Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез скорость реакции

    Пример 1. Во сколько раз увеличится скорость реакции синтеза аммиака при увеличении давления в 3 р за, например, при давлении 6 атм по сравнению со скоростью этой реакции, протекающей под давлением 2 атм. [c.227]

    Расчеты проводились на основе двухфазной модели, учитывающей внешний тепло- и массообмен между наружной поверхностью зерна катализатора и потоком реакционной смесп, а также продольный перенос тепла по скелету катализатора. Константы скорости реакций синтеза метанола А , и конверсии СО Ага выбирались близкими для медьсодержащего катализатора фирмы ТС1 к у (240°С) = = 1,2 моль/(м с атм), А 2(240°С) = 9 моль/(м с атм). Энергии активации для обеих реакций выбирались одинаковыми Еу = Е = = 71,5 кДж/моль. Константы скоростей реакций в расчетах варь-провались. [c.218]


    Скорость большинства химических реакций с нагреванием возрастает. Так, синтез воды из простых веществ при 20° С осуществить практически невозможно, настолько мала скорость реакции при этой температуре. (Для проведения реакции при 20° С даже на 15% потребовалось бы 54 млрд. лет.) Но при 500° С эта реакция протекает всего за 50 мин, а при 700° С процесс осуществляется практически мгновенно. [c.195]

    Для размеров зерна катализатора 1 х 2 и 5 х 5 мм установлено, что при температурах ниже 240° С скорость образования метанола практически не изменяется при одинаковых параметрах процесса. Это позволяет считать, что синтез метанола протекает в кинетической области. Внутридиффузионное торможение начинает сказываться при температуре выше 260° С и только в период повышенной активности катализатора (первые 100—150 часов работы). В стационарном режиме при температуре выше 260° С оно практически не сказывается. Значение скорости реакции подсчитывают по формуле [c.328]

    Циркуляционный газ служит для частичного съема тепла реакции и для перемешивания газа с жидкостью, обусловливающего необходимую скорость реакции карбонилирования. Синтез-газ состоит на /з из циркуляционного газа и на /з из свежей СО-водородной смеси. Для снятия тепла применяют также ввод конденсата во внутренние теплообменники, помещенные в. колонне. [c.69]

    Такую зависимость выхода эфира от давления можно объяснить следующим образом поскольку давление создается хлористым этилом, то, естественно, чем выше давление, тем больше избыток хлористого этила и в начале синтеза скорость реакции образования эфира ГК пропорциональна создаваемому давлению. Однако при более продолжительном протекании процесса проявляет себя реакция разложения соли [c.110]

    Скорости реакции в температурных пределах 100—128° дают значение энергии активации около 11,5 ккал/моль. Изменения давления синтез-газа (1 1) в пределах 75—100 ат не влияли на скорость реакции. Однако в этих опытах использовался твердый катализатор, поэтому полученные результаты едва ли можно считать убедительными. [c.293]

    Решение. Из рис. У1-9 следует, что снижение давления, согласно принципу Ле Шателье, сдвигает равновесие реакций вправо (выделение водорода) процесс при этом проходит при более низкой температуре. Выбор оптимальных условий зависит от того, какой из продуктов будет целевым, нужно ли уменьшить содержание побочного продукта до минимума (например, иногда побочный продукт используется в другом синтезе), можно ли применить рециркуляцию, необходимо ли добиться определенной скорости реакции (кинетический фактор). Приняв, что реакция проходит достаточно быстро, рассмотрим указанные в условиях примера случаи. [c.179]


    Примером процесса, в котором в реакционную систему вводятся инертные вещества, может служить синтез аммиака. Вместе с азотом в систему поступает аргон, а также другие инертные газы и метан, которые не конденсируются с аммиаком и накапливаются в рециркулирующей газовой смеси. Это приводит к снижению парциальных давлений азота и водорода, реагирующих на катализаторе, и, следовательно, уменьшает скорость реакции. Пример при- [c.410]

