Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфор, определение к силикатах

    Кинетика и термодинамика образования гетерополикислот кремния, мышьяка, фосфора и германия рассмотрены в разделе Ортофосфаты . Высокая устойчивость КМК в присутствии ацетона позволяет определять кремний в присутствии Р . Наиболее эффективным реагентом для маскировки фосфатов в широком интервале концентраций является, вероятно, маннит [53, 54]. В результате предложен чувствительный метод определения менее 500 мкг 5162 в присутствии фосфата. Поглощение измеряют при 370 нм. В случае определения 51 , Р , Аз и Се" при их совместном присутствии повышение селективности достигается также методом жидкостной экстракции. Примеры анализа приведены в разделе Ортофосфаты , причем силикат определяют в водной фазе после экстракции фосфорномолибденовой кпслоты [55]. Другие примеры экстракционно-спектрофотометрического определения силиката даны в табл. 12. [c.197]


    Сел.ективная экстракция кремнемолибденовой кислоты (или соответствующих кислот фосфора и мышьяка) позволяет определять силикат в присутствии фосфата и арсената. Кремнемолибденовую кислоту можно экстрагировать смесью диэтиловый эфир — пентанол [7]. Затем отмывают экстракт от избытка молибдена, реэкстрагируют молибден в водную фазу и определяют содержание молибдена. Метод позволяет определять 0,1 —1,2 ррт кремния. В работе [68] предложено непосредственное определение молибдена в бутанольном экстракте р-кремнемолибденовой кислоты. Интервал определяемых содержаний кремния 0,08—1,2 ррт. Определению не мешают фосфаты, но мышьяк(V) и германий (IV) мещают, завышая результаты анализа. Определению силиката не мешают 100-кратный избыток ионов А1 , Аи , В1 ", [c.201]

    Сплавление силиката. Для разложения силиката, т. е. для переведения его в растворимые в кислотах соединения, применяют различные способы. Если необходимо определить кремневую кислоту (наряду с другими окислами), то обычно сплавляют силикат с Na. O, или другими, аш,е всего щелочными, плавнями . В тех случаях, когда нет необходимости в определении кремневой кислоты и требуется определить только содержание окисей металлов и других элементов (например, марганца, титана, закисного железа, щелочных металлов, фосфора и др.), нередко применяют разложение плавиковой кислотой. Последний метод описа отдельно в связи с определением щелочных металлов. [c.461]

    Способность к образованию тройных комплексов встречается у ограниченного числа элементов, что способствует улучшению избирательности данной реакции. Наиболее часто фосфору в природных объектах сопутствуют кремний и мышьяк, также образующие гетерополикислоты. Однако гетерополикислоты этих элементов образуются при различной кислотности среды и в разных модификациях. Например, мышьяковая гетерополикислота образуется в 0,6—0,9 М растворе минеральной кислоты, кремневая гетерополикислота — в слабокислом растворе (pH =1,5—2,0 и pH = 3,0—4,0). Молибденовая гетерополикислота всегда образуется в а-форме, которая при рН=1,0 переходит в более устойчивую р-форму. В случае кремния реакционноспособной является только его мономерная форма силикат-ионы. Различную устойчивость гетерополикислот широко используют при определении этих элементов в смеси. Для разделения и концентрирования гетерополикислот применяют экстракцию их органическими растворителями, молекулы которых имеют электронодонорные атомы азота или кислорода (кетоны, спирты, амины), что позволяет определять меньшие, чем в обычной фотометрии, количества фосфора. [c.67]


    Тот простой факт, что грибы способны поглощать кремнезем, когда к такой культуре добавляют растворимые силикаты, может свидетельствовать только о том, что образующийся коллоидный кремнезем адсорбируется на поверхности клеток. Однако то обстоятельство, что поглощение кремния ускоряется в отсутствие кислородных соединений трехвалентного фосфора, является подтверждением определенной роли, которую кремний способен играть в подобном метаболизме [4а], [c.1011]

