Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциальная теория применения

    Известно, что молекулы газа вблизи поверхности твердого тела находятся под действием потенциала, который способствует увеличению концентрации молекул газа вблизи поверхности по сравнению с их концентрацией в газовой фазе, т. е. вызывает явление адсорбции. Применение потенциальной теории адсорбции к катализу реакции конверсии метана с водяным паром позволяет получить такое уравнение. Рассмотрим ряд общих положений потенциальной теории. [c.69]


    Построение изотерм адсорбции пара по изотермам адсорбции пара стандартного вещества на основании потенциальной теории. Чрезвычайно важное практическое следствие применения потенциальной теории адсорбции — возможность построения изотерм адсорбции пара одного вещества по изотерме адсорбции пара другого вещества. Каждый поглотитель характеризуется изотермой адсорбции на нем некоторого вещества, принятого за стандартное. Эта изотерма определяется опытным путем, в то время как изотермы адсорбции других веществ на том же поглотителе могут быть найдены расчетом по формулам (4) и (5). Чтобы облегчить построение изотерм адсорбции какого-либо вещества при различных температурах, предложен график [1-23], изображенный на рис. 6. На шкале А отложены адсорбционные потенциалы е (ккал/моль), на шкале В — температура °С, на шкале С — упругость насыщенного пара поглощаемого компонента мм рт. ст.), на шкале Е — упругость пара поглощаемого компонента в газовом потоке мм рт. ст.), прямая В является вспомогательной. [c.18]

    Применение Дубининым 145] потенциальной теории адсорбции Поляни [c.85]

    Приближенный расчет энергии адсорбции на основе применения потенциальной теории адсорбции и молекулярной статистики позволяет предсказать последовательность элюирования соединений (см. разд. 4.3). [c.309]

    Радиационная химия в последнее десятилетие бурно развивается. Наряду с попытками изучения механизма и создания теории радиационно-химических процессов, все расширяется круг исследуемых объектов и реакций, вызываемых действием ядерных излучений на разнообразные системы. Изучение радиационной устойчивости материалов и сред, применяемых в атомной технике, и поиски эффективных химических процессов, инициируемых действием излучений, для потенциального промышленного применения существенно расширили за последние годы круг объектов, рассматриваемых радиационной химией. Осо-бенно это относится к органическим полимерам и биополимерам. [c.5]

    Применение потенциальной теории адсорбции к синтетическим цеолитам [c.23]

    Для выяснения вопроса о возможности применения потенциальной теории адсорбции к цеолитам М. М. Дубининым, 3. А. Жуковой и Н. В. Кельцевым была проведена обработка многочисленных экспериментальных изотерм адсорбции паров и газов для различных температур на гранулированных цеолитах. [c.27]

    Адсорбционные равновесия сероуглерода на активированном угле. II. Применение потенциальной теории. [c.175]

    Кристаллы неметаллических элементов с каркасной структурой, подобные углероду или кремнию, обладают свойствами диэлектриков (изоляторов), т.е. не проводят электрический ток. Применение теории молекулярных орбиталей к обсуждению химической связи в неметаллических каркасных кристаллах сталкивается со значительными трудностями. Достаточно сказать, что в ковалентных каркасных кристаллах обычно удается вести подсчет валентных электронов вокруг каждого атома, подобно тому как это делается при составлении льюисовых структур, и оказывается, что при этом выполняется правило октета. Это объясняется тем, что атомы в неметаллических каркасных кристаллах обычно имеют по крайней мере столько валентных электронов, сколько у них есть валентных орбиталей. Следовательно, в таких кристаллах предпочтительны низкие координационные числа, и между каждым атомом и его ближайшими соседями могут образовываться простые двухэлектронные связи. Низкие координационные числа являются причиной того, что потенциальная энергия электрона внутри таких кристаллов не постоянна она значительно понижается в межъядерных областях, и поэтому электроны не могут свободно перемещаться по кристаллу, подобно тому как это происходит в металлах. [c.629]


    Для решения задачи с отрывом пограничного слоя от поверхности перегородок при возникновении за ними обратных течений и сосредоточенных вихрей целесообразно использовать известную схему решения задачи о суперкавитирующей наклонной плоской пластинке (режим обтекания, при котором вся тыльная часть соприкасается с каверной) или дуге в неограниченной жидкости под свободной поверхностью или в канале. При этом вводится ряд допущений, согласно которым рассматриваются плоские, потенциальные, установившиеся течения несжимаемой невесомой жидкости [64—66]. Анализ такой схемы суперкавитационного обтекания базируется на применении аппарата теории функций комплексного переменного и комплексного потенциала в отличие от непосредственного решения уравнений Навье—Стокса. Согласно упомянутой схеме, задача движения газового потока в канале с системой наклонных перегородок сводится к рассмотрению плоского течения идеальной жидкости, для которого справедливы условия [c.175]

    Метод периодических граничных условий был разработан и применен для решения равновесных задач статистической физики (в частности, теории жидкостей и плотных газов) [196, 197, 339, 386, 453]. В работах [339, 386, 453] метод Монте-Карло использовался для вычисления на ЭВМ конфигурационных интегралов системы частиц путем усреднения по множеству случайных событий, образующих марковскую цепь с постоянными вероятностями переходов (эти вероятности зависят только от потенциальной энергии системы частиц). Возможности современных ЭВМ вынуждают ограничиться рассмотрением систем с числом частиц порядка 10 —10 . Для исключения [c.201]

    Для определения механизма химической реакции и применения кинетических теорий с целью расчета абсолютных скоростей реакций следует рассматривать химическое превращение как процесс перегруппировки атомов, который в конечном счете определяется свойствами реагентов и характером их взаимодействия. В частности, знание поверхности потенциальной энергии целиком расшифровывает в адиабатическом приближении механизм химической реакции, а далее с помощью кинетических теорий возможен расчет ее скорости. Адиабата реакции определяется на основе квантовой химии. [c.50]

    Весьма подробная информация о механизме реакции (18.1) может быть получена путем расчета поверхности потенциальной энергии. Заметный прогресс в этом направлении наметился в последнее время в связи с упомянутыми выше работами Базилевского, где обращается внимание на то, что применение полуэмпирических вариантов метода МО, явно не учитывающих неортогональность базисных функций (например, метод Хюккеля и др.), не позволяют дать правильную картину взаимодействия реагентов. На основе таких методов удается объяснить лишь притяжение между ними (этот эффект является наиболее существенным, когда расстояния между атомами частиц незначительно превосходят равновесные). Между тем при расстояниях, которые значительно превосходят равновесные, но меньше радиуса действия сил Ван-дер-Ваальса, наблюдается отталкивание между частицами. Это отталкивание можно описать, принимая во внимание неортогональность базисных функций. Поэтому во всех вариантах метода МО, где неортогональность явно не учитывается, не учитывается и эффект отталкивания. Последовательный учет неортогональности АО в методе МО ЛКАО в л-электронном приближении позволил Базилевскому представить потенциальную энергию реагентов в виде суммы, учитывающей энергии притяжения и отталкивания между ними, причем слагаемые этой суммы вычисляются в рамках теории МО при любом расположении атомов исходных частиц. Определение функции (2.3) является основой расчета кинетических параметров А к. Е. [c.177]

    Последовательное применение уравнения (7.27) приводит к достаточно сложной в математическом отношении теории, которую мы здесь воспроизводить не будем. Существенно то, что в этом случае вводится в рассмотрение потенциальная энергия взаимодействия двух частиц, которая, по существу, определяет эффективность соударений, а следовательно, и коэффициент слипания. [c.209]

    Значения, полученные методом наименьших квадратов (см. последнюю колонку табл. 2.1), очень близки к экспериментальным. Уравнение, основанное на использовании метода наименьших квадратов, может принести большую пользу при аппроксимации спектра неизвестных полиенов. Аналогичные корреляционные уравнения могут быть установлены для других типов сопряженных систем. Для полиенов с гетероатомами используются уравнения такого же типа. Интересно, что при этом результаты для цианиновых красителей оказываются даже лучше, чем для полиенов. Для описания ароматических систем могут использоваться модели кольцевидных потенциальных ям либо модели с двумерными потенциальными ямами и т. д. До появления ЭВМ теория свободных электронов находила практическое применение в химии красителей, где ее использовали для разработки красителей нужного цвета. [c.36]


    В монографии описаны способы получения практически важных адсорбентов с близкими к однородным поверхностями, их адсорбционные свойства и применение в хроматографии. Рассмотрены общие уравнения термодинамики адсорбции и уравнения, основанные на различных моделях адсорбционного слоя. Приведены способы расчета термодинамических характеристик адсорбции из опытных данных но газовой хроматографии, изотермам п теплотам адсорбции. Изложена молекулярно-статистическая теория адсорбции и теория межмолекулярных взаимодействий при адсорбции. Рассмотрены результаты расчетов адсорбционных равновесий для простых и сложных молекул на основе атом-атомных потенциальных функций межмолекулярного взаимодействия. [c.2]

    Далее, поскольку глубокий механизм каталитических реакций — как гетерогенных, так и гомогенных — является электронным, то к их описанию можно приложить весь сегодняшний арсенал квантовой химии. Сюда относятся расчеты электронной структуры молекул, их реакционной способности, потенциальных поверхностей реакции и т. д. Специфика гетерогенного катализа, однако, состоит в том, что при контактных процессах в электронном механизме реакции непосредственное участие принимают твердые тела. Корректный учет взаимодействия субстрата с поверхностью катализатора значительно усложняет задачу, требует привлечения аппарата теории энергетической зонной структуры, теории поверхностных состояний и т. н. Несмотря на указанную трудность, число работ по квантовой химии гетерогенного катализа постоянно растет. И хотя в настоящее время такие работы чаще всего посвящены исследованию сравнительно небольших сорбционных комплексов или простейших модельных реакций, несомненно, что уже в недалеком будущем квантово-химические расчеты найдут широкое применение в прогнозировании гетерогенных катализаторов для процессов, представляющих практический интерес. На решение этой же задачи нацелены и широко развиваемые теперь методы корреляции кинетических и термодинамических параметров. К гетерогенно-каталитическим реакциям с учетом их некоторых особенностей уже применяют с определенным успехом уравнения линейных соотношений типа Бренстеда, Гаммета — Тафта, Воеводского — Семенова и аналогичные. Широко [c.5]

    Мы специально не включили сложные квантовомеханические расчеты профилей потенциальной энергии, так как этот подход представляет собой скорее приложение сложных расчетов к специфическим случаям, чем развитие общей теории химической реакционной способности. Главный упор был сделан на общие теории и на их применение к широкому кругу конкретных случаев, не требующих использования сложной вычислительной техники. Мы надеялись, что именно такой способ изложения будет более приемлемым для химиков, которые ищут рациональное зерно для объяснения протекания реакций по тем или иным специфическим направлениям. Большинство глав построено таким образом, чтобы представить как общие концепции, которые наиболее хорошо подходят к данной проблеме, так и основные приложения в различных областях химии. [c.7]

    В последние два десятилетия было разработано несколько полезных теоретических подходов к проблемам реакционной способности. Среди них следует отметить прямое квантовомеханическое вычисление поверхностей потенциальной энергии [1—13], эмпирические методы оценки энергий активации, основанные на схемах групповой аддитивности [14—18] или классических потенциальных функциях [19—23], и применение корреляционных диаграмм и правил орбитальной симметрии [24—29]. Последний подход, ставший общеизвестным в теории под названием правила Вудворда — Гоффмана , был широко использован для объяснения стерео- и региоселективности фотохимических и термических реакций циклоприсоединения и перегруппировок. Опубликованы исчерпывающие обзоры по всем этим методам, включая различные приложения классических и квантовомеханических методов [30]. [c.283]

    Метод классической молекулярной механики, основанный на минимизации эмпирически полученных потенциальных функций, также недостаточно развит, чтобы обеспечить точность, необходимую для предсказания влияния заместителей и структурных эффектов на скорость реакции. Например, вычисленные энергии активации перегруппировки Коупа отличаются от экспериментальных значений от 4 до 13 ккал/моль [22, 23]. Кроме того, недостатком этого метода также является необходимость строить поверхность потенциальной энергии реакции, откладывая точку за точкой. Схемы групповых аддитивностей более пригодны для определения теплот и энтропий образования переходных состояний, в силу чего они были использованы почти для всех известных примеров термических перегруппировок и реакций циклоприсоединения [14—18]. Недостатки заключаются в произвольном выборе между синхронным и бирадикальным двустадийным механизмами, который должен быть сделан до проведения расчетов, а также в трудности применения этой теории к фотохимическим процессам. [c.284]

    Теория элементарного химического процесса, строго говоря, должна разрабатываться при помощи методов, квантовой механики. Применение этих методов к решению задачи о движении различных частиц в заданном потенциальном поле привело к созданию квантовой теории столкновений [193], играющей важную роль в атомной физике. Квантово-механическая трактовка химических процессов находится, однако, еще в самом зачаточном состоянии. [c.107]

    Как неоднократно отмечалось, возможность удовлетворительного описания экспериментальных данных с помощью какого-либо уравнения изотермы адсорбции сама по себе еще не служит доказательством справедливости этого уравнения. Для примера сравним данные по адсорбции азота на порошкообразном хлориде калия при 78 К [63], обработанные с применением четырех различных уравнений (рис. XIV-17). Как видно пз рис. XIV-17, все используемые теоретические уравнения удовлетворительно описывают экспериментальные данные. Для простых газов, таких, как азот, кислород, аргон и т. п., обычно уравнение БЭТ выполняется в диапазоне Р/Р° от 0,05 до 0,3, а уравнения (XIV-88) (потенциальная теория) и (XIV-98) (поляризационная теория) —в диапазоне Р/Р° от 0,1 до 0,8. Таким образом, едва ли можно считать какую-либо модель иредночтительной. Тем не менее на практике почти исключительно используется уравнение БЭТ. Отчасти это обусловле- [c.464]

    Поскольку природа адсорбции газов и паров чрезвычайно многогранна и сложна ни одна из существующих теорий не способна объяснить все многообразие явлений адсорбции (а тем более низкотемпературной адсорбции), хотя при обработке боль-щого числа экспериментов хорошие результаты дает применение теории Лэнгмюра, БЭТ и особенно потенциальной теории. В настоящее время еще нет возможности на основе лишь физических свойств вещества и данных, характеризующих свойства того или иного цеолита, расчетным путем вычислить все необходимые кинетические и динамические характеристики. Что же касается определения параметров, необходимых для проектирования адсорберов, предназначенных, например, для разделения бинарных или многокомпонентных систем, то проведение предва- [c.137]

    На практике широкое применение находят расчетные методы потенциальной теории адсорбции. Это обусловлено тем, что с помощью уравнения Дубинина — Радушкевича но стандартной изотерме при известном коэффициенте аффинности можно рассчитать изотерму адсорбции и распределение размеров пор для любого пара или газа. [c.30]

    Равновесие и динамика адсорбции сероуглерода на активированном угле марки Суперсорб , а также возможность применения в данном случае потенциальной теории адсорбции изучены в работе . Исследована роль внешней и внутренней диффузии в процессе адсорб- [c.255]

    Полученные экспериментальные данные были обработаны при помощи потенциальной теории адсорбции [6]. Обработка данных показала, что точки изотерм адсорбции как на цеолитах, так и на активированном угле, полученные при разных температурах, удовлетворительно ложатся на единые характеристические кривые для каждого адсорбента (за исключением КА). Это доказывает возможность применения потенциальной теории для расчета изотерм адсорбции моновинилацетила на неолитах. Графическая обработка изотерм адсорбции, представленная на рис. 2, указывает на возможность применения [c.123]

    Применение потенциальной теории к адсорбции газов и паров цеолитами К особенностям пористой структуры и поверхности стенок нор дегид-11атировапных кристаллов цеолитов типов А и X относятся следующие  [c.9]

    Соотношение (2.2) можно переписать в виде /ф = 2а + 1, где — длина дуги, которую пробегает ротор в запертом состоянии. Здесь эта величина назьшается дугой преобразования энергии. Величина этой дуги должна выбираться по некоторым правилам, которые определяются исходя из следующих соображений. При резком перекрытии проходного сечения канала движения потока сплошной среды, согласно теории прямого гидравлического удара Жуковского [391], происходит преобразование кинетической энергии некоторого объема жидкости в потоке в потенциальную энергию упругой деформации этого объема. После завершения этого преобразования начинается процесс релаксации в форме распространения в жидкости ударной волны. Применение этой концепции к единичной прорези ротора дает следующий вьтод длина дуги преобразования должна бьтгь не меньше длины углового расстояния, проходимого ротором, на протяжении которого будет завершен цикл преобразования кинетической энергии объема жидкости, равного объему прорези ротора, в потенциальную энергию упругого сжатия этого объема при перекрытии этой прорези телом статора. Время, в течение которого такое преобразование происходит, назовем временем подготовки прорези к излучению. [c.65]

    I, Ь Ь — число выбранных в подмножество методов распознавания) формирует индивидуальное решение (г = 1, Ь). Тогда коллективное решение формируется как функция индивидуальных решений Л = Ф ( г, , г = 1, Ь). Следует учитывать, что в Н = Ф ( ) каждое индивидуальное решение может входить с определенным весом. Вес определяется как методом, так и видом распознаваемой ситуации. Сформированное подмножество методов будет содержать как эффективные, так и неэффективные методы. Поэтому необходимо в системе распознавания предусмотреть процедуру оптимизации коллектива — алгоритмы селекции. Для решения этой задачи предлагается применение неформальных приемов — эвристик, в качестве которых могут выступать метод, прием, правило или стратегия [44]. Проведенные сравнительные оценки метода коллективного голосования с известными методами (минимума расстояния до средних, потенциальных функций, Байеса и т. п.) показали его преимущества [45]. Следовательно, одним из путей иовышення эф( ективности применения методов теории распознавания, является реализация системного принципа синтеза решающих правил (принятие решений) на основе метода коллективного распознавания. [c.81]

    В работе Гиршфельдера, Кертисса и Берда [Л. 2-4] подробно изложена строгая кинетическая теория разреженных одноатомных газов и смесей, теория Энскога — Чепмена с применением вариацио нного принципа (разложением но полиномам Сонина). Конечным результатом этой теории является возможность выражения всех коэффициентов переноса через систему интегралов, обозначенных ), значение которых зависит от потенциальной функции межмолекулярного взаимодействия и которые отражают всю динамику столкновения молекулы, а следовательно, и закон действия межмолекуляр- [c.139]

    Примеяеяяе теории. Согласно теории, механизм р-ции вполне определен конфигурациями реагентов и продуктов (минимумы, или долины, на ППЭ) и соответствующих АК (седловые точки). Теоретич. расчет этих конфигураций методами квантовой химии дал бы исчерпывающую информацию о направлениях и скоростях хим. р-ций. Такие расчеты интенсивно развиваются для простых хим. систем, содержащих 10-15 атомов, к-рые принадлежат к элементам первых двух периодов таблицы Менделеева, они практически реализуемы и достаточно надежны. Последоват. расчет абс. скорости р-ции по ур-нию (2) заключается в определении геом. конфигураций реагентов и А К (на этом этапе также определяется высота потенциального барьера) и вычислении для этих конфигураций моментов инерции и колебат. частот, к-рые необходимы для расчета статистич. сумм и окончат, определения и. В применении к сложным р-циям, представляющим практич. интерес, полная и надежная реализация такой программы трудоемка и зачастую неосуществима. Поэтому молекулярные постоянные, необходимые для вычислений по ур-ниям (2) и (3), часто находят эмпирич. методами. Для устойчивых конфигураций реагентов моменты инерции и колебат. частоты обычно известны из спектроскопич. данных, однако для ЛК эксперим. определение их невозможно ввиду малого времени его жизни. Если последоват. квантовохим. расчет и и Р недоступен, для оценки этих величин применяют интерполяционные расчетные схемы. [c.74]

    Получение и исследование адсорбентов с хорошо воспроизводимыми свойствами и с возможно более однородной поверхностью в последнее десятилетие приобретает все большее значение как для развития молекулярной теории адсорбции [1—34], так и для практических применений в адсорбционной хроматографии [И, 18, 20, 25, 26, 33—49]. Термодинамические адсорбционнце свойства таких адсорбентов могут быть представлены в виде характеризующих систему адсорбат — адсорбент физико-химических констант [7, 11, 21, 24, 33, 44—49]. Только такие константы, неосложненные не-воспроизводимостью строения поверхности адсорбента и влиянием сильной и неконтролируемой ее неоднородности, могут быть использованы для установления основных закономерностей проявления межмолекулярных взаимодействий адсорбат — адсорбент и адсорбат — адсорбат в создаваемом адсорбентом поле межмолекулярных сил. Используя такие физико-химические константы, можно исследовать потенциальные функции межмолекулярного взаимодействия при адсорбции [10, 16, 22, 50, 51], а также исследовать некоторые детали строения молекул [18, 33, 34, 40]. Кроме того, такие характеристики адсорбционных систем позволяют идентифицировать неизвестные вещества методом адсорбционной хроматографии (И, 33, 34]. [c.13]

    Получение из эксперимептальпых данных по адсорбционному равновесию термодинамических характеристик адсорбции для ряда молекул близкого и разного состава и строения необходимо как для практических применений, так и для развития молекулярной теории адсорбции и межмолекулярных взаимодействий вообще. Во-первых, термодинамические характеристики являются опорными для определения соответствующих величин для экспериментально не изученных веществ, что, в частности, помогает идентифицировать неизвестные вещества в адсорбционной хроматографии. Во-вторых, эти данные нужны для определения атом-атомных потенциальных функций межмолекулярного взаимодействия и теоретического расчета термодинамических характеристик адсорбции на основании структуры молекулы адсорбата и строения адсорбента (см. гл. X). Наконец, в-третьих, эти данные нужны для решения обратных задач, т. е. при известных атом-атомных потенциальных функциях межмолекулярного взаимодействия экспериментальные термодинамические характеристики адсорбции позволяют сделать заключение о структуре молекулы адсорбата (подробнее об этом см., например, разд. 4 гл. X). В этой главе рассмотрены полученные из экспериментальных данных термодинамические характеристики адсорбции на графитированной термической саже при малом (нулевом) заполнении поверхности. Основная литература по экспериментальному исследованию адсорбции на графитированных термических сажах была указана в разд. 1 гл. П. Поэтому здесь даются ссылки лишь на те работы, в которых были получены, наиболее точные данные, использованные для определения термодинамических характеристик адсорбции при нулевом заполнении поверхности. [c.180]

    Приближенная теория межмолекулярных сил дает правила комбинирования для входящих в потенциалы взаимодействия параметров сил притяжения и сил отталкивания [1, 45—51]. С помощью этих правил комбинирования параметры потенциала взаимодействия разных силовых центров могут быть оценены из параметров потенциалов взаимодействия одинаковых силовых центров. Поэтому параметры потенциальной функции Ф могут быть оценены с помощью таких правил комбинирования независимо от экспериментальных адсорбционных данных при использовании параметров потенциальных функций межмолекулярного взаимодействия силовых центров адсорбата и силовых центров адсорбента, взятых в отдельности [52]. Этим путем были получены потенциалы Ф взаимодействия некоторых одноатомных и квазиодноатомных молекул с решетками графита [45, 52—58], нитрида бора [59] и инертных газов [60—65]. Однако правила комбинирования дают только приближенные значения этих параметров [45]. Кроме того, для применения этого способа сначала надо определить параметры потенциалов межмолекулярного взаимодействия силовых центров адсорбата между собой и потенциалов межмолекулярного взаимодействия силовых центров адсорбента между собой, что само по себе часто затруднительно. Поэтому практическое применение этого способа, в общем, встречает значительные трудности, а точность определенных этим способом параметров недостаточна для использования найденной таким способом функции Ф для статистических расчетов термодинамических характеристик адсорбции. [c.245]

    А. В. Киселев (Московский государственный университет им. М. В. Ломоносова, химический факультет Институт физической химии АН СССР, Москва). Теория адсорбции газов на твердых телах должна развиваться на разных уровнях в зависимости от сложности системы и поставленной задачи. Наряду с применениями классической термодинамики, ограничивающейся установлением общих связей между макроскопическими свойствами системы и дающей численные решения только при введении дополнительных, часто эмпирических соотношений, например уравнений состояния, представлений об адсорбате как об однородной жидкости ИТ. п., важно развитие теории на молекулярном уровне для объяснения наблюденных эффектов и предсказания новых для адсорбентов разной природы и молекул различной геометрической и электронной структуры. Молекулярная теория адсорбции включает два этапа молекулярно-статистическую обработку И введение потенциальных функций. Кроме этого она опирается на комплекс химических и физических методов псследова-ния химии поверхности, характера взаимодействия и состояния адсорбционных комплексов. [c.104]

    В данной монографии рассматриваются основы этого подхода и применение его к различным проблемам теоретической и синтетической органической химии. Быстрое развитие этой области науки, как и многих других, меняет традиционную форму монографии капитальные обзоры уступают место сборникам обзоров по отдельным проблемам, охватывающим современное состояние теории. К этому типу книг относится и представляемая на суд читателей. Отдельные главы книги написаны крупными специалистами в своих областях, что позволяет читателю получить новые идеи из первых рук . Естественно, что главы не равноценны по своей значимости, широте и охвату материала и даже по стилю изложения кроме того, в книге содержится явно нетрадиционный для химика-органика материал (4ютохимия, расчеты поверхностей потенциальных энергий, ион-молекулярные реакции и т. д.). Однако в целом данная монография дает полное представление о современном подходе к проблемам реакционной способности органических соединений, и актуальность проблем, затронутых в книге, не вызывает сомнений. Можно надеяться, что это издание будет с интересом встречено нашими химиками. [c.6]


Смотреть страницы где упоминается термин Потенциальная теория применения: [c.434]    [c.465]    [c.468]    [c.434]    [c.209]    [c.286]    [c.8]    [c.154]    [c.680]    [c.269]   
Адсорбция газов и паров Том 1 (1948) -- [ c.62 , c.91 , c.146 , c.183 ]

Адсорбция газов и паров (1948) -- [ c.62 , c.91 , c.146 , c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциальная яма

Применение потенциальной теории адсорбции к синтетическим цеолитам

Применение потенциальной теории для описания адсорбции при заполнениях ниже монослойного



© 2024 chem21.info Реклама на сайте