    Для характеристики растворителей, как передатчиков цепи, Майо ввел понятие константы переноса и определил ее как отношение константы скорости реакции переноса к константе роста цепи [22]. Константа переноса зависит как от природы мономера, так и растворителя, что необходимо учитывать при синтезе каучуков с концевыми функциональными группами. [c.420]

    На рис. 1Х-1 показано влияние некоторых добавок на каталитическую активность железа в процессе синтеза аммиака. Рис. 1Х-2 иллюстрирует проявление избирательных свойств катализатора. Добавки, которые сами по себе не обладают каталитическими свойствами, но усиливают активность катализатора, называются промоторами. Вещества, в присутствии малых количеств которых снижается активность катализаторов, носят название катализа-торных (контактных) ядов. Обычно они не добавляются специально к катализатору, но неизбежно отлагаются на нем в течение процесса. Ускорителями называют вещества, при добавлении которых в реакционную систему поддерживается активность катализатора за счет подавления действия катализаторных ядов или какого-либо другого воздействия. Вещества, добавляемые в процессе производства катализатора для уменьшения их активности, носят название ингибиторов, они могут иметь ценность в том случае, если катализатор вводится не для увеличения скорости реакции, а для проявления избирательности действия. [c.304]

    Итак, в кислой среде синтез дифенилолпропана, по-видимому, протекает в две ступени конденсация фенола с ацетоном с отщеплением воды и присоединение карбкатиона п-изопропенилфенола к фенолу. Наиболее медленной стадией, определяющей скорость реакции, является первая. Окраска реакционной массы объясняется присутствием карбкатиона п-изопропенилфенола. [c.90]

    Рассмотрим построение оптимального температурного профиля на примере обратимых экзотермических реакций. К ним относится большое число известных промышленных процессов — синтез аммиака, окисление ЗОг, конверсия окиси углерода. Повышение температуры в этих реакциях уменьшает константу равновесия и достижимую степень превращения, но увеличивает скорость реакции. Для увеличения скорости реакции полезно, чтобы на входе в реактор, где количество образующегося продукта мало, температура была достаточно высокой, а на выходе низкой это положительно влияет на константу равновесия. Можно показать, что температуру, при которой проводится процесс, нужно понижать по мере увеличения количества продукта. [c.304]

    Диффузия внутри зерен катализатора в процессе синтеза аммиака. Диффузия протекает в порах зерен катализатора и может являться фактором, ограничивающим скорость реакции. Мерой этого фактора служит коэффициент эффективности Е, определяемый как отношение истинной скорости реакции в порах зерна катализатора к ее величине при отсутствии тормозящего действия диффузии, [c.317]

    Современные схемы синтеза аммиака — циркуляционные, т. е. часть азотоводородной смеси непрерывно превращается в колонне синтеза в аммиак, который и выводится из установки. В циркуляционных газах растет содержание инертных примесей — аргона, гелия, криптона, ксенона, что снижает скорость реакции, а следовательно, и технико-экономические показатели процесса. Поэтому часть циркуляционных, так называемых продувочных газов непрерывно выводится из цикла. В современных установках синтеза аммиака оптимальным считается 11— 13%-е содержание инертных примесей в циркуляционных газах, при этом расход продувочных газов, например на установке производительностью 1500 т ЫНз/сут составляет до 10 000 м /ч. Таким образом, с продувочными газами из цикла выводится (на [c.271]

    Исследуя влияние давления на скорость реакции, нужно помнить о том, что стехиометрические уравнения большинства химических реакций не отражают их механизма и в действительности превращение проходит как несколько следующих одна за другой простых реакций разного порядка. В качестве примера можно использовать реакцию синтеза метанола СО + 2Нг = СН3ОН, которая протекает не как реакция третьего порядка, а, вероятно, как две последовательные реакции второго порядка. Поскольку влияние давления на скорость реакции меньше в случае реакций более низкого порядка, теоретическое предвидение такого влияния не может быть основано на стехиометрическом уравнении реакции. Если механизм процесса неизвестен, то обязательно нужно определить порядок кинетического уравнения экспериментальным путем. [c.235]


    Температура и давление относятся к важнейшим факторам в синтезе присадок. Повышение температуры способствует увеличению скорости реакции повышение давления ведет к возрастанию скорости лишь в случаях протекания процесса с уменьшением объема. Тепловой эффект процесса и требуемая интенсивность теплообмена также сказываются на конструкции аппаратов, и в ряде случаев влияние этих факторов может оказаться весьма существенным, Для подбора материала аппаратуры очень важны химические свойства перерабатываемых веществ реакционная способность, агрессивность по отношению к металлам й др. [c.221]

    Реакции, в которых мольное отнощение оксида этилена к второму реагенту превышает 3 1 (синтез полигликолей и неионогенных ПАВ). В этом случае тепловой эффект настолько велик, что проблема теплоотвода приобретает первостепенное значение, особенно ввиду ограничений в допустимых температурах, вызываемых ухудшением качества продукта. Долгое время такие процессы проводили поэтому периодическим способом, барботируя а-оксид через жидкую реакционную массу, например в периодическом реакторе (рис. 85, в) илн в реакторе с мешалкой и внутренним охлаждением. Ввиду загустевания массы при последовательном введении в молекулу оксиалкильных групп эффективность барботирования слаба, скорость реакции невелика и длительность процесса составляет 8—15 ч. [c.296]

    Рассмотрим, например, процесс синтеза высших спиртов из водорода и окиси углерода в адиабатическом реакторе идеального смешения. При малых степенях превращения величина X не влияет на скорость реакции, а зависимость количества выделяющегося тепла от температуры подчиняется закону Аррениуса  [c.505]

    В промышленных условиях используют гомогенные газовые реакции, имеющие достаточно высокую скорость. При температурах <600—800° С скорость реакции между газами обычно очень мала. При высокой температуре скорость таких реакций становится большой (превышает скорость обычной каталитической реакции), поэтому промышленное их использование экономически выгодно. Например, широкое применение в промышленности имеют следующие реакции, протекающие в гомогенной газовой фазе при высокой температуре синтез соляной кислоты из элементов крекинг метана в ацетилен или сажу крекинг углеводородов (пропан, бензин) в этилен и пропилен окисление, хлорирование и нитрование углеводородов. [c.53]

    Регулирование температуры в ходе первой из упомянутых реакций (гидрирование монооксида углерода в кислородсодержащие продукты) осуществляется различными способами. Основной метод состоит в ограничении скорости реакции путем уменьщения количества подаваемого монооксида углерода. В этом случае выделяющееся тепло поглощается водородом. При синтезе аммиака равновесие реакции с повышением температуры смещается в сторону исходных веществ, и поэтому по мере разогрева реакция самопроизвольно затухает. Образование метанола также термодинамически не благоприятно при высоких температурах, но в этих условиях реакция образования метана становится преобладающей. Вследствие ее экзотермичности увеличение температуры происходит даже быстрее, чем при синтезе метанола. Поэтому реакцию образования метана следует полностью подавить. [c.107]

    Периодический химико-технологический процесс осуществляется в реакторе объемного типа при условии, что реакционная смесь, меняющая свои свойства по мере протекания реакции, находится в одном и том же аппарате, т. е. при неизменной конструкции аппарата и перемешивающего устройства. Изменять в процессе синтеза можно только расход или температуру теплоносителя (хладагента). Поэтому расчеты реакторов объемного типа должны вестись по условиям выполнения требований для наиболее тяжелых с точки зрения теплообмена стадий технологического процесса. Требования, предъявляемые к реакторам объемного типа, существенно зависят от протекаемого процесса. Для полностью гомофазных процессов влияние конструктивных и эксплуатационных параметров процессов сказывается, во-первых, через тепловой режим в аