Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние взаимодействия функциональных групп па реакционную способность

    КОЛИЧЕСТВЕННАЯ ОЦЕНКА ВЛИЯНИЯ ВЗАИМОДЕЙСТВИЯ ФУНКЦИОНАЛЬНЫХ ГРУПП НА ИХ РЕАКЦИОННУЮ СПОСОБНОСТЬ [c.75]

    Внутримолекулярный кинетический режим способствует ускорению ферментативных реакций (см. гл. II). В связи с этим привлекают внимание исследования неферментативных внутримолекулярных реакций, где взаимодействующие функциональные группы ковалентно присоединены к одной молекуле. Значительный интерес в этих исследованиях представляет сопоставление скоростей внутри- и соответствующих межмолекулярных реакций (для оценки эффекта сближения), а также выявление специфических факторов, оказывающих влияние на собственную (внутримолекулярную) реакционную способность присоединенных функциональных групп (их взаимное расположение — эффекты ориентации, влияние заместителей или микросреды и т. д.). [c.78]


    Так, Харвуд в цитированной работе 2] утверждает, что количественное описание кинетики полимераналогичных превращений с эффектом соседа невозможно без учета взаимодействия полимер-растворитель и изменения этого взаимодействия, а также изменения конформации полимера с конверсией. Такое утверждение основано, очевидно, на смешении двух тесно связанных между собой, но все же различных задач количественного исследования эффекта соседних звеньев формально-кинетического описания процесса и установления самого механизма влияния соседних звеньев на реакционную способность функциональных групп в макромолекулах. [c.169]

    Легкость протекания электровосстановления органической молекулы с данной функциональной группы определяется прежде всего распределением электронной плотности в молекуле, и численной характеристикой ее служит значение потенциала полуволны. Потенциал полуволны не является постоянной для данной функциональной группы величиной, а меняется в довольно широком диапазоне потенциалов в зависимости от положения в молекуле полярографически активной группы, влияния других функциональных групп, природы всей молекулы, геометрии молекулы и т. д. Поэтому значение 1/2 в серии родственных соединений характеризует не только способность к электровосстановлению данной группы, но и электронное и стерическое взаимодействие последней с полярографически неактивной частью молекулы, взаимное влияние атомов и групп в молекуле, распределение алектрон-ной (прежде всего, я-электронной) плотности и, следовательно, является источником информации о реакционной способности соединения. На 1/2 волны обычно оказывает также влияние природа среды, pH раствора, его ионный состав, поэтому для установления взаимосвязи между строением и 1/2 волн веществ следует сопоставлять значения / измеренных в идентичных условиях. [c.101]

    Существует ряд случаев, когда принцип независимости реакционной способности от молекулярной массы не подтверждается ходом конкретного процесса. Эти отклонения могут быть связаны с влиянием электростатического заряда полимера, проявляющегося на значительном расстоянии и воздействующего на реакции с участием заряженных частиц, а также с взаимодействием функциональных групп, достаточно удаленных друг от друга в полимерной молекуле, которое может оказаться значительным. При этом могут создаться условия, способствующие как снижению, так и повышению реакционной способности функциональных групп, в частности в результате увеличения их локальной концентрации или возможности автокатализа их реакций. [c.107]


    Природа реагирующих веществ, под которой следует понимать совокупность факторов, определяющих структуру и реакционную способность их частиц, играет первостепенную роль, так как ею определяется специфика взаимодействия. Обычно реакции с участием полярных молекул протекают быстрее, чем процессы между неполярными молекулами при взаимодействии молекул большое влияние на скорость оказывает расположение функциональных групп. [c.139]

    Химическая активность функциональных групп в сополимерах зависит от пространственных эффектов, участия соседних групп и ионного взаимодействия. Так, в частности, реакционная способность звеньев А в сополимере АВ может быть различной в зависимости от того, входят такие звенья в триады ААА, ААВ (ВАА) или ВАВ. На реакционную способность звеньев А в различных триадах могут также оказывать влияние конфигурационные эффекты. [c.25]

    Реакции взаимодействия изолированных групп внутри циклов известны также для циклофанов (IV), у которых на реакционную способность одного из двух ядер оказывают влияние функциональные группы, находящиеся в другом ядре. [c.465]