    Определение углерода, водорода и щелочных металлов [5]. При сожжении соединений, содержащих углерод, водород и щелочной металл, может образоваться карбонат соответствующего металла. Такие карбонаты не разлагаются даже при сильном прокаливании. В присутствии же кварца металл целиком им связывается с образованием силиката, а диоксид углерода освобождается полностью. Поэтому при сожжении полимеров, содержащих металлы, навеску засыпают кварцем, как указано для веществ, содержащих фосфор. [c.56]

    Точность определения фосфора описанным методом, мешающее влияние других элементов примерно такие же, как и при определении кремния. Исключение составляет сам кремний, который, присутствуя в виде силикат-ионов или а-формы кремневой кислоты, оказывает сильное мешающее влияние. [c.59]

    Отделение силиката от фосфата осуществляется путем выпаривания с хлорной кислотой до появления белых паров, при этом кремневая кислота обезвоживается и переходит в нерастворимую форму ее отфильтровывают или центрифугируют. Таким способом удаляли кремневую кислоту при фотометрическом определении фосфора в железной руде [9], известняке [8] и биологических объектах [17]. [c.11]

    Предложен метод определения кремния в присутствии мышьяка и фосфора [69], основанный на экстракции силиката (1 — 10 мкг) изобутилметилкетоном с последующим измерением методов ААС. Определению мешает германий. [c.201]

    Описан быстрый титриметрический метод [95] определения очень малых концентраций фосфора (10—50 мкг), в котором осаждают фосфат тория. И в этом случае не нужно отделять осадок. В анализируемом растворе могут присутствовать большие концентрации хлорида, бромида, иодида, нитрата, сульфата, перхлората и силиката фторид, борат и арсенат мешают определению. Осаждение проводят нитратом тория, титруют избыток тория при pH = 3 в присутствии ксиленолового оранжевого. [c.455]

    Присутствующие в силикатах и карбонатах элементы, кроме железа, не оказывают влияния на точность определения фосфора. Содержание в 59 мл раствора более 1 мг окиси железа вызывает появление зеленого оттенка и уменьшает устойчивость окраски. Влияние железа (III) можно устранить, восстанавливая его бисульфитом натрия до прибавления молибдата аммония. Влияние больших количеств железа (II), вызывающего увеличение интенсивности окраски на 3—4%, устраняют добавлением приблизительно такого же количества железа к стандартному раствору. [c.298]

    Подобный метод описан в литературе . Сорбция меди проводится на кристаллофосфоре ZnS(Ag) из ацетатного раствора с pH около 7,0 в присутствии силиката калия. В отличие от предыдущего метода рекомендуется прокаливание фосфора в течение 1 ч при температуре 525° С. При наличии меди цвет флуоресценции кристаллофосфора меняется от синего до зеленого. Пользуясь этим методом, можно определять 0,1 мкг меди при навеске кристаллофосфора 10 г. Определению меди мешают только большие количества окислителей. [c.248]

    Описан метод определения микроколичеств фосфора в силикатах [711], заключающийся в отделении катионов на катионите дауэкс-50 или амберлит Ш-112 из 0,Ш H l, с фотометрическим окончанием анализа, основанным на применении реактива Цинцадзе. [c.104]

    Важной аналитической задачей является определение силиката в присутствии фосфора, мышьяка и германия. Этот аспект анализа будет обсуладен ниже. Аналитическая химия кремния рассмотрена в работах [1] и [2]. Детальный обзор методов определения крем- [c.188]

    Фосфор. Определение фосфора хинолинмолибдатным методом известно и дает хорошие результаты. Нами была установлена возможность применения этого метода как при больших, так и при малых количествах фосфора в силикатах [9] без отделения Si02. [c.297]

