейронных сетей. [c.74]

    Коэффициенты и >2 3 приняты равными нулю. Для определения оставшихся 5 параметров была составлена и решена система из 5 уравнений. Найдены следующие компоненты вектора 7,4938 Ад 1 = = 0,5730 А 2 з=6,9570 Ад = = - 0,1503 С = -8,4511. Отвечающая этому набору коэффициентов фазовая диаграмма практически совпадает с исходной, что иллюстрируется рис. 2, на котором сопоставлены выт1исленные и экспериментальные значения и агд в равновесной органической фазе в зависимости от моляльности AgNOз в водной фазе. Найденная функция правильно описывает также ход изолиний активности воды в гомогенном поле системы. Однако решение обратной задачи не является достаточно определенным, так как относительно широкой совокупности векторов [А ] отвечают близкие фазовые диаграммы. Тем не менее, приведенные значения параметров представляются физически осмысленными. Так, значения А д и Ад соответствуют положи- [c.82]

    Применяемые катализаторы пористы и обладают большой адсорбционной способностью. Их свойства сильно зависят от способа получения. Обсуждение значения физической структуры катализатора, а также соответствующая математическая обработка содержатся в работе Уилера (Wheeler [288, 289]). Два катализатора с одинаковым химическим составом, но с разной величиной и с разным расположением пор могут отличаться друг от друга по активности, избирательности, температурным коэффициентам скоростей реакций и по устойчивости к действию каталитических ядов [290, 291]. Хотя химические свойства и каталитическое действие поверхности могут не зависеть от размера пор, мелкие поры по-разному влияют на процесс крекинга в зависимости от того, каким образом проникают молекулы углеводородов в глубину пор, как они удаляются и в течение какого времени они проходят через поры катализатора. [c.340]

    Подпрограмма INPUT обеспечивает ввод всей необходимой информации по стандартному формату. Сюда входят не только число и название компонентов, но и ряд их физических свойств, таких, как критические параметры, ацентрический фактор, константы, характеризующие температурную зависимость давления паров чистых компонентов, мольные объемы жидкости. Далее, в соответствии с уравнением для расчета коэффициентов активности должны быть введены параметры, характеризующие бинарное взаимодействие в жидкой фазе. Для неконденсирующихся компонентов исходными данными являются также константы Генри и парциальные мольные объемы. При расчете данной смеси к подпрограмме INPUT обращаются только однажды, независимо от того, при каких условиях будет производиться расчет. Следует подчеркнуть, однако, что для каждого конкретного случая такие независимые переменные, как давление, температура и составы, вводятся основной программой, а не подпрограммой ввода. Подпрограмма ввода оформлена отдельным блоком, исходя из того, что необходимость в ней отпадает в том случае, если предлагаемая методика расчета равновесия будет использоваться в готовых программах расчета ректификационных колонн, в которых уже предусмотрен ввод всех необходимых данных. [c.58]

    Здесь, как правило, упускается из виду то фундаментальное положение для действия деполимераз, что состав продуктов действия ферментов на поли- или олигосахариды может сильно варьироваться (даже и без проскальзывания субстрата вдоль активного центра) и отражает в первую очередь значения кинетических параметров Кт, Ут или их отношение) действия фермента на индивидуальные олигосахариды (как исходные, так и образующиеся в процессе деструкции субстрата). Другая (также приемлемая, хотя и более формализованная) точка зрения базируется на том, что распределение продуктов реакции однозначно задается количеством сайтов в активном центре фермента, показателями их сродства к мономерным остаткам субстрата и положением каталитического участка, а также значениями гидролитического коэффициента при различной степени заполнения активного центра и различной степени полимеризации исходного субстрата. На наш взгляд, набор этих параметров обеспечивает столь гибкие возможности для объяснения практически любых распределений продуктов (промежуточных и конечных) в реакционной системе, что не нуждается в введении дополнительных концепций, к тому же с неясным физическим смыслом. [c.102]

    В растворах может протекать разрушение структуры растворителя под действием растворенных частиц или связывание растворенных частиц электролитов с молекулами растворителя (воды) в сольваты (гидраты). О том, что такие процессы начинают заметно проявляться, можно судить по отклонению коэффициента активности от 1 при некоторых определенных концентрациях вблизи границ полной сольватации ГПС (или гидратации — ГПГ). В общем случае сольватационные процессы [135] делят на физические, присущие всем системам, и на химические, обусловленные свойствами данной конкретной системы. Степень протекания физических сольватацион-уых процессов зависит от свойств растворителя и таких свойств растворенных частиц, как их заряд, дипольный момент, масса, магнитный момент, а также от кинетических параметров — скорости и момента количества движения. [c.91]

    По-возможности откорректированы также неточности, встречающиеся иногда в части аналитической литературы при использонании представлений физической и координационной химии, например, при описании выбора стандартного состояния, активности и коэффициентов активности, констант равновесия, электродных потенциалов, в номенклатуре комплексных соединений и т. д. [c.4]

    Заметим, что в аналитической химии практически всегда используется такое понятие активности, какое было охарактеризовано выше, а при расчете коэффициента активности концентрации выражаются в моль/л. Определенная подобным образом активность называется молярной активностью. Так поступают в основном в теории растворов. В физической химии используют также безразмерные абсолютную и относительную активности вещества. Абсо потная активность А. выражается через химический потенциал ц и определягтся как X = ехр[ц/(ЛГ)], где К — универсальная газовая постоянная, Т — абсолютная температура. Относительная активность определяетс я как число, равное отношению абсолютной активности в заданном состоянии к абсолютной активности в стандартном состоянии при той же температуре. [c.66]

    По физическому смыслу коэффициент проницаемости по отношению к электролитам—это количество вещества, переносимого за единицу времени через единичную поверхность полимерной пленки единичной толщины при активности электролита во внешнем растворе, также равной единице. Размерность коэффициента проницаемости совпадает с размерностью коэффициента диффузии, так как константа распределения — величина безразмерная. Принимаетсячто растворимость солей в гидрофильных полимерах всецело связана с наличием в них воды, поэтому одной из важнейших характеристик системы является объемная доля содержащейся в полимере воды. Существенное значение имеет также характер распределения воды в полимере, зависящий оТ концентрации воды и природы полимера Образование роев-скоп- [c.218]

    Из выражения (5.19) следует важный качественный вывод, что скорость нормального распространения пламепи зависит от физических свойств смеси, характеризуемых коэффициентом температуропроводности, и химической активности смеси, характеризуемой скоростью химической реакции (в данном случае величина 1/тхии пропорциональна средней скорости химической реакции при температуре горения). Из выражения (5.19) также следует, что нормальная скорость распространения пламени может косвенно характеризовать закономерности химических превращений, происходящих в зоне горения. [c.94]

    В настоящее время наиболее широко используются проволочные тензосопротивления, а также фольговые и пленочные, представляющие собой решетку, укрепленную с помощью клея на специальной подложке. К концам решетки припаяны или приварены выводы. Тензозлемент приклеен к упругому элементу датчика. Деформация упругого элемента вызывает деформацию решетки тензодатчика, в результате чего изменяются геометрические размеры и физические свойства решетки. Основными характеристиками тензоэлемента являются активное сопротивление, база, длина решетки и коэффициент тензочувствительности. [c.91]

    Поскольку последнее слагаемое уравнения (У.34) как и коэффициент активности отдельных ионов, физически неопределенно и не поддается измерению, авторами был изучен характер влияния соли на величину ( нр8- Усг)Лр82- (здесь Усг коэффициент активности в буферном растворе, в котором отсутствует С1 ). Слагаемое коэффициентов активности было получено из измерений э. д. с. водородно-хлорсеребряных элементов, содержащих соль в рас- творе буфера, а также и свободных от нее  [c.107]

    Автором совместно с В. М. Софроновым был предложен [153] графо-аналитический метод расчета фазового равновесия в трехкомпонентных системах по данным для бинарных систем, основанный на использовании уравнения (V-78). Легко видеть, что отношение коэффициентов активности двух компонентов является функцией относительного содержания в тройном растворе этих компонентов, а также концентрации третьего компонента. Если == onst, то значение Ig (71/72) зависит только от относительной концентрации комнонентов 1 и 2 (ж и Жз = i—x . Это обстоятельство является следствием различия взаимодействия однородных и разнородных молекул компонентов 1 и 2. Чем меньше это различие, тем меньше величина Ig (71/72) зависит от х[. Для системы с любой степенью неидеальности при > 1 Ig (71/72) стремится к некоторой постоянной величине, не зависящей от х[. Физический смысл этого положения заключается в том, что по мере увеличения х уменьшается влияние межмолекулярного взаимодействия компонентов 1 и 2 на их поведение в тройном растворе. С увеличением х величина (Ф д—Ф2з)/(1—а з) непрерывно изменяется и приобретает некоторое предельное значение при Хз — 1, которое выражает максимально возможное изменение отношения коэффициентов активности первого и второго компонентов под действием третьего. Это предельное значение величины (Ф13—Ф2з)/(1—Хз) может быть определено графической экстраполяцией. [c.347]

    Изменения активности некоторых белков коррелируются, как правило, с изменениями ряда физических свойств. Так, изменение формы белковой молекулы можно установить по изменению некоторых гидродинамических характеристик (например, коэффициента трения, инкремента вязкости), по изменению светорассеяния, поверхностных свойств, диффузии через полупроницаемые мембраны и скорости седиментации [90]. Изменения термодинамических свойств (энтальпии и энтропии), объема, растворимости, оптического вращения, поглощения в инфракрасной области, дифракции электронов, а также некоторые другие характеристики, приведенные Каузманом [90], используются для Оцейки изменений формы белковых молекул. Большинство этих измерений было проведено па макромолекулах неизвестной структуры, для которых не была установлена последовательность аминокислотных остатков. В настоящее время благодаря усовершенствованию методов деградации белков, аналитического определения Концевых групп, методов разделения и идентификации отдельных фрагментов можно успешно изучать белки с молекулярным весом порядка 20 ООО. Хотя эта работа еще не достигла молекулярного уровня, тем не менее она дает возможность лучше использовать значения физических констант белковой молекулы известной структуры для объяснения механизма взаимодействия фермента с субстратом. Структура такого белка, как фиброин (белковое вещество натурального шелка), в настоящее время хорошо изучена благодаря сравнению рентгенограммы и ИК-спектров нативного волокна с рентгенограммами [35, 38, 108, 140] и ИК-спектрами [168] небольших фрагментов белка известной структуры, полученных при деградации, а также синтетитегаихпмшнептидо [c.386]

    В теории Дебая—Хюккеля рассматривается лишь кулоновское взаимодействие между ионами. Даже при таком узком подходе физическим свойствам типа диэлектрической проницаемости приписываются значения, свойственные чистому растворителю. При более высоких концентрациях становятся важными взаимодействия между ионами и растворителем, а также силы межионного крроткодействия. Нельзя также пренебрегать процессами сольватации и ассоциации. Эти эффекты дают вклад в коэффициент активности, пропорциональный концентрации [c.103]

    Активность представляет собой ту эффективную концентрацию, которой должна бы была обладать реальная система, чтобы производить такие же действия, как и идеальная. Теория активности пытается сохранить обычные формулировки термодинамических соотношений при помощи обычного вида термодинамр ческр х потенциалов, вводя понятие об эффективной активности, зависящей от окружающих условий и концентраций. Однако чистая термодинамика бессильна и в этом случае определить вид функциональной зависимости 7 = 7(с). К этой цели можно идти двумя путями во-первых, можно экспериментально изучать законы, которым подчиняются изменения коэффициента активности при изменении концентрации, температуры и т. д. Подстановка этих эмпирических зависимостей в термодинамические формулы дает возможность вывести ряд новых соотношений и таким образом построить более или менее полную термодинамику реальных систем данного типа. Второй путь заключается в попытке раскрытия физического смысла коэффициентов активности при помощи методов, статистР ческой механики, путем нахождения закономерностей, которым подчиняется эта величина. Первым путем шли Льюис, Бренстед, их ученики и последователи. Их работы показали, что теория активности дает чрезвычайно удобное средство для обработки экспериментальных данных и нахождения новых эмпирическрж закономерностей. Полученные ими результаты показывают также, что коэффициент активности является реальной физической величиной, значение которой не зависит от метода определения и представляет собой функцию (в случае разбавленных растворов очень простую) температуры и концентрации. [c.157]

    Особенно эффективны ЧЭДТ при исследовании физической кинетики. Так, нам удалось исследовать [21] подвижность адсорбированных на гидроксилированном кремнеземе молекул воды и влияние на эту величину подвижности гидроксилов. Метод ЧЭДТ позволил также проверить правильность полученных ранее [22] приближенных формул для вычисления коэффициента диффузии, удобных и для МК были установлены также [23] немонотонность коэффициента диффузии и константы Генри адсорбированных в микропорах активного угля молекул воды в зависимости от ширины микропор. [c.86]

    Таким образом, при использовании концепции идеального ассоциированного раствора также можно получить термодинамические константы экстракции, если учесть коэффициенты активности компонентов водной фазы. Обычно помимо мономера допускается существование еще двух-трех ассоциатов, причем в одном из них значение р — д Ю. Существование таких крупных частиц в растворе физически не обосновано и вызывает сомнение. Характерно, что рассматривается образование лишь негидрати-рованных ассоциатов, хотя содержание воды в органической фазе растет с ростом концентрации кислоты. Тем самым принимается, что распределение воды не влияет на экстракционное равновесие. [c.114]

    Физические модели, в которых коэффициенты активности выражаются как функции от состава фаз, по существу являются моделями многопараметрическими. Многопараметричность моделей обусловлена необходимостью учитывать вклады парных, тройных и т. д. взаимодействий в значение избыточной свободной энергии многокомпонентной системы. При увеличении числа компонентов в системе резко возрастают трудности экспериментального исследования фазового равновесия вследствие возрастающей сложности определения состава равновесных фаз, а также из-за резкого увеличения объема эксперимента, необходимого для определения эмпирических констант. Это стимулировало разработку методов расчета условий фазового равновесия в многокомпонентных системах по данным о равновесии для более простых систем или по неполным экспериментальным данным. Общим для всех этих методов является то, что они берут начало из описания равновесия бинарных смесей и экстраполируются затем на многокомпонентные системы. [c.369]

    Обнаружение функциональных групп, которое рассматривалось в предыдущей главе, известно под названием анализа органических соединений по функциональным группировкам—название исключительно меткое . Наряду с этим методом давно известен элементарный органический анализ, т. е. качественное и количественное определение элементов, из которых состоит исследуемое вещество. Кроме того, существуют еще и методы идентификации индивидуальных органических соединений, в которых используются свойства всей молекулы. Эти методы основаны на определении физических свойств, связанных со структурой и размерами молекулы органических соединений. К таким свойствам относятся температуры плавления, температуры кипения, удельный вес, а также оптические свойства различных соединений. Определяют температуру плавления или кипения исследуемого вещества или готовят его смеси с заранее известными веществами и наблюдают за температурами, присущими, например, эвтектическим смесям. В последнее время этот метод стал применяться для исследования микроколичеств органических веществ и их смесей, что является определенным шагом вперед. Полезность такого метода со временем, несомненно, станет еще более очевидной. Для эбулиоскопи-ческого или криосконического методов определения молекулярного веса используют расплавы или растворы исследуемых веществ в различных растворителях. Для подобных определений можно использовать производные исследуемых веществ, которые в некоторых случаях обладают более характерными свойствами. Оптическими методами определяют коэффициенты преломления, оптическую активность, спектры поглощения в ультрафиолетовой и инфракрасной области спектра, спектры комбинационного рассеяния, форму и оптические свойства кристаллов и др. [c.426]


Смотреть страницы где упоминается термин также Коэффициент физической активности: [c.264]    [c.74]    [c.82]    [c.90]    [c.28]    [c.6]    [c.278]    [c.203]   
Биология Том3 Изд3 (2004) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Активности коэффициент также Активность



© 2025 chem21.info Реклама на сайте