Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические процессы, протекающие на границе металл— раствор

    Механизм процесса саморазряда может быть различным. Если реакция лимитируется стадией разряда ионов, то после выключения тока последние продолжают разряжаться через двойной слой до тех пор, пока потенциал не достигнет равновесного значения. Для идеально поляризуемого электрода такой механизм невозможен [27]. В этом случае спад потенциала после размыкания цепи будет происходить вследствие релаксации пространственного заряда в двойном слое на границе металл — раствор это будет иметь место при наличии соответствующего пути для электронов и ионов, в противном случае заряд в двойном слое сохранится. Если реакция протекает по механизму электрохимической десорбции, например [c.410]


    В тех случаях, когда на электроде протекает необратимый электрохимический процесс, например коррозия, измерения емкости двойного электрического слоя осложняются. Эту емкость можно определить но измерениям импеданса путем пересчета емкости и сопротивления на параллельную схему [32]. В случае, если электрохимический процесс сопровождается адсорбцией или протекает в условиях, когда на электроде имеются адсорбированные частицы ПАВ, интерпретация измерений импеданса еще более осложняется. Это связано с тем, что последовательное включение емкости и сопротивления, т. е. эквивалентная схема, заложенная в устройствах для измерения импеданса (например, мост переменного тока для электрохимических измерений Р-568), уже не отвечает эквивалентной схеме, моделирующей границу металл — раствор. При протекании фарадеевского процесса эта эквивалентная схема должна предусматривать параллельное включение емкости и сопротивления. Еще более усложняется эквивалентная схема, когда электродный процесс протекает через адсорбционно-десорбционные стадии. [c.32]

    Необходимой предпосылкой для понимания механизма электрохимических процессов является знание топографии той части пространства, в которой они протекают, т. е. границы металл — раствор, и, в первую очередь, строения двойного электрического слоя на этой гра- [c.12]

    Электрохимические реакции протекают на границе электрод — раствор, а потому следовало бы сопоставлять энергию активации и скорость электродного процесса не с работой выхода электрона из металла в вакуум, а с работой выхода электрона из металла в раствор при заданном электродном потенциале Е. В связи с этим рассмотрим зависимость величины от природы металла. [c.270]

    Для дальнейшего развития представлений о строении границы раздела электрод — ионная система и о кинетике процессов на этой границе необходимо усовершенствование существующих и разработка новых экспериментальных методов, более широкое применение современной электронно-вычислительной техники. Уже достигнут существенный прогресс в автоматизации электрохимических измерений и развитии разнообразных импульсных методов, позволяющих, в частности, изучать явления, которые протекают за времена порядка 10 с и менее (импульсные гальваностатические методы, метод высокочастотной рефлектометрии и др.). Далеко не исчерпаны возможности метода фотоэмиссии электронов из металла в раствор. Большой интерес представляют оптические методы изучения состояния поверхности электродов, а также воздействие на границу электрод — раствор лазерными импульсами различной длительности и частоты. Ценным дополнением к существующим методам электрохимической кинетики может служить метод изучения фарадеевских шумов — чрезвычайно слабых флуктуаций потенциала или тока, сопровождающих протекание всех электродных процессов и вызванных дискретным характером переноса электронов через границу фаз, дискретностью диффузионного потока и т. д. Использование электродов в виде очень тонких проволок или пленок, напыленных в вакууме на инертные подложки, позволяет делать выводы об адсорбционных явлениях по изменению сопротивления этих электродов. Для изучения состояния поверхности электродов и кинетики электродных процессов еще недостаточно используются такие мощные современные методы, как ЯМР, ЭПР, дифракция медленных электронов и т. п. Новые методы предварительно проверяются на ртутном электроде, на котором строение двойного слоя и кинетика многих электродных процессов исследованы с количественной стороны. По-прежнему актуальна проблема разработки методов очистки исследуемых растворов от посторонних примесей и приготовления чистых электродных поверхностей. [c.391]