Рис.З. Данные 12 по определению фос( юра, силикатов и БПК I—фосфор II—силикаты (как5 ) III—БПК. Рис.З. Данные 12 по определению фос( юра, силикатов и БПК I—фосфор II—силикаты (как5 ) III—БПК.
    Фосфорный ангидрид. 0,5 г измельченного материала кипятят в течение 30 мин, со смесью 15 мл соляной кислоты яЪ мл азотной. Затем добавляют цитрат аммония, соляную кислоту и кон-центрироваиную магнезиальную смесь [16]. Эта операция вместе со вторым осаждением крепкой магнезиальной смесью в присутствии цитрата аммония служит для отделения фосфора от всех других компонентов нормальной осадочной фосфатной породы без предварительного осаждения молибдатом. При применении этого метода, однако, предполагается, что материал не содержит фосфора, нерастворимого в вышеуказанной смеси кислот. В случае тонкорассеянного апатита, содержащегося в силикатах, например в богатых фосфатом щелочных изверженных породах, это условие нарушено. В этом случае применяют метод определения фосфора в силикатах, приведенный на стр. 104, с соответствующими изменениями в дозировке применяемых реактивов, и фосфоромолибдатным осаждением с обязательным последующим двукратным осаждением магнезиальной смесью. [c.195]


    Стандартное отклонение при использовании этого метода (п=14) составляет 2,8-10 моль/л (S ) для определения концентрации фосфора и 0,0045 (se) для измерения поглощения. Это соответствует отклонению 0,5— 4,6% в рабочем интервале концентраций фосфора. Определению 3 мкг Р не мещают 1000-кратный молярный избыток А1, Fe, NH4, BOi , F- и SOI. Определению мешает 100-кратный избыток ванадата, силиката и германата, 10-кратный избыток вольфрамата и арсенит в равном количестве. Арсенат-ион почти количественно определяется вместе с фосфором и должен быть предварительно отделен. [c.414]

    Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравимеФрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе приводят осаждение сульфидов (меди и других элементов) и в. фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды ЕегОз, АЬОз, ТЮг, МпОг. Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения плава определяют в растворе отдельные компоненты — железо титриметрическим или гравиметрическим методом, титан и марганец — фотометрическим и фосфор — гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески). Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение же- [c.165]

    Приборы и реактивы. (Полумикрометод.) Прибор для определения электропроводности растворов. Стаканы на 50 мл. Сахар (порошок). Поваренная соль кристаллическая. Ацетат натрия. Хлорид аммония. Цинк гранулированный. Индикаторы лакмусовая бумага, спиртоной раствор фенолфталеина, метиловый оранжевый. Спирт метиловый. Глюкоза. Окись кальция. Полупятиокись фосфора. Растворы соляной кислоты (2 и 0,1 н.), серной кислоты (2 и 4 н., 1 1), уксусной кислоты (2 и 0,1 н., концентрированный), едкого натра (2 и 4 н.), трихлорида железа (0,5 н.), сульфата меди (II) (0,5 н.), дихлорида магния (0,5 н.), сульфата натрия (0,5 н.), силиката натрия (0,5 н.), хлорида бария (0,5 н.), хлорида кальция (0,5 н.), нитрата серебра (0,1 н.), иодида калия (0,1 н.), карбоната натрия (0,5 н.), хлорида аммония (0,5 н.), перманганата калия (0,5 н.), сульфата калия (0,5 н,), трихлорида алюминия (0,5 н.), хлорида цинка (0,5 н.), аммиака (0,1 н.), ацетата натрия (2 н.). [c.55]