    При теоретическом описании кинетики полимераналогичных реакций при наличии эффекта соседних звеньев обычно ограничиваются случаем, когда у каждого мономерного звена исходного гомополимера может необратимо прореагировать только одна функциональная группа. При этом принимают, что в бесконечно длинных, не взаимодействующих друг с другом макромолекулах звенья (или группы) А превращаются в звенья В по необратимой реакции первого порядка и реакционная способность звена А зависит только от природы двух ближайших его соседей (влиянием всех других факторов пренебрегают). В соответствии с этим для описания кинетики процесса достаточно задать три константы скоростей Д ,- реакций произвольной функциональной группы А где индекс показывает количество прореагировавших соседей В у нее и принимает значения О, 1 и 2. [c.296]

    В соединениях типа (8) наблюдается существенное влияние функциональной группы X на реакционную способность двойной связи. Это влияние нельзя объяснить обычными электронными эффектами, поэтому предполагают, что для этих соединений возможны конформации, в которых функциональная группа взаимодействует с двойной связью через пространство при этом происходит либо понижение электронной плотности двойной связи [см. формулу (9)], либо ее повыщение [формула (10)]. [c.259]

    Поскольку в гомолитических реакциях принимают участие как свободные радикалы, так и нейтральные молекулы, вопрос о роли среды в таких процессах следует рассматривать, учитывая возможность сольватации тех и других частиц в растворе. Подобное рассмотрение позволяет довольно четко выяснить основные закономерности специфической сольватации в радикальных реакциях [7]. На реакционную способность радикалов в гомолитических реакциях оказывает влияние не только сольватация атома, несущего неспаренный электрон, но и взаимодействие других атомов и функциональных групп радикала с растворителем. Учитывая существенное влияние полярности структуры радикала на его реакционную способность [37], образование комплексов с водородной связью между молекулой растворителя и функциональной группой радикала, расположенной вдали от реакционного центра (например. [c.364]

    Реакционная способность функциональных групп макромолекулы мало отличается от реакционной способности этих групп в низкомолекулярных веществах за некоторым исключением, обусловленным влиянием соседних групп. Однако наиболее важным фактором оказывается не внутрицепное взаимодействие, снижающее реакционную способност)> функциональных групп, а межцепное взаимодействие, препятствующее доступу реагента к функциональным группам. Доступность реагента к полимеру обусловлена следующими факторами состоянием полимера (аморфное или кристаллическое), ориентацией цепей и растворимостью. [c.38]

    ITpvi систематическом изучении орх анических реакций встает вопрос о влиянии структуры соединения на его реакционную сиособность. Наибольшие вариации наблюдаются у тех соединений, которые содержат разные функциональные группы. Реакционная способность также пгироко меняется внутри каждого класс 1 соедииений. На реакционную способность влияют как электронные свойства функциональной группы, так и ее окружение. К факторам действия окружения относятся иространственные и электронные свойства других грунн внутри данной молекулы и эффекты, вызываемые меи<мо-лекулярными взаимодействиями. [c.169]

    Химические свойства пространственно-затрудненных фенолов, имеющих в пара-положении карбонильную группу, значительно отличаются от свойств 2,4,6-триалкилфенолов. Кроме того, наличие в молекулах этих соединений пространственно-затрудненного фенольного гидроксила оказывает резкое влияние на реакционную способность карбонильной группы. Так, вследствие внутримолекулярного взаимодействия функциональных групп 4-окси-3,5-ди-алкилбензальдегиды и 4-окси-3,5-диалкилфенилалкилкетоны склонны к таутомерным превращениям (см. гл. 7), при которых происходит енолизация карбонильной группы. Поскольку эти процессы обычно протекают в щелочной среде, то, естественно, скорость реакций подобных соединений с нуклеофильными агентами в значительной степени зависит от pH реакционной среды. В кислой среде реакционная способность карбонильной группы в этих соединениях определяется главным образом электрофильностью [c.271]


    Влияние положения функциональных групп на их реакционную способность изучалось на полимерах, содержаш,их эфирные (образованные при взаимодействии трет-бутилового спирта и надкислот) группы в боковых цепях и в качестве концевых групп. При разложении этих групп образуются небольшие количества свободных радикалов трет-бутил-оксида, С4Нд0 , инициирующего гомополимеризацию второго мономера, и макрорадикал, который инициирует привитую или блок-сополимери-зацию. [c.95]

    Первая стадия процесса синтеза уретанфункциональных полимеров проводится в условиях, обеспечивающих получение наиболее узкого молекулярно-массового распределения изоцианатного форполимера. Это достигается использованием диизоцианатов с различной реакционноспособностью изоцианатных групп, исключением катализатора реакции изоцианат — гидроксил, проведением синтеза при умеренных температурах. Взаимодействие изоцианатного форполимера с функциональным спиртом может протекать не обычно, если функциональная группа расположена достаточно близко к гидроксильной и оказывает влияние на ее реакционную способность. [c.432]

    Реакционная способность присадок в значительной мере определяет их влияние на противоизносные свойства. При больших скоростях скольжения и удельньлх давлениях в современных узлах трения на площадях контакта генерируется значительное количество тепла, интенсифицирующее развитие на поверхностях трения химических процессов. В силовом поле металла происходит диссоциация молекул присадок по наименее прочным связям, как правило, между активной функциональной группой и органическим радикалом. Так, органические дисульфиды и сульфиды химически активны в зоне трения, при 20-50"С. Фосфор взаимодействует с металлом уже при комнатной температуре. Модифицирование слоев металла зависит от химическо- [c.53]

    При взаимодействии бурого угля с раствором гидроокиси калия образуется щелочно-угольная композиция. Поведение щелочно-угольной композиции на всех стадиях переработки отличается от разложения сырья в производстве адсорбентов сернисто-калиевой активацией. Это обусловлено физико-химическими особенностями бурого угля как сырья и различным характером разложения композиций. Влияние модификатора (гидроокиси калия) начинает проявляться с момента его введения в исходный бурый уголь, который представляет собой сложную пространственную структуру с большим числом областей ароматического характера, высокой реакционной способностью. Наличие гуминовых кислот и большого количества функциональных групп повышает реакционную способность материала, в результате чего бурый уголь активно откликается на обработку щелочными реагентами. При этом идут процессы диспергирования исходных структурных элементов маточного материала бурого угля за счет процессов, схожих с процессом омыления. Происходит значительный разогрев пасты. Имеет место глубокое химическое модифицирование исходного сырья, приводящее к пластической гелеобразной системе, обладающей высокой пространственной подвижностью. Равномерное распределение водного активатора по всей массе материала и большая вероятность образования соединений близких по типу к ПАВ способствуют получешпо пластичной композиции с достаточной исходной прочностью, обусловленной действием сил адгезии. Увеличение количества модификатора улучшает пластические свойства системы, так как вместе с гуматами в процессе струк-турообразования принимает участие и непрореагировавшая с гуминовыми кислотами щелочь. [c.542]

    Ценная информация о таких превращениях может быть получена при ис следовании методами потенцнометрии, калориметрии и другими реакций поликислот с полиоснованиями (полистиролсульфокислоты с полимерными четвертич ными основаниями, полиакриловой кислоты с поливинилпиридинами и т д), приводящих к образованию солевых гелей При этом установлено, что значительная часть функциональных групп, находящихся в неблагоприятных положениях, остается непрореагировавшими и что на их реакционную способность существенное влияние оказывает кооперативный эффект Кроме того, процессы солеоб-разования и полученные в результате их гели представляют интерес с точки зрения моделирования реакций между биополимерами и поведения продуктов их взаимодействия в живых организмах Наконец, эти гели имеют самостоятельное значение и могут быть использованы в качестве ионитов (за счет непрореагиро вавших кислотных или основных Групп), мембран для очистки крови от токсинов, для ультрафильтрации, изготовления искусственных органов и т. д [2]. [c.597]

    Исследование цоликонденсации методом светорассеяния по методике [45] показало (табл. 1 и рис. 1), что рассеяние начинает возрастать задолго до точки гелеобразования. Это означает, что процесс протекает негомогенно уже на сравнительно небольших глубинах превраш ения, следовательно, пе-гомогенность присуща не только поздней стадии гелеобразования. Возможно, что явление негомогенности связано с усилением межмолекулярного взаимодействия вследствие образования гидроксильных групп. Таким образом, кинетическая схема реакции должна учитывать и образование агрегатов, и их влияние па реакционную способность функциональных групп. [c.16]

    Для выяснения возможного взаимодействия радикалов ПГ с другими (кроме 8Н) функциональными группами белков были поставлены опыты по влиянию окисляющегося ПГ на активность ри-бонуклеазы и трипсина (не содержащих 8Н-групп), однако взаимного влияния этих ферментов и окисляющегося ПГ не обнаружили [57]. Таким образом, низкая реакционная способность радикалов, являющаяся одним из определяющих свойств химического соединения как ингибитора, приводит к избирательному взаййодействию его радикалов только с 8Н-группами белковой мовджулы, [c.326]

    Введение заместителей в молекулу винилацетилена оказывает значительное влияние на характер и направление рассмотренных реакций вследствие смещения электронной плотности в ениновой системе, вызываемого этими заместителями. Электронный эффект заместителей подтверждается измерением дипольных моментов винилацетиленовых углеводородов и их функциональных производных [498, 655, 991]. На характер и степень динамического электронного смещения оказывает влияние также электронная природа присоединяющегося реагента. При помощи спектров ПМР выявлено взаимодействие между свободными электронами гетероатома заместителя и сопряженной системой связей, также оказывающее влияние на характер и направление реакций ениновых соединений с участием кратных связей [495, 496, 498]. С этой точки зрения интересно рассмотреть присоединение меркаптанов, спиртов и аминов к этинилвиниловым соединениям, содержащим по соседству с двойной связью алкильные, алкил-(арил)тио-, алкокси- и диалкиламиногруппы. Реакционная способность этих соединений в реакциях нуклеофильного присоединения значительно ниже, чем у диацетилена, и несколько выше по сравнению с вииилацетиленом. Экспериментальные данные показывают, что при взаимодействии меркаптанов с моноалкил-замещенными винилацетиленами, содержащими свободную или замещенную ацетиленовую группу, в отличие от винилацетилена, молекула меркаптана направляется к тройной связи и образуются диеновые соединения с тиоалкильной группой в положении 4 [987]  [c.286]

    Значительно большую информацию может дать исследование координационных свойств полимеризациоц-ных ионитов, получаемых при взаимодействии двух компонентов, каждый из которых содержит реакционноспособные группы в концевых звеньях. И в этом случае при одном и том же мономере формирование полимерной сетки ионита зависит от природы дивинилового компонента и прежде всего от реакционной способности его виниловых групп. Помимо этого на кинетику процесса полимеризации, в значительной степени определяющей структуру полимера, оказывают влияние такие факторы, как вязкость среды, эффективность инициирования и пространственное расположение виниловых групп [40]. Было показано, например, что при использовании в качестве сшивающего агента л-дивинилбензола ( -ДВБ) вместо технического продукта при одном и том же основном мономере образуется менее гибкая полимерная матрица [45]. Аниониты винилпиридинового ряда (АН-40, АН-25, АН-23), полученные при использовании в качестве сшивающего агента п-ДВБ и техн. ДВБ, со-держат одинаковое число функциональных групп, их р/(ь практически не различаются, в то время как координационные свойства наиболее выражены у анионитов, сшитых техническим ДВБ (табл. 4.5). [c.181]

    Конфигурационные эффекты включают как первичное стерео-химическое влияние тактичности, так и вторичное влияние уже прореагировавших соседних групп на реакционную способность функциональных групп. Условия полимеризации определяют строение, структуру н реакционное поведение полимеров. Чем больше объем имеющихся в полимере групп, тем больше их влияние друг на друга. Влияние заместителей четко прослеживается на значениях констант скоростей полимераналогичных превращений. Внутримолекулярные взаимодействия зависят, в первую очередь, от структуры макромолекулы и ее тактичности [18, 19]. В [20] показано, что стерические эффекты заместителей оказывают большее воздействие на межмолекулярпые реакции. [c.17]