    Любая электрохимическая реакция представляет собой сложный многостадийный процесс. В самом деле, реагирующее вещество из объема раствора должно вначале подойти к поверхности электрода (стадия массопереноса)f затем войти в двойной электрический слой (стадия адсорбции), а после непосредственно электрохимической стадии переноса заряда через границу электрод/раствор (стадия разряда— ионизации) продукты реакции должны десорбироваться с поверхности электрода и уйти в объем раствора (стадии десорбции и массопереноса). Во многих случаях электрохимическую реакцию сопровождают стадии химического превращения реагирующих веществ и (или) продуктов реакции, которые могут протекать как в объеме раствора вблизи электрода (гомогенные химические стадии), так и на поверхности электрода в адсорбционном слое (гетерогенные химические стадии). Кроме того, если в электрохимической реакции участвуют твердые или газообразные вещества, то процесс осложняется стадиями образования или разрушения новой фазы (например, процессы электроосаждения и электрорастворения металлов, электролиз воды и др.). [c.212]

    Большое число реакций в газах, растворах, на границах раздела (металл — раствор, раствор — раствор и др.) протекает при участии ионов. К ним относятся плазмохимические и электрохимические процессы, различные ионные реакции в растворах, процессы ионного обмена, экстракции и т. п.  [c.198]

    Если через электрохимическую цепь протекает ток, то напряжение на концах цепи не равно ее э. д. с. В электрохимии о скорости электрохимических реакций на границе фаз металл —раствор судят по потенциалу электрода. Поляризация любого электрода представляет собой изменение гальвани-потенциала ф, вызванное прохождением электрического тока. Затрачиваемый при этом электрический ток делится на фарадеевский (образование продуктов электрохимической реакции) и ток заряжания (образование двойного электрического слоя). Если плотность заряда двойного слоя не изменяется во времени, то величина тока, проходящего через электрохимическую цепь, определяет собой скорость фарадеевских процессов на электродах. Соотношение между заданной плотностью тока 1=1/8 и величиной Дф=ф — фр называют поляризационной характеристикой процесса. [c.54]

    При приложении к электродам постоянного напряжения V на границе металл-электролит образуется двойной электрический слой, в пределах которого протекают основные электрохимические процессы. Данный слой рассматривают как плоский конденсатор, обкладками которого являются поверхность электрода и слой ионов, расположенных вблизи поверхности электрода и имеющих противоположный знак заряда. По мере прохождения тока одного направления ионы, соприкасаясь с электродами, разряжаются и выделяются на них в виде атомов. Это приводит к постоянному уменьшению силы тока через раствор, что рассматривается как заряд конденсатора, образованного двойными электрическими слоями. Описанное негативное явление называют поляризацией электродов. Оно приводит к нелинейности вольт-амперной характеристики ячейки (рис. 6.6, б). [c.514]

    При погружении металла в раствор соли этого же металла возможен переход его в виде ионов с поверхности в раствор или, наоборот, переход ионов металла, находящихся в растворе, на поверхность металла. На границе раздела фаз металл — раствор электролита также протекают электрохимические реакции (обмен ионов), в результате которых поверхность электрода приобретает заряд. Знак заряда зависит от того, какой из указанных процессов происходит преимущественно. Ионы раствора имеют заряд, по знаку противоположный заряду металла. Практически бывает так, что одни металлы, более активные, обычно заряжаются в растворе своих солей отрицательно, другие, менее активные, т. е. обладающие малой способностью посылать свои ионы в раствор (например, платина, серебро, золото и другие)положительно по отношению к раствору. Заряд иона относительно велик и поэтому при переходе даже очень малого числа ионов (порядка Ю —10- ° г) между металлом и раствором при равновесии возникает значительная, поддающаяся измерению, разность потенциалов. [c.14]

    При погружении металла в раствор, содержащий его ионы, возможны процесс перехода металла с поверхности в виде ионов в раствор и обратный процесс перехода ионов металла, находящихся в растворе, на поверхность металла. Таким образом, на границе раздела металл— раствор протекают электрохимические реакции, в результате которых поверхность электрода приобретает заряд. Знак этого заряда будет зависеть от того, какой из указанных процессов будет протекать преимущественно. [c.30]


    Согласно представлениям Феттера в электролите, свободном от окислителей , скорость коррозии в стационарных условиях может определяться плотностью анодного коррозионного тока к, который должен протекать через металл для поддержания его в пассивном состоянии. Эта плотность анодного тока к вызывает образование слоя с той же скоростью, с какой он растворяется. В соответствии с данными рис. 316, процесс можно представить следующим образом некоторое количество ионов металла, которые, двигаясь через пассивирующий слой , подходят к фазовой границе окисел/электролит, переходят далее через фазовую границу в электролит (электрохимическая реакция [c.803]

    В предыдущих разделах был выяснен физический смысл электродного потенциала, показана его связь со скачками потенциала на границах раздела фаз, рассмотрены условия возникновения скачка потенциала на границе электрод — электролит (основной составной части электродного потенциала) и разобрана зависимость его величины от состава раствора. При обсуждении механизма возникновения скачка потенциала на границе электрод — электролит было отмечено, что главной причиной его появления является обмен ионами между металлом электрода и раствором. Этот процесс протекает вначале (т. е. в момент создания контакта между металлом и раствором) в неэквивалентных количествах, что приводит к появлению зарядов разного знака по обе стороны границы раздела фаз и к появлению двойного электрического слоя. Однако ни структура последнего, ни распределение зарядов по обе стороны межфазной границы там не рассматривались. Строение двойного электрического слоя не имеет принципиального значения для величины равновесного электродного потенциала, который определяется изменением свободной энергии соответствующей электрохимической реакции. В то же время строение двойного электрического слоя играет важную роль в кинетике электродных процессов, включая и кинетику обмена ионами в равновесных условиях, определяя интенсивность этого обмена (величину тока обмена Г). Теория строения двойного электрического слоя служит поэтому как бы переходным звеном между электродным равновесием и электродной кинетикой. [c.227]

    Электрохимическая коррозия представляет собой взаимодействие металла с раствором электролита, при котором ионизация атомов металла и восстановление окислительного компонента протекают не в одном акте, а их скорости зависят от величины электродного потенциала металла. При контакте металла с электролитом на границе раздела фаз протекает ряд сложных процессов. Электрохимическая коррозия — результат двух независимых, но связанных между собой электрическим балансом, электрохимических процессов анодного с переходом катионов металла в раствор и катодного, при которо.м освобождающиеся электроны связываются окислителем (рнс. 23.1). Электрохимическую коррозию можно замедлить, вызывая [c.279]

    Электроды — проводники, обладающие электронной проводимостью и контактирующие с раствором электролита. С помощью электродов осуществляют подвод (или отвод) электроэнергии от электрохимического устройства. В зависимости от проводимого процесса электроды имеют различное назначение. В химических источниках тока материал электрода, как правило, принимает участие в токообразующей реакции, растворяясь или изменяя свой химический состав. При получении химических продуктов в большинстве случаев электроды в реакции не участвуют, а служат только для подведения электричества к границе электрод— раствор, где протекает электрохимическая реакция. В гальванотехнике и гидроэлектрометаллургии на отрицательно заряженном электроде — катоде происходит выделение металла. В этих процессах, как правило, используются растворимые аноды, материал которых обогащает раствор ионами того металла, который выделяется на катоде. В том случае, когда необходимы нерастворимые электроды, кроме химической устойчивости в данной среде они должны обладать и другими свойствами, например, каталитической активностью, которая позволяет с высокой селективностью проводить основную электрохимическую реакцию достаточной механической прочностью. Материал, из которого изготовляется электрод, должен быть дешев и доступен. Немаловажное значение имеет стабильность состояния поверхности электрода во времени. [c.10]

    На большинстве обычных электродов при пропускании тока через границу раздела электрод — раствор протекают электрохимические процессы окисления или восстановления. Так, на электродах из металлов, погруженных в растворы солей, содержащих катионы металла, идут процессы выделения или растворения металла электрода. Потенциал таких электродов при прохождении через них постоянного тока практически не меняется, а ток целиком расходуется на электрохимические реакции. Электроды, потенциал которых при пропускании через них постоянного тока практически не меняется, называются неполяризуемыми. К неполяризуемым электродам относятся, в частности, медь, серебро, кадмий, ртуть и другие металлы в растворе собственной соли. [c.101]

    При соприкосновении металла с электролитом происходит электрохимическое его растворение, т. е. переход положительных ионов металла в электролит. По мере накопления ионов металла в растворе начинается обратная реакция, обусловленная образованием отрицательно заряженной поверхности на паяемом металле по мере ухода с нее положительных ионов в электролит. При этом возникает разность потенциалов между металлом и электролитом, которая препятствует дальнейшему растворению металла. Такой двойной слой образуется практически мгновенно. Когда взаимодействие отрицательно заряженного металла и положительных ионов в электролите станет таким, что процесс ионизации (растворения) прекратится, наступит равновесие. Тем не менее, образование равновесного состояния на границе металл — электролит не означает прекращения процесса ионизации при нем скорости реакции ионизации и обратного процесса лишь равны. При этом устанавливается равновесный потенциал между слоем свободных зарядов на поверхности металла и слоем заряженных ионов в растворе. Если при этом не протекает других реакций на границе металл — электролит, скачок равновесного потенциала зависит от концентрации ионов и температуры, определяется по уравнению Нернста (для обычной реакции элемента)  [c.166]

    Характер и причины коррозии теплообменных аппаратов, трубопроводов и сооружений. Известно, что коррозионный процесс протекает на границе двух фаз металл — окружающая среда, т. е. является гетерогенным (неоднородным) процессом взаимодействия жидкой или газообразной среды (или их окислительных компонентов) с металлом. Причины и характеры коррозионных процессов весьма разнообразны атмосферная и почвенная электрохимическая коррозия электрохимическая коррозия при контакте металлов с разными значениями электрохимического потенциала химическая коррозия о жидких (высокосернистые нефти) и газовых средах электрокоррозия объектов, связанных с электроустановками большой мощности электрохимическая коррозия в растворах кислот, щелочей, мицеллярных растворов биокоррозия в присутствии продуктов жизнедеятельности сульфатвосстанавливающих бактерий. [c.165]

    Одним из основных факторов, влияющих на скорость восстановления ионов металлов из водных растворов, является состояние поверхности электрода. Решающее значение состояния поверхности электрода обусловлено тем, что электрохимические процессы, как правило, протекают на границе фаз электрод — раствор. Естественно, что поверхностные явления, в частности адсорбция различного рода частиц на поверхности электрода и степень ее заполнения, должны играть существенную роль при протекании электрохимических реакций. Степень заполнения поверхности электрода чужеродными частицами зависит как от природы осаждающегося металла, так и от природы адсорбирующихся частиц. Поскольку в процессе электроосаждения металлов происходит непрерывное обновление поверхности электрода новыми слоями осаждаемого металла, то естественно, что при этом существенное значение приобретает соотношение скоростей осаждения металла и адсорбции чужеродных частиц. Последние влияют не только на кинетику восстановления ионов металла, но также и на структуру электролитического осадка. Таким образом, адсорбционные явления во всех случаях оказывают существенное влияние на механизм электроосаждения металлов. [c.7]

    Переход электрона из металла на находящуюся в растворе частицу илн обратный процесс — переход электрона с частицы на электрод — протекает на границе фаз и зависит от того, как построена эта граница. Поэтому знание строения границы раздела между электродом п раствором имеет очень большое значение при изучении кинетики и механизма электрохимических реакций. [c.142]

    Как известно, растворы электролитов являются проводниками второго рода. Электрический ток в них переносится ионами, образуемыми в результате диссоциации раствора электролита. На границе с проводниками первого рода (металлами), где носителями являются электроны, характер проводимости меняется. Здесь протекает электрохимическая реакция с участием ионов и электронов, которая заключается в разряде заряженной частицы или ионизации незаряженной частицы (электродный процесс). [c.99]

    Следуя Фрумкину, будем считать, что процесс разложения амальгам состоит из сопряженных между собой электрохимических реакций, которые связаны только общим потенциалом амальгамы и протекают в остальном независимо друг от друга. Первая реакция — это обратимая реакция ионизации металла, растворенного в ртути, описываемая уравнение (4.2) С нею сопряжены реакции выделения водорода и восстановления органического соединения. Примем, что потенциал разлагающейся амальгамы в любой момент времени будет очень близок к равновесному потенциалу амальгамного электрода, определяемому по уравнению (4.5). Условимся также, что перемешивание амальгамы и раствора настолько интенсивно, что замедленной стадией является стадия самого электрохимического акта восстановления, а не диффузия металла амальгамы или восстанавливаемого вещества к границе раздела амальгама — раствор. Далее учтем, что в общем случае скорость разложения амальгамы будет определяться суммой скоростей двух процессов — процесса выделения водорода из исследуемого раствора при данном потенциале амальгамы и процесса восстановления органического соединения из того же раствора при том же потенциале, поэтому общий ток распределяется между двумя частными реакциями — выделением водорода и восстановлением органического вещества 2  [c.127]

    В Советском Союзе создана большая школа электрохимиков, которая занимает одно из ведущих мест в мировой науке. Предметом исследования ученых явились процессы, протекающие на границе фаз. Эти проблемы занимали исследователей еще в прошлом столетии при изучении коллоидных систем, а также электрохимических процессов, протекающих на границе металл — раствор. Однако наблюдения над явлениями, происходящими на границе фаз, в то время не были объединены в самостоятельную научную дисциплину, имелись только разрозненные сведения по равновесным потенциалам, которые давали возможность установить лишь направление электродных процессов. Нерешенным оставался основной вопрос о механизме этих процессов. Из работ советской электрохимической школы стало ясно, что суждение о механизме электродных реакций невозможно без изучения строения поверхностного слоя, в котором эти реакции протекают. Основоположник этой школы А. Н. Фрумкин впервые установил, что наиболее полное представление о строении двойного слоя на поверхности металла, погруженного в раствор, можно получить, наблюдая электрокапиллярные явления. Позднее С. В. Кар-пачев и др., исследуя характер электрокапиллярной кривой на ртути, галлии и амальгамах в водных растворах, а также на многих легкоплавких металлах в расплавах показали, что таким образом можно вывести суждение о наличии и величине заряда и тем самым получить представление о строении поверхностного слоя при разных условиях. [c.9]

    А. И. Шултин показал термодинамическую вероятность растворения чистых металлов и сплавов без участия микропар и подтвердил, что коррозия может происходить и на совершенно гомогенной в электрохимическом отношении поверхности. В этом случае процессы ионизации и разряда протекают одновременно на одном и том же участке поверхности при каком-то значении потенциала, устанавливающегося на границе металл — раствор его соли. [c.461]

    При погружении в раствор электролита металлического электрода на границе раздела электрод—электролит возникает двойной электрический слой, образованный электрическими зарядами в металле и ионами противоположного знака, расположенными в электролите у поверхности металла. Электрохимические процессы протекают в приэлактродном слое на границе раздела электрод электролит. [c.10]