    Качественно для полноты извлечения фосфора из стали необходимо, во-первых, чтобы шлак был достаточно окислительным и, во-вторых, чтобы он имел высокую основность для нейтрализации образующейся кислоты — Р2О5 (аниона Р0 ). Согласно уравнению (IX.28), устойчивость РО возрастает при увеличении активности ионов кислорода. Следует, однако, учитывать упоминавщееся вьше различие в свойствах двух оксидов СаО и FeO. Как и в случае силикатов, ионы a + в расплаве, вероятно, образуют как бы молекулы Саз(Р04)2, более устойчивые, чем р0з(РО4)2. Это обусловлено и тем, что при одинаковых зарядах ион Са + имеет больший радиус (0,106 нм), чем ион Ре + (0,083 нм). Таким образом, электростатическое поле вокруг Ре + является более сильным и этот ион сильнее связывает ионы 0 , чем Са2+, тем самым препятствуя стабилизации в шлаке аниона Р0 . Следовательно, для дефосфорации необходимо определенное сочетание между концентрациями СаО и РеО. [c.261]

    Например, Сринивасан рассмотрел доступную информацию о роли кремния в питании растений и пришел к заключению, что силикат в почве способствует поглощению фосфора. В других исследованиях, выполненных этим же автором [128], было показано, что растворимый кремнезем (или силикат-ион) адсорбируется определенными компонентами почвы, в частности глинами. Соотношение между концентрацией и степенью удерживания силикат-иона оказывается логарифмическим, что указывает на наличие адсорбции. Было продемонстрировано, что гели оксида алюминия и оксида железа адсорбировали силикат-ионы почти так же, как и почвы, образуя адсорбционный комплекс, из которого силикат удаляется промыванием с большим трудом. Далее было показано, что в том случае, когда почва обрабатывается растворимым силикатом, фоСфат-ионы адсорбируются менее прочно. Силикагель не адсорбирует фосфат-ионы. Следовательно, ясно, что добавление силиката может привести к определенному эффекту в питании растения, поскольку силикат вытесняет фосфат-ионы, находящиеся в адсорбированном состоянии на поверхности почвы и, таким образом, делает фосфат более доступным для растения. Бастисс [129] также показал, что фосфат-ионы можно освободить из адсорбированного состояния на некоторых почвах посредством добавления растворимого кремнезема. Этот прием особенно эффективен для лате-ритных почв, на которых фосфат-ионы прочно адсорбируются. Последние становятся недоступными для растений из-за образования нерастворимых фосфатов железа и алюминия. В почвах такого типа добавление силиката ведет к вытеснению адсорбированных фосфат-ионов, так что в результате урожаи зерновых удваиваются или утраиваются, если среда щелочная, видоизмененная за счет добавления силиката, и возрастают вплоть до пятикратного размера, если среда нейтральная. Отмечалось также заметное увеличение в растении содержания 8102, Р2О5 и железа. Вытеснение фосфат-ионов из некоторого вида почв силикатом было также продемонстрировано путем измерения изотерм адсорбции [130]. Обработка почв силикатами натрия и калия вела к понижению их способности адсорбировать фосфат из раствора. Вероятно, силикат изолирует активные адсорбционные центры коллоидной системы и сам удерживается более сильно, чем фосфат-ионы. Это приводит к предотвращению адсорбции фосфата. [c.1032]

    Среди других наблюдений, относящихся к воздействию кремнезема на питание растений, можно отметить следующие. В водной культуре ячменя растворимый силикат вызывал значительное повышение сухой массы растений, если в системе отмечался недостаток фосфора [132]. Развитие листьев тормозилось при недостатке фосфата и ускорялось при добавлении силиката. В присутствии достаточного количества фосфора силикат оказывал небольшое влияние. По данным Леммерманна и Висс-мана [133], кремнезем дает повышение урожая определенных вндов культур, в частности бобовых и крестоцветных, только в том случае, когда недостаточно содержание фосфорной кислоты. Однако благотворное воздействие кремнезема может оказаться значительно слабее, когда в системе отмечается дефицит поташа или азота. Указанные авторы [134] считают, что кремнезем не изменяет функциональные возможности растения, но способствует растворению фосфатных соединений. [c.1033]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    В аналитической практике применяют люминесценцию крисгалло-фосфоров, основой которых а жат оксиды, сульфиды, фториды, силикаты, фосфаты металлов П, Ш и IV групп периодической системы (определение лантанидов с числом 4/ -электронов от 1 до 13 Се - Yb) и ( с-фаты, карбонаты, фториды щелочных и щелочноземельных металлов, чаще всего NaF (определение урана). Спектры излучения кристаллофосфоров также характеристичны (рис. 11.59) методики — высокоселективны и чувствительны, но обладают меньщей воспроизводимостью по сравнению с методиками определения лантанидов и урана в жидких растворах. [c.308]

    В настоящее время термоанализатор Директермом используется при определении высоких содержаний компонентов в различных материалах в металлургических шлаках, рудах, силикатах, удобрениях, в растворах гальванических ванн и др. Так, в металлургических шлаках определяют основные компоненты окиси кальция, магния и алюминия, двуокись кремния, закиси железа и марганца, пятиокись фосфора и др. При этом используют реакции  [c.140]

    Разработаны различные экстракционно-фотометрические варианты определения фосфора в виде синего ФМК комплекса, возникающего после обработки экстракта восстановителем. Так, экстракция ФМК эфиром, обработка экстракта раствором двухлористого олова и фотометрирование ФМК сини применены для определения фосфора в присутствии больших количеств ванадпя [130]. Аналогичные методики, отличающиеся только восстановителем или природой экстрагента, описаны для определения фосфора в сталях, чугуне и железных рудах [131] металлическом хроме [132] природных водах [133] для одновременного определения фосфора и кремния [134] разделения и фотометрического оиределения фосфата, арсената и силиката [135, 136]. [c.240]

    Молибден(У1) легко образует с фосфатами и силикатами гетерополикислоты, нашедшие широкое применение в фотометрическом определении малых количеств фосфора [11] и кремния [8П. Восстановление этих гетеро-поликислот до соответствующих синей значительно повышает чувствительность и избирательность определения данных элементов. Однако восстановители обладают рядом недостатков. При использовании Sn lg оптическая плотность растворов изменяется во времени и для получения удовлетворительных результатов необходимо измерять ее через строго определенные промежутки времени после добавления Sn lj [116, 117, 141, 263, 298]. [c.55]

    Максимумы светопоглощения экстрактов в изобутаноле находятся при 625 и 725 ммк. Оптимальные пределы концентрации фосфора составляют 0,2—1,5 мкг1мл. Определению не мешают ионы ацетата, бромида, карбоната, хлорида, цитрата, бихромата, фторида, йодата, нитрата, нитрита, оксалата, перманганата, сульфата, аммония, алюминия, бария, трехвалентного висмута, кадмия, кальция, трехвалентного хрома, двухвалентного кобальта, двухвалентной меди, двухвалентного железа, трехвалентного железа, двухвалентного свинца, лития, магния, двухвалентного марганца, двухвалентного никеля, калия, серебра, натрия, четырехвалентного тория, уранила и цинка. Концентрация ионов трехвалентного мышьяка, йодида и роданида не должна быть выше 50 мкг/мл, а концентрация силиката или четырехвалентного олова — выше 25 мкг/мл. Опре- [c.15]

    При добавлении избытка раствора молибдата к кислому раствору, содержащему ионы ортофосфата, возникает желтая окраска [6] вследствие образования фосфорномолибденовой кислоты Нз[Р(МозОл,)4 (х + 2)Н20. Оптимальными условиями ее образования является конечная концентрация молибдата около 0,04 М и конечная концентрация НС1О4 или НМОз около 0,25 М. Оптимальный интервал концентраций фосфора 1—15 мкг1мл, если оптическую плотность измерять при 389 ммк. Растворы подчиняются закону Бера. Определению мешают главным образом ионы силиката, арсената, вольфрамата, ванадата и висмута. Также мешают двухвалентные никель и медь и фторид при концентрации соответственно выше 40, 100 и 25 мкг1мл. [c.19]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

Фиг. 930. Бинарное сечение двукальциевый силикат — трехкальциевый фосфат в тройной системе кремнезем — окись кальция — пятиокись фосфора (Tromel) существуют поля R, К к S, которые соответствуют кристаллической фазе, подобной ренаниту, твердому раствору со структурой типа сульфата калия и другим фазам типа двукальциевого силиката. Только фаза S имеет характерные особенности силикокарнотита, который, однако, присутствует не как определенное соединение, а в виде твердого раствора. Значительное влияние различных скоростей охлаждения расплавленных основных шлаков, особенно содержащих кристаллы типа К к R, служит указанием того, что растворимость (правильнее назвать ее скоростью ргстворимости ) в лимонной кислоте существенно зависит от дисперсности разрушаемой структуры ниже температуры 1300°С. Фиг. 930. Бинарное сечение <a href="/info/500353">двукальциевый силикат</a> — трехкальциевый фосфат в <a href="/info/3273">тройной системе</a> кремнезем — <a href="/info/7965">окись кальция</a> — <a href="/info/55511">пятиокись фосфора</a> (Tromel) существуют поля R, К к S, которые соответствуют <a href="/info/334664">кристаллической фазе</a>, подобной ренаниту, <a href="/info/2260">твердому раствору</a> со <a href="/info/176964">структурой типа</a> <a href="/info/1723">сульфата калия</a> и <a href="/info/1454676">другим фазам</a> типа <a href="/info/500353">двукальциевого силиката</a>. Только фаза S имеет <a href="/info/582142">характерные особенности</a> силикокарнотита, который, однако, присутствует не как <a href="/info/17798">определенное соединение</a>, а в <a href="/info/1544216">виде твердого раствора</a>. Значительное <a href="/info/1562524">влияние различных скоростей</a> охлаждения расплавленных <a href="/info/503765">основных шлаков</a>, особенно содержащих <a href="/info/676594">кристаллы типа</a> К к R, служит указанием того, что растворимость (правильнее назвать ее скоростью ргстворимости ) в <a href="/info/1104">лимонной кислоте</a> существенно зависит от дисперсности разрушаемой структуры ниже температуры 1300°С.
    Получение связанного азота из атмосферного воздуха в плазменных реакторах интенсивно исследуется как у нас в стране, так и за рубежом, особенно в последние 10 лет. Пока плазменный метод по всем показателям уступает аммиачному, в первую очередь по расходу электроэнергии, который примерно в 7—10 раз выше. Однако разница становится менее ощутимой, если плазменный процесс совмещают с разложением фосфорсодержащего сырья в атмосфере воздуха с одновременной фиксацией азота. Дальнейшая переработка дает возможность получать из пятиокиси фосфора и окислов азота смесь фосфорной и азотной кислот для производства комплексных удобрений. Открываются определенные перспективы и для утилизации других компонентов фосфорсодержащего сырья. При диссоциации фосфорсодержащего сырья в плазме происходит практически полное его обесфторивание и выделение четырехфтористого кремния. Кроме того, отпадает необходимость в переработке фосфогипса, как это имеет место при сернокислотной переработке фосфатов, поскольку в плазмохимическом процессе образуется окись кальция. Варьируя температуру плазмохимического процесса, можно сначала обесфторить фосфорсодержащее сырье, а затем при более высокой температуре (около 3500 К) превращать его в пятиокись фосфора или получить в присутствии добавок (например, двуокиси кремния и углерода) элементарный фосфор, силикат и карбид кальция и окись углерода. [c.176]

    Определение содержания двуокиси кремния. Силикат-ионы при взаимодействии с полимолибдат-ионами образуют гетеро-поликислоту типа Н4[51(МозОю)4], которая окрашивает раствор в желтый цвет. Значительно большей чувствительностью отличается колориметрирование молибденовой сини, окрашенной в синий цвет, получающейся при восстановлении кремнемолибденовой гетерополикислоты. В качестве восстановителя используется смесь аскорбиновой и лимонной кислот. Присутствие фосфора, железа и избытка молибдата определению не мешает. [c.105]

    Если винная кислота добавлена к смеси фосфата и силиката одновременно с молибдатом аммония, образуется молибдотартрат-ный комплекс, в присутствии которого молибдофосфат образуегся не полностью в соответствии с константами равновесия этих дв х реакций. При восстановлении молибдофосфата до молибденовой сини в присутствии восстановителей равновесие реакции сдвигается в сторону образования Р-ГПК до тех пор, пока весь фосфор не будет связан в молибдофосфорную гетерополикислоту. При этом молибдосиликат, образующийся значительно медленнее, не мешает определению фосфата. Так были объяснены экспериментальные данные. На этих реакциях был основан метод определения фосфата и силиката [105] при совместном присутствии. [c.457]

    Фосфат в флуориметрических методах давно известен в качестве мешающего иона, это его свойство было использовано для аналитических целей. В работе [165] использовали свойство фосфора гасить люминесценцию комплекса алюминия с морином. Многие ионы мешают определению, некоторые из них можно отделить предварительным выпариванием анализируемого раствора с хлорной кислотой или с помощью ионного обмена. Киркбрайт, На-райянасвари и Вест [166] попытались реализовать потенциально высокую чувствительность спектрофлуориметрии, оставив при этом селективность определения фосфата, достигнутую в более ранних работах. Им удалось этого добиться следующим образом. Фосфат превращают в молибдофосфорную кислоту, которая, в свою очередь, взаимодействует с основным красителем родамином Б с образованием ионного ассоциата. После экстракции избытка красителя хлороформом ионный ассоциат молибдофосфата и родамина Б экстрагируют смесью 4 1 по объему хлороформа и бутанола и измеряют флуоресценцию этого раствора при 575 нм, длина волны возбуждающего света 350 нм. Изучение влияния на определение фосфора [37] посторонних ионов показало, что метод отличается высокой селективностью. Не мешают определению большие концентрации силиката. Мышьяк(П1) и ванадий (V) могут присутствовать в 25- и 59-кратном избытке по отношению к фосфору. Метод применим для определения 0,04—0,6 мкг Р. При изучении природы комплекса было показано, что соотношение родамина Б и молибдофосфата в ионном ассоциате составляет 3 моля на 1 моль. Это позволяет предполагать, что образуется незаряженный комплекс типа [РЬВ+]з[РМО -]. [c.466]

    Аналитическое определение. При химич. анализе веществ, содержащих К., последний мешает определению других элементов и должен быть предварительно удален, напр, в виде летучего 81F4 путем обработки плавиковой к-той. Нерастворимые в кислотах соедипения К. — силикаты — обычно разлагаются сплавлением со щелочами. При обработке сплавов водой (в присутствии NaOH) в р-р переходит кремнекислота, где она обнаруживается по образованию желтого кремнемолибденового комплекса с молибдатом аммония. Обнаружению мешает присутствие фосфора, дающего аналогичное комплексное соединение с молибдатом аммония. Количественно К. определяют выделением кремневой к-ты из р-ров путем дегидратации или с помощью коагулянтов, а также осаждением кремнемолибдепового комплекса органич. основапиями. Для определения малых количеств К. в р-ре применяется колориметрич. метод, основанный на образовании желтого кремнемолибденового комплекса или голубого продукта его восстановления (подробнее см. Кремния определение). [c.403]


Библиография для Фосфор, определение к силикатах: [c.226]    [c.301]   
Смотреть страницы где упоминается термин Фосфор, определение к силикатах: [c.272]    [c.253]    [c.104]    [c.149]    [c.206]    [c.467]    [c.272]    [c.297]    [c.88]    [c.325]   
Колориметрический анализ (1951) -- [ c.253 ]




ПОИСК





Смотрите так же термины и статьи:

Определение в фосфорите

Определение кал ция силикатах

Силикаты



© 2025 chem21.info Реклама на сайте