    Стерические факторы связаны со структурой клубка, влияние его плотности не идентично влиянию стерических препятствий, в случае которых играет роль еще и конфигурация. Клубки мало растворимы, но они достаточно проницаемы для низко молекулярного соединения [11, 44]. Степень проницаемости клубка в 0-растворителе имеет тот же порядок, что и в хороших растворителях, и составляет по Фольмерту и Штутцу 5—20% от объема клубка [45]. Реакции полимеров с различными функциональными группами могут протекать на поверхности клубков, в то время как в случае низкомолекулярных реагентов возможно их проникновение внутрь клубка и участие в реакциях с находящимися там функциональными группами [46]. Реакции на поверхности или диффузионно-контролируемые реакции превалируют, если состав двух взаимодействующих полимеров различается более чем на 5% (например, вследствие большой химической неоднородности) и если клубки сжимаются или они несовместимы [42]. Окружение функциональных групп также влияет на их реакционную способность [47]. Кроме всех перечисленных выше факторов, на течение реакции может влиять и сам растворитель, с помощью которого образуются сольватационные слои, кластеры молекул и т.д. [48]. Функциональные группы зачастую более подвижны, чем фрагменты макромолекулы, причем при этом имеет значение размер вновь вводимой группы. [c.20]

    Важным является также взаимодействие полимер — полимер внутримолекулярные взаимодействия дальнего порядка удаленных друг от друга групп одной и той же макромолекулы и функциональных групп различных макромолекул (межмолекулярпые взаимодействия). Кроме взаимного влияния на реакционную способность функциональные группы способны вступать в реакции, которые в случае протекания их по внутримолекулярному механизму приводят к сжатию клубка и ограничению гибкости макромолекул, в то время как протекание реакций по межмолекулярному механизму ведет в большей или меньшей мере к сшиванию. Подобные реакции могут протекать также и с участием бифункциональных низкомолекулярных веществ. Соотношение между внутри- и меж-молекулярными направлениями полимераналогичной реакции зависит от концентрации бифункционального низкомолекулярного вещества [31]. Внутримолекулярные реакции, сопровождающиеся циклизацией, идут преимущественно в разбавленных растворах при этом могут образовываться стабильные 5—12-членные циклы. Конформация и расстояние между концами цепей влияют на ход внутримолекулярных реакций, которые способны идти и в 0-усло-вйях, т. е. при максимальном образовании клубков [52, 53]. При этом часто наблюдается заметное снижение вязкости [54]. Переход от хорошего к плохому растворителю способствует обычно протеканию реакции по межмолекулярному механизму. Этого же можно ожидать, если во время реакции ухудшается растворимость и если какие-либо факторы влияют на доступность функциональных групп. Скорость внутримолекулярной реакции не должна меняться с изменением степени ассоциации макромолекул в растворе [14, 50]. Образующиеся при внутримолекулярных реакциях связи являются стабильными. При оценке вероятности виутримо- [c.21]

    Химические превращения полимеров редко протекают с количественным выходом (до полного израсходования реагирующих групп) в связи с изменением состояния системы и доступности функциональных групп при возрастании степени завершенности процесса. Уже при низких степенях превращения может образовываться гель, и дальнейшее протекание реакции все более затрудняется. Даже через длительное время сохраняется большое число непрореагировавших функциональных групп, зафиксированных в участках геля и лишенных подвижности. В этом случае диффузионная подвижность участков полимерной цепи с функциональными группами практически отсутствует, что должно вызвать заметное снижение кажущейся реакционной способности. Скорость реакций функциональных групп сополимеров резко изменяется при изменении конфигурации макромолекулы и под влиянием стерических факторов. Если молекула полимера содержит одновременно оба типа взаимодействующих между собой функциональных групп, то часто наблюдается кинетически нормальное течение реакции, несмотря на то что условие — наличие в макромолекуле полимера не более одного типа функциональных групп — в этом случае не соблюдается. Классический пример — полиэтерифи-кация, протекающая как при синтезе пленкообразующих олигомеров, так и при превращении водорастворимых пленкообразователей на подложке. Даже в том случае, когда частота соударений функциональных групп заметно уменьшается в результате того, что они связаны с длинными полимерными цепями, снижение скорости химической реакции необязательно. [c.107]

    Кинетика полимераналогичных реакций зависит от многих факторов, обусловленных полимерной природой реагентов. Это различные конфигурационные и конформационные эффекты, электростатическое взаимодействие, влияние надгиолекулярных структур и т. д. [1]. К настоящему времени достаточно полно как экспериментально, так и теоретически изучено влияние на кинетику и механизм процесса только так называемого эффекта соседних звеньев [1—5]. Этот эффект соседа заключается в зависимости активности функциональных групп от того, прореагировали или нет группы у соседних мономерных звеньев и, следовательно, является примером взаимного влияния различных групп в макромолекуле на их реакционную способность. Следует отметить, что эффект соседних звеньев существенно влияет не только на кинетику процесса, но также и на композиционную неоднородность и строение цепей получающегося продукта [1—5], причем для целого ряда процессов этот эффект является основным [5—8]. [c.296]

    Иные соотношения наблюдаются при взаимодействии атома кремния с расположенными в р-положении к нему двойной связью, ароматическим кольцом или различными функциональными группами. Например, в бензилтриметилсилане для группы (СНз)з51СН2 —бп =0,034, т. е. и здесь как бы формально имеет место сопряжение в обычном смысле этого слова. Однако разность а — сгл= —0,051 имеет знак минус, т. е. нет никакого оттягивания я-электронов к атому кремния, а тем более на орбиты й атома кремния. Наоборот, группа (СНз)з81СН2— является сильной электронодонорной группой, причем в пара-положении проявляет более сильный эффект, чем в мета-положении. Таким образом, в случае р-положения функциональной группы относительно атома кремния мы наблюдаем эффект, который, однако, не представляет собой сопряжения в классическом понимании я — я-сопряжения. Явление этого рода (ст — 0 или а — я-сопряжение по Н. А. Несмеянову [10]) имеет следующие отличительные признаки увеличение реакционной способности функциональных групп в р-положении к атому кремния к действию электрофильных реагентов, уменьшение ее к действию нуклеофильных реагентов уменьшение способности к протеканию радикальных реакций, если радикал, образующийся в реакции, имеет неспаренный электрон у атома, находящегося в р-положении к атому кремния увеличение интенсивностей характеристических частот групп, находящихся в р-положении к атому кремния. Особенно этот эффект проявляется в динамическом состоянии, т. е. при атаке на данное соединение какого-либо реагента. Однако этот эффект проявляется в определенной степени и в статическом состоянии молекулы, что следует из рассмотрения дипольных моментов и спектров "КРС. Величина взаимного влияния атома кремния и различных функциональных групп, как мы уже отмечали, в основном определяется характером остальных атомов или групп,, связанных с кремнием. Этот факт, а также специфическое поведение р-функциональных кремнийорганических соединений, выражающееся в проявлении так называемого р-эффекта, заставляет предполагать, что одной из причин проявления эффекта о —а- или а — я-сопряжения является стерический фактор расположения атома кремния и р-функ-циональных групп в пространстве. Модели Стюарта-Бриглеба кремний- [c.137]

    Методо.м обратной осмометрии исследовано изменение средне-числовой молекулярной массы (М ) в бензольных растворах полиэпихлоргидрина (ПЭХГ) и полиоксиэтилена (ПОЭ) при 298,4 К с целью определения термодинамических параметров полимер-полимерных взаимодействий в системе. Предложены схема процесса комплексообразования и метод обсчета экспериментальных данных, позволяющий учесть влияние эффекта цепи и эффекта конформационного превращения макромолекул на реакционную способность функциональных групп. [c.108]

    Согласно принципу Флори, реакционная способность функциональных групп макромолекул не должна отличаться от реакционной способности тех же групп в низкомолекулярных соединениях. Такие примеры действительно встречаются. Так, константы скорости и энергии активации реакции Мен-шуткина при взаимодействии метилиодида с пиридином и поли-4-винилпиридином практически одинаковы А (75 °С) = 10,7-10 и 7,8-10 л/(моль-с), Ел =65,8 и 67,2кДж/моль соответственно. Однако, чаще реакционная способность функциональных групп высоко- и низкомолекулярных соединений отличаются. Причины этого явления могут быть разными, одной из основных является влияние соседних звеньев. [c.334]


Смотреть страницы где упоминается термин Влияние взаимодействия функциональных групп па реакционную способность: [c.322]    [c.11]    [c.245]    [c.173]    [c.238]    [c.119]    [c.62]    [c.125]   
Смотреть главы в:

Химические реакции полимеров Том 1 -> Влияние взаимодействия функциональных групп па реакционную способность




ПОИСК





Смотрите так же термины и статьи:

Группы функциональные, влияние

Функциональные группы



© 2025 chem21.info Реклама на сайте