    Предположим, что катодные и анодные процессы являются сопряженными, т.е. протекают одновременно, но статистически независимо друг от друга, со скоростями, которые определяются согласно законам электрохимической кинетики общим значением потенциала на границе металл — раствор, составом раствора и условиями диффузии к поверхности электрода. Это предположение позволит нам, при учете того обстоятельства, что в отсутствии внешнего тока суммы скоростей всех катодных и всех анодных процессов равны между собой, получить количественные выражения как для скорости итоговой реакции, непосредственно наблюдаемой на опыте, так и для величины потенциала реагирующего металла. Я приведу два примера приложения этого способа трактовки растворения металлов. Зная равновесные потенциалы амальгам и кинетику выделения водорода из1целочных растворов на ртути, согласно теории замедленного разряда онреде, шемую уравнением [c.40]

    Вместе с тем, поскольку электродные реакции протекают на границе электрод — раствор (или расплав), представляет интерес вопрос о работе выхода электронов из металла в раствор (или расплав) при заданном электродном потенциале. За пределами двойного слоя потенциал в любой точке раствора (или расплава) одинаков, следовательно, одинаков и электрохимический потенциал электрона. Поэтому работа выхода электрона в раствор (или расплав) электролита при заданном электродном потенциале не зависит от природы металла. Этот вывод нашел прямое экспериментальное подтверждение в опытах по фотоэмиссии электронов из металла в раствор электролита, а также в опытах по катодной генерации сольватированных электронов в апротонных растворителях. На рис. VIII.24 представлены катодные поляризационные кривые в гексаметилфосфортриамиде на различных металлах (Л, И. Кришталик, Н. М. Алпатова). Нижняя группа прямых характеризует зависящее от природы металла катодное выделение водорода в подкисленных растворах солей. Верхняя прямая отвечает процессу генерации сольватированных электронов на различных катодах. Практическое совпадение прямых для разных металлов демонстрирует независимость работы выхода электронов из металла в раствор от природы металла. [c.240]

    Принципиально для конструирования гальванического элемента и яревращения убыли изобарно-изотермического потенциала — ДОг лри электрохимическом процессе в электрическую форму энергии можно использовать любую окислительно-восстановительную реакцию ионного типа. Рассмотрим работу никелево-цинкового (N1—2п) гальванического элемента (см. рис. 27). Электрический ток в нем возникает вследствие окислительного процесса, протекающего на границе Zn — раствор, содержащий ион Zп + (на цинковом электроде), и восстановительного на границе N1 — раствор, содержащий ионы N 2+ (на никелевом электроде). Цинковая и никелевая пластинки, опущенные в растворы своих солей, посылают в раствор разное количество ионов. Прн установившемся равновесии разность потенциалов на границах 2п — раствор и N1 — раствор по величине ле равна одна другой. Поверхность цинка имеет больший отрицательный заряд, чем поверхность никеля. Цинк обладает большей способностью посылать свои ионы в раствор, чем никель. При процессе 2п = 2п +-Ь2е —ЛОт больше, чем —АСг при процессе N1 = = Ы12+-(-2( . Когда цинковую пластинку с никелевой соединяют -проводником первого рода — медью, электроны с цинка перетекают а никель. Равновесие двойного электрического слоя на никелевом электроде нарушается, электродный процесс принимает обратное направление, иоиы N1 + из раствора переходят на никелевую пластинку. Нарушенное равновесие восстанавливается за счет того, что в раствор поступает новая порция ионов Zn + и разряжается эквивалентное число ионов N1 +. Снова возникает разное количество зарядов на цинковой и никелевой пластинках и переход электронов и т. д. В итоге на цинковом электроде протекает окислительный процесс Zп = Zп2+-t-2e(Zn). Электроны от цинковой пластинки переходят к никелевой 2e(Zn)- 2e(Ni). На никелевом электроде идет восстановительный процесс N +- -26(Ni) = N1. Запись пе(Ме) указывает, что электроны остаются в металле. [c.124]

