Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость реакции парамагнитный резонанс

    Для второго издания курс подвергся ряду изменений и дополнений. Более подробно рассмотрены основы метода электронного парамагнитного резонанса (3>ПР), приведены примеры идентификации свободных радикалов по спектрам ЭПР. В гл. И1 переработан 2, посвященный теории абсолютных скоростей реакций существенные изменения, касающиеся влияния диэлектрической постоянной на скорость реакции, внесены в 11, трактующий вопросы роли среды в элементарном акте химического превращения в 12 рассмотрение кинетического изотопного эффекта дополнено методом определения констант скоростей по изменению изотопного состава в ходе процесса. Изложение вопроса о кинетике химических реакций, состоящих из нескольких элементарных стадий (гл. VI), дополнено описанием нового способа определения числа линейно независимых дифференциальных уравнений, описывающих кинетику процесса. [c.5]


    Для изучения очень быстрых"химических реакций, а также для установления короткоживущих промежуточных продуктов применяется метод парамагнитного электронного резонанса. К наиболее быстрым химическим реакциям, для которых константа скорости практически идентична числу столкновений (йл Ю 2 С ), относятся реакции переноса протона, а также различные реакции с электронными переходами. Совсем недавно для определения констант скорости с большим успехом применяют релаксационные методы. В самом общем виде сущность этих методов состоит в том, что на систему, находящуюся в состоянии термодинамического равновесия, оказывают кратковременное воздействие, выводящее ее из равновесия (например, воздействуют ультразвуком). Скорость установления нового равновесного состояния регистрируется, например, на осциллографе. Время, необходимое для перехода к новому состоянию, называют временем релаксации оно количественно связано с константой скорости реакции. Для нарушения равновесия используют также кратковременное повышение температуры. [c.168]

    Ширина линии в спектроскопических измерениях различного типа дает информацию о скоростях молекулярных процессов. Например, метод ядерного магнитного резонанса (ЯМР) можно использовать для определения скорости химической реакции. С этой целью можно использовать также метод электронного парамагнитного резонанса (ЭПР), если химическому превращению подвергается вещество, содержащее неспаренный электрон. [c.286]

    Еще более быстрыми являются релаксационные методы, развитые преимущественно в работах Эйгена [14] с соавторами, которые позволяют измерять реакции, подобные переносу протона, с константами скоростей порядка 10 ° л-моль -с- . Эти методы сводятся к наблюдению за возвращением системы к равновесию (релаксации) после внезапного возмущения они ограничены в основном быстротой возмущения системы. Использование ЯМР [15] и метода температурного скачка позволяет достичь области временной постоянной порядка 10 с. Электронный парамагнитный резонанс (ЭПР) — еще более быстрый метод (10 с), но требует, как правило, специального введения спиновой метки в фермент или субстрат. [c.455]

    Многие методы наблюдения быстрых реакций комбинировали с использованием низких температур. Например, была разра-ботана аппаратура, действующая по принципу остановленной струи (см. стр. 55), которая работает при температурах до —120° . Это устройство позволяет наблюдать реакции с временем полупревращения порядка нескольких миллисекунд. Таким образом, интервал скоростей, доступный исследованию, возрастает на четыре порядка и данную реакцию можно исследовать в очень большом интервале температур (стр. 62). Метод остановки реакции (см. стр. 33) был разработан для использования вплоть до —100° . Флеш-метод, методы флуоресцентный, ядерного магнитного резонанса, электронного парамагнитного резонанса и ультразвуковой релаксации также пригодны для работы при низких температурах эти методы имеют то преимущество, что реакцию не нужно начинать смешиванием. [c.31]


    Обычно полагают неопределенность в значении константы скорости около 5%, хотя при автоматическом сканировании и регистрации стандартное отклонение можно уменьшить до 2% или меньше [30]. Контроль температуры можно осуш ествлять примерно от О до 50°. Используемый объем раствора зависит от времени, необходимого для отсчета (табл. 3). Метод можно приспособить для специальных исследований промежуточных соединений, например в ферментативных реакциях, применяя рециркуляцию ([35], стр. 123) затем, кроме обычных свойств, можно исследовать магнитную восприимчивость и электронный парамагнитный резонанс [36]. [c.50]

    Любое соединение, молекула которого имеет ядро, обладающее спином, может давать ядерный магнитный резонанс. К таким ядрам относятся протон, ядра обычных изотопов азота и фтора и менее распространенных изотопов углерода и кислорода, но не или Ядро со спином, как и электрон, имеет магнитный момент, связанный с осью спина, и в магнитном поле он будет располагаться в какой-то степени подобно магнитной стрелке, причем его момент займет одну из некоторых определенных ориентаций по отношению к полю. Эти ориентации различаются энергиями. Можно перевести ядро из одной ориентации в другую, прикладывая второе магнитное ноле, обычно перпендикулярное первому, меняющееся с определенной резонансной частотой. Если основное поле имеет напряженность порядка 10 гаусс, резонансная частота находится в радиодиапазоне. Такой ядерный магнитный резонанс аналогичен электронному парамагнитному резонансу (гл. 10). Как и в случае ЭПР, по данным ЯМР можно определить структуру спектра поглощения и ширину линий. Они зависят от времени жизни протона (или другого ядра) в данном окружении и меняются, если соединение участвует в реакции, которая меняет это время жизни. Типичное время реакции, определенное этим методом, равно примерно 1—10 сек . Следовательно, можно вычислить константы скорости были определены константы вплоть до 10 л- моль -сек . [c.219]

    Математическая теория формы и ширины линии в отсутствие реакции. Естественная ширина линии по принципу неопределенности Гейзенберга связана с временем жизни ядра в данном спиновом состоянии. Как и для электронного парамагнитного резонанса (стр. 205), конечное время жизни связано с неопределенностью спинового уровня энергии и, следовательно, резонансной частоты, что приводит к конечной ширине линии. Блох дал математическое описание зависимости магнитных свойств системы от времен релаксации Г1 и Гг- Из уравнений Блоха можно получить точное выражение для зависимости формы и ширины линии от Ту и Гг -Б соответствии с этим выражением скорость поглощения энергии при частоте V как функция разности между V и резонансным значением Vo пропорциональна выражению [c.233]

    Скорости реакций этого типа измерены с использованием изотопов или техники ЯМР, а также метода электронного парамагнитного резонанса. Найдено, что первая реакция ускоряется ионами цезия, и предполагается образование мостикового активированного комплекса, который может быть изображен так  [c.304]

    Реакции переноса электрона обычно исследуются путем использования меченого центрального атома металла комплекса в одном из окислительных состояний и измерения скорости переноса меченого изотопа в другое окислительное состояние. Кроме того, для очень быстрых реакций сейчас для этой цели используются методы парамагнитного резонанса и ядерного магнитного резонанса. В отдельных случаях может быть использован обмен лиганда, например обмен с (инерт- [c.147]

    Можно надеяться, что современные методы, такие, например, как ядерный магнитный резонанс и электронный парамагнитный резонанс, помогут выяснить некоторые из этих вопросов. Во всяком случае, можно надеяться, что упорные и настойчивые усилия исследователей будут продолжаться до тех пор, пока влияние растворителя на скорость реакций не будет полностью изучено. [c.8]

    Основные научные работы посвящены изучению активных промежуточных частиц (комплексов, возбужденных молекул, свободных радикалов). Применил метод электронного парамагнитного резонанса для исследования радикалов, образующихся непосредственно при радиационном облучении, и установил связь между строением молекул и их радиационной стойкостью. Изучил закономерности делокализации неспаренных электронов в комплексных соединениях и установил общность механизмов сверхтонких взаимодействий в комплексах, радикалах и молекулах. Обнаружил влияние магнитного поля на скорость реакций в растворах. [c.343]

    В случае неорганических реакций в твердом состоянии механизм необходимой при этом диффузии через кристаллическую решетку достаточно хорошо изучен. Атомы металлов или небольшие ионы реагирующих веществ перемещаются из своих положений либо в междуузлия решетки, либо в вакансии решетки. Интересно, например, что в реакциях окислов щелочноземельных элементов с различными солями скорость процесса зависит только от природы окисла [56]. Это можно объяснить тем, что такие анионы, как СОд , S0 , РО4 , слишком велики, чтобы в значительной мере участвовать в процессе диффузии. Следует поэтому ожидать, что в случае органических молекул, более крупных и сложных, чем эти анионы, энергия активации для диффузии в кристаллическом состоянии должна быть весьма высокой. Некоторым доказательством в пользу этого может служить постоянство (в течение нескольких месяцев) анизотропии спектра электронного парамагнитного резонанса различных органических кристаллов, таких, как глицин [c.245]


    Многие результаты при изучении радикальных реакций были получены при помощи довольно широко распространившегося к середине 60-х годов метода электронного парамагнитного резонанса. Этот метод позволяет получать уникальные данные о слабых донорно-акцептор-ных взаимодействиях радикалов с окружающими молекулами, о динамике равновесий комплексообразования, об участии неспаренного электрона в донорно-акцепторных взаимодействиях и механизме делокализации его в комплексе. Наиболее интересна возможность измерения при помощи этого метода скорости быстрых реакций переноса электрона, а также радикальных реакций замещения, протекающих с нулевым тепловым эффектом [294]. [c.121]

    МНОГО меньшее миллионной доли секунды, так что еще какие-нибудь 15 лет назад их скорости невозможно было измерить. Теперь мы располагаем лазерными методами и методами электронного парамагнитного резонанса, которые позволяют изучать каждую из последовательных реакций в характерных для них временных масштабах. Благодаря этому мы делаем быстрые успехи в понимании химизма фотосинтеза. [c.72]

    Особенностью кинетических применений спектров ЭПР (а также ядерного магнитного резонанса — ЯМР) является возможность измерения скоростей реакций (с участием радикалов) в состоянии-равновесия. Характерными здесь являются процессы обмена электроном. Если раствор нафталина в эфире обработать натрием, образуются отрицательные парамагнитные ионы нафталина СюН ,. дающие также характерный спектр ЭПР. При добавлении нафталина к такому раствору линия поглощения уширяется, т. е. средняя продолжительность жизни иона уменьшается. Как предполагается, это связано с обменным процессом вида  [c.375]

    Одной из основных задач теории аналитической химии неорганических веществ является изучение реакций комплексообразования и свойств комплексных частиц в растворах. За последние годы в этих исследованиях начали успешно использоваться различные варианты методов, основанные на явлениях ядерного и электронного парамагнитных резонансов. Применение их открывает возможность изучения не только изменений в ближайшем окружении парамагнитного иона и взаимного влияния частиц в нем, но и механизма и скорости взаимодействия первой сферы комплекса с раствором. [c.132]

    Для измерения скоростей быстрых реакций обмена используют методы ядерного магнитного и электронного парамагнитного резонанса. Зависимость поглощения от частоты, называемая формой линии, содержит информацию об обмене энергией при молекулярных столкновениях. При протекании быстрых реакций обмена ширина и форма линии меняются. [c.193]

    Реакции переноса электрона с такими малыми временами жизни, как 10 — с, можно изучать методами электронного парамагнитного резонанса. Найдено, например, что константа скорости реакции [c.193]

    Уже в 60-х годах с применением метода электронного парамагнитного резонанса были непосредственно обнаружены свободные атомы водорода [52] и кислорода [53] в разреженных пламенах водорода. Концентрации атомов Н и О на много порядков превышают термодинамически равновесные. Это находится в полном соответствии с теоретическими расчетами, полученными на основании предложенного механизма процесса и известных констант скоростей элементарных реакций. [c.32]

    Широко применяются в химической кинетике радиоспектроскопические методы, в первую очередь электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). Использование метода ЭПР, открытого русским ученым Е. К- Завойским в 1944 г., позволило выявить большую роль радикалов в различных химических и биологических процессах, подробно изучить их свойства и измерять скорости их превращений. Именно благодаря широкому использованию метода ЭПР в настоящее время стали хорошо понятны механизмы и закономерности многих радикальных реакций, в частности практически важных процессов окисления, полимеризации, термо- и фотодеструкции полимеров, радиационных процессов. Методы ЭПР и ЯМР позволяют не только изучать структуру веществ и находить их концентрации, но и непосредственно определять скорости химических реакций, поскольку ширина резонансных линий определяется временем жизни спиновых состояний и соответственно скоростью их химических превращений. В последние годы благодаря применению неоднородных магнитных полей для измерений и ЭВМ для обработки получаемой информации появилась возможность изучения радиоспектральными методами пространственного распределения веществ в негомогенных непрозрачных объектах (томография) и их превращений, открывающая принципиально новые возможности в химии, биологии и медицине. Методы химической поляризации ядер и электронов позволяют анализировать механизм химических реакций и устанавливать наличие парамагнитных интермедиатов даже в тех случаях, когда они столь лабильны, что их существование не может быть обнаружено никакими иными методами. [c.4]

    Преимущество этого метода в том, что образование производного происходит быстро и легко наблюдать за ходом реакции. Для анализа приготавливают раствор меркаптана в дейтерохлороформе с концентрацией около 107о. Спектры регистрируют при частоте внешнего сигнала 60 МГц. Линии резонанса на ядрах водорода тиоспирта заключены в диапазоне 0,8—3,00 млн" относительно сдвига для ТМС. Образование тиокарбамата проявляется в исчезновении спектральных линий тиоспирта. Образование электроотрицательной тиокарбаматной группы приводит к появлению парамагнитного сдвига линий резонанса на ядрах а-водородных атомов, и это упрощает спектр ЯМР. Скорость реакции обмена водородных атомов меркаптана такова, что наблюдается взаимодействие этих атомов с соседними атомами водорода однако при образовании производного этот эффект практически равен нулю. Парамагнитный сдвиг линий резонанса на ядрах а-водородных атомов метиленовой группы находится в пределах 0,45—0,55млн а соответствующий сдвиг для а-водородных атомов метиновой группы — в пределах 0,71—0,72 млн" Спектральные данные для анализировавшихся меркаптанов представлены в табл. 15.3. [c.353]

    Особенно тонкое исследование электролитического восстановления четвертичных аммониевых соединений было недавно описано Мейеллом и Бардом [13]. Были исследованы три соединения хлорид анилина, хлорид диметиланилина и бромид бензилдиметиланилина. Для первых двух соединений полярографические и кулонометрические данные соответствовали друг другу и указывали на одноэлектронный процесс, определяющий скорость реакции. Однако кулонометрическое восстановление бромида бензилдиметиланилина дало для кажущегося числа фарадеев на 1 моль значения 1,4—2,0 в зависимости от начальной концентрации и природы растворителя. Исходя из рассмотрения кривых ток — время, влияния концентрации и фактического анализа раствора, авторы высказали предположение, что механизм восстановления включает в себя образование свободных радикалов бензила этот вывод был в дальнейшем подтвержден данными электронного парамагнитного резонанса. [c.20]

    Бэмфорд и Барб [59] также приписали ускорение реакции у.мень-шению скорости обрыва, но предположили другую причину уменьшения скорости. Они считают, что полимерные частицы аггреги-руются после осаждения и окклюдируют растущие полимерные радикалы вместе с мономером. В полимерах, абсорбировавших мономер (и набухших), захваченный радикал может продолжать расти, как при эмульсионной полимеризации, и вероятность обрыва сильно уменьшается. Исследование методом электронного парамагнитного резонанса (ЭПР) доказало, что полимерные частицы захватывают радикалы [60]. Бэмфорд и сотр. [61] применили метод ЭПР для измерения концентраций радикалов, захваченных полимерными частицами. Бэмфорд и Дженкинс [62] использовали реакцию захваченных радикалов со стабильным свободным радикалом а, а -дифенил-р-пикрилгидразилом, чтобы оценить количество захваченных радикалов, и показали, что эти радикалы могут инициировать быструю полимеризацию при нагревании этой системы до 60°. [c.425]

    Методы, основанные на этих явлениях, должны быть особенно полезны для исследования реакций с константами скоростей второго порядка от 10 до 10 молъ -сек . Обсуждение процессов, вызывающих эти явления, и методов их экспериментального обнаружения можно найти в ряде недавно появившихся книг и обзоров [И, 136, 262]. Теоретически ядерный магнитный резонанс (ЯМР) должен обнаруживаться у любого элемента, имеющего естественный изотоп со спином ядра, не равным нулю. Наиболее важным примером является при этом водород. С другой стороны, парамагнитный резонанс (ПМР) требует наличия в молекуле песпаренного электрона. ЯМР наблюдается при радиочастотах, а ПМР — при микроволновых частотах, а поэтому ЯМР требует менее сложного оборудования. Сейчас имеются продажные приборы для обоих методов. [c.93]

    В противоречие с ранними исследованиями [185], было установлено, что в присутствии воздуха радиационная деструкция ПММА замедляется [195, 199]. Для объяснения этого факта были высказаны различные предположения, связывающие действие кислорода или с образованием перекисных связей между первоначально образующимися при разрыве главных цепей фрагментами макромолекул [199], или с возникновением — независимо от реакций деструкции — перекисных поперечных связей [195], или с захватом молекулами кислорода электронов с образованием молекулярных ионов 00 и снижением вследствие этого скорости деструктивных процессов, протекающих с участием электронов [200]. Hi)HMepHO аналогичный механизм, связанный с захватом электронов, был предложен для объяснения конкурирующей роли кислорода при облучении ПММА, содержащего различные красители [201]. Наличие в облученном на воздухе ПММА групп, распад которых ускоряется в присутствии следов /прет-бутилкатехина, гидрохинона и диме-тиланилина и которые придают полимеру способность инициировать полимеризацию винильных соединений, в известной мере подтверждает гипотезы, приписывающие основную роль в рассматриваемом явлении наличию перекисей [193, 194, 196, 199]. При соприкосновении с воздухом ПММА, предварительно облученного в вакууме, наблюдается наложение асимм(зтричного спектра электронного парамагнитного резонанса, обусловленного перекисным радикалом, на симметричный спектр ЭПР исходного радикала, состоящий из пяти линий (плюс четыре плеча) [202]. Из спектров ЭПР было найдено, что скорость гибели радикалов, непосредственно образовавшихся под пучком, так же как и вторичных перекисных радикалов, подчиняется кинетическим уравнениям второго порядка. Механизм реакции, по которой перекисные радикалы могут образовать перекисные поперечные связи, предположение о существовании которых было высказано, неясен. Недавно была исследована кинетика снижения молекулярного веса облученного ПММА в период последействия и обсуждены некоторые возможные механизмы этого процесса [203]. [c.102]

    НИИ процессов, идущих в твердом состоянии. Например, в кристаллическую решетку мономера не могут быть включены молекулы сополимеризующихся мономеров, растворителей и ингибиторов, поэтому нельзя изучить влияние молекул этих веществ н а скорость полимеризации и молекулярный вес для оценки радикального или ионного механизма цепной реакции. Некоторые исследователи отмечали, что обычные ингибиторы полимеризации не препятствуют полимеризации замороженных мономеров [9, 27, 100, 105], но такого рода наблюдения вряд ли о чем-либо говорят, если ингибитор образует отдельную фазу. Характерно, что обычные ингибиторы радикалов действуют лишь тогда, когда мономер, по-видимому, присутствует в аморфном состоянии [16]. Кислород заметным образом не влияет на полимеризацию большинства мономеров в кристаллах (за исключением, по-видимому, винил-стеарата), но это не исключает и механизма радикальной полимеризации, так как кристаллическая решетка препятствует диффузии кислорода [5, 37]. В некоторых случаях было показано, что скорость полимеризации резко падает при температуре плавления мономера [16, 9, 27а] этот факт интерпретировали иногда как свидетельство изменения механизма реакции (имея в виду ионный процесс в твердом состоянии). Однако этот факт можно объяснить также резким уменьшением длины кинетической цепи в жидком состоянии по аналогии с цепной реакцией разложения необлученного хлористого холина в кристаллическом состоянии и в растворе соответственно [74] (см. предыдущий раздел). В случае акриламида спектр электронного парамагнитного резонанса показывает, что полимеризующийся кристалл имеет постоянную концентрацию радикалов [1, 1а, 8, 37, 86] и что количество радикалов приблизительно равно числу полимерных цепей [37, 86]. Это означает, что взаимодействия радикала с радикалом в твердом состоянии маловероятны, но это не решает вопроса о механизме полимеризации, так как при инициировании, по-видимому, образуется ион-радикал, который затем может присоединить мономер либо по радикальному, либо по ионному механизму [37]. При инициировании методом молекулярных пучков возникают, вероятно, частицы вида [c.255]

    Дифенилпикрилгидразил представляет собой интенсивно окрашенное в фиолетово-черный цвет соединение, т. пл. 138°, легко растворимое в хлороформе, трудно — в бензоле и почти лера-створимое в спирто раствор], имеют глубокую фиоле-тов ю окраску. Д. легко соединяется со свободными радикалами с образованием сиабоокрашенных соединений. Получил применение как улавливатель свободных радикалов, д.ля измерения скорости инициирования ценных реакций в жидкой фазе (нанр., полимеризации) и для определения выхода свободных радикалов при радиолизе оргаиич. жидкостей. Дифенилпикрилгидразил применяют в качество стандарта при исследовании спектров электронного парамагнитного резонанса. [c.584]

    СН2ОСН3, —СН2С1, —СНО, —СОСНз, —СО2Н и — N , ароматические соединения, содержащие такие заместители, будут называться ароматическими соединениями, замещенными в боковой цепи. Основное внимание будет уделена реакциям в боковой цепи, причем особо будет подчеркиваться влияние ароматического ядра на реакционную способность. В этой связи будут рассмотрены относительно устойчивые триарилметильные катионы, анионы и свободные радикалы, а также количественные корреляции скоростей органических реакций на базе так называемого уравнения Гамметта. В заключение кратко будут рассмотрены принципы спектроскопии электронного парамагнитного резонанса (ЭПР) и использование этого метода при изучении органических свободных радикалов. [c.335]

    Для выяснения природы локального окружения солюбилизата в мицеллах привлекали данные УФ- и видимой спектроскопии [62—70], ЯМР Н и [38, 39, 67, 71—83], электронного парамагнитного резонанса [77,84], дифракции рентгеновских лучей [85— 91, 112—115], нотенциометрии [92—94], измерения распределения субстратов между органической и водной фазами [68, 95—103], а также изменение скоростей реакций в присутствии мицелл [104— 109]. В табл. 2 приведены результаты, полученные различными методами определения локализации молекул субстратов в мицеллах ПАВ. [c.232]

    Наряду с методом радиоактивных индикаторов для изучения скоростей реакций замещения лигандов используют оптические и электрохимические методы, методы ядерного магнитного и электронного парамагнитного резонанса, различные релаксационные методы и ряд других [20]. Систематическое изучение констант скоростей реакций замещения молекул воды в аквакомплексах большого числа одно-, двух- и трехвалентных ионов металлов проведено М. Эйгеном [26—28]. М. Эйген установил, что у ионов щелочных (Ь1+, К" , N3" , КЬ , Сз ) и щелочноземельных металлов (Са , 8г +, Ва +) константа скорости потери молекулы воды из внутренней координационной сферы очень высока О 10 сек ). Соответственно у этих металлов стадией, определяющей скорость замещения молекул воды на лиганд, является стадия присоединения лиганда и наблюдается специфическое влияние природы лиганда. [c.19]

    Ароматические поликарбонаты во время облучения приобретают зеленую окраску, медленно исчезающую по мере проникновения кислорода в полимер после окончания облучения. Скорость разрушения свободных радикалов в ио.никарбонате на основе 2,2-ди-(4-оксифенил)-проиана, облученном рентгеновскими лучами, исследовалась оптическими методами и методом электронного парамагнитного резонанса 1 . Проведенные к настоящему моменту эксперименты показывают, что свободные радикалы, образовавшиеся во время облучения ароматического поликарбоната ионизирующими лучами, стабилизируются в результате сшивания, деструкции, разрушения цени или реакции с кислородом. [c.75]


Смотреть страницы где упоминается термин Скорость реакции парамагнитный резонанс: [c.404]    [c.12]    [c.19]    [c.109]    [c.112]    [c.166]    [c.389]    [c.212]    [c.112]    [c.62]    [c.180]    [c.185]    [c.389]    [c.139]   
Современная химия координационных соединений (1963) -- [ c.93 , c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Резонанс парамагнитный



© 2025 chem21.info Реклама на сайте