    Контакт с электролитом в качестве генератора ЭДС. Из предыдущих рассуждений следует, что на границе раздела полупроводника или металла с электролитом происходит реакция окисления погруженного в раствор кристалла. Такая реакция, как мы уже видели, может протекать электрохимическим путем и состоять из двух стадий перехода электронов и перехода положительно заряженных ионов из кристалла в раствор. Отсюда следует, что через контакт полупроводника или металла с электролитом протекают два тока электронный и ионный. При стационарном процессе значения этих токов должны совпадать, так как в противном случае просиходило бы беспрерывное увеличение числа избыточных электрических зарядов на контактных поверхностях соприкасающихся тел. Из сказанного понятно, что электрохимическая реакция на границе раздела с электролитом может быть представлена эквивалентной схемой, изображенной на рис. 55. Символами и / + на этой схеме обозначены сопротивления контакта для электронов и положительных ионов, причем их величина зависит от скорости электронного и ионного обмена между соприкасающимися телами. Так как движение электронов и положительно заряженных ионов происходит в одном направлении (из кристалла в раствор), а заряды этих частиц противоположны, то сопротивления Гд и г включены между собой последовательно. Очевидно, что падение электрических потенциалов на этих сопротивлениях определяется следующими формулами [см. формулу (137)]  [c.196]

    Однако в электрохимии и коррозионной практике, как правило, имеют дело с неравновесными процессами, которые представляют собой несколько непрерывно протекающих сопряженных электрохимических реакций при коррозии, по крайней мере, одна из реакций приводит к окислению металла. Поэто1 у в дaннoм случае более правильно рассматривать неравновесную систему металл—коррозионная среда, металлическая часть которой находится в равновесии, а на границе сплав — раствор электролита протекают необратимые процессы. В последние годы было установлено, что в процессе анодного растворения и коррозии сплавов могут образовываться приповерхностные обогащенные зоны, отлич- [c.142]

    Это противоречие трудно объяснить только свойствами пленки. Очевидно, в поверхностных слоях трення происходят другие явления Известно, ЧТО при соприкосновении металла с раствором электролита на границе между металлом и раствором протекают электрохимические процессы, которые имеют место в пределах тонкого поверхностного слоя. Возникает двойной электрический слой, образованный электрическими зарядами, находящимися на металле, и ионами противоположного знака, расположенными в растворе у поверхности металла. Возникнове- [c.117]

    Коррозионный процесс, как казывалось ранее, возникающий в результате химического или электрохимического взаимодействия поверхности металла с внешней средой, является гетерогенной реакцией и, в зависимости от характера среды, протекает различно. Поэтому, прежде чем перейти к более подробному изучению этих явлений, необходимо рассмотреть процессы, протекающие на границах фаз металл — сухой газ (химическая коррозия) и металл — раствор электролита (электрохимическая коррозия). [c.13]

    Различают химическую, электрохимическую, а также микробиологическую коррозию. Последняя обусловлена действием различных микроорганизмов, которые в процессе жизнедеятельности выде.1яют продукты, разрушающие металл. При. этом может протекать в зависимости от характера среды химическая или электрохимическая коррозия. Химическая коррозия происходит в растворах неэлектролитов и в газовой фазе при высокой температуре. В растворах неэлектролитов и в чистых неполярных жидкостях металл разрушается в результате обычной гетерогенной химической реакции, происходящей на границе раздела металл — жидкость. В газовой фазе при высоких температурах, например при взаимодействии железа с кислородом воздуха, на поверхности железа образуется оксидная пленка, которая постепенно утолщается, благодаря диффузии кислорода через пленку к металлу и диффузии атомов металла через пленку к ее поверхности. Б результате состав пленки непрерывно изменяется по толщине, содержание железа в ней убывает от ее границы с металлом до границы с воздухом, а содержание кислорода убывает от границы пленки [c.370]

    Электрохимические реакции, протекающие на iлpalHИlцe раздела двух фаз, совершаются при наличии двойного электрического слоя из зарядов, находящихся в металле, и ионов другого знака в растворе. Подобные ионные двойные слои, возникающие на границе соприкосновения фаз, приводят к глубоким изменениям физико-химических свойств поверхностных слоев. Процесс ионного обмена протекает таким образом, что значение электродного потенциала отвечает термодинамическому равновесию между металлом и электролитом. [c.6]

    К числу металлов с низкой электронной проводимостью окислов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 6 этой главы). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодной ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка Ь "а/см . Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии следует рассматривать как довольно условные величины, относящиеся к какой-либо определенной выдержке металла при заданном потенциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что такой переход протекает в три последовательные стадии. Одной из них является переход катионов металла в окисную пленку. Далее следует миграция ионов под действием электрического поля катионов — к раствору, а анионов кисло-юда или ионов гидроксила — к границе раздела окисел — металл. Наконец, последняя стадия представляег переход катионов из окисной пленки в раствор, т. е. самый процесс растворения пленки. Скорость каждой из трех этих стадий зависит от потенциала, и на этом основании процесс растворения металла в пассивном состоянии можно рассматривать как электрохимический. В противоположность этому в классической теории пассивности принимается, что ионы пассивного металла поступают в раствор в результате химического растворения материала пассивирующей окисной пленки в окружающем электролите. [c.202]

    Установлено, что в протонных диполярных растворителях (БЛ, ДМФ, ДМА, ПК, ТГФ и др.) механизм восстановления оксидов, по-видимому, аналогичен их механизму восстановления в водных щелочных растворах и носит электронно-протонный характер. Согласно этому механизму подвижной частицей, ответственной за массоперенос в твердой фазе, является протон. Процесс восстановления оксида протекает через две основные стадии. Первая — электрохимическая реакция перехода протона через межфазную границу раствор — оксид, в результате которой поверхностный слой оксида превращается в соединение нестехиометрического состава. Вторая стадия, обеспечивающая восстановление более глубоких слоев,— диффузия протона в глубь оксида с одновременным переходом электрона от одного иона металла к другому. В стационарном состоянии вторая стадия является замедленной и ее скорость определяется скоростью диффузии протонов в решетке оксида. В апротонных растворителях в роли подкислителя выступает протон примесной воды или ион лития, который внедряется в кристаллическую решетку оксида. Конечным продуктом восстановления является оксидное соединение восстанавливаемого металла низшей валентности. Так, в хлоридных растворах ДМА процесс восстановления протекает с участием двух электронов, конечным продуктом восстановления является смешанный оксид состава хЖоО - уЖоОг - гЫО. [c.100]

    Коррозия в водных средах проявляётся во многих формах. Помимо общей коррозии, вызывающей относительно равномерный съем металла с поверхности, встречается также избирательное (селективное) разъедание отдельных участков поверхностного слоя металла. Такими участками являются границы между зернами, выделившиеся фазы и поверхности раздела металла с включениями. Наличие пленок на поверхности металла может вызвать появление резко локализованных участков коррозионного разъедания, а затем и питтинг (точечную коррозию). Другие резко локализованные виды коррозии рассмотрены в гл. 4. При всех этих видах коррозии должны протекать анодные и катодные реакции так как уже мно -го лет назад было установлено, что коррозия металлов в водных средах имеет электрохимическую природу . На образце корродирующего металла имеются анодные и катодные участки. Они могут быть постоянно отделены друг от друга,,однако во многих случаях вся поверхность метал ла состоит из непрерывно перемещающихся катодных и анодных участков. На анодном участке происходит процесс окисления, заключающийся в потере электронов и переходе металла в раствор в соответствии с реакцией [c.58]


Смотреть страницы где упоминается термин Электрохимические процессы, протекающие на границе металл— раствор: [c.285]    [c.237]    [c.119]   
Смотреть главы в:

Коррозия химической аппаратуры и коррозионностойкие материалы -> Электрохимические процессы, протекающие на границе металл— раствор




ПОИСК





Смотрите так же термины и статьи:

Металлы растворов

Процесс электрохимический

Электрохимический ряд металлов



© 2025 chem21.info Реклама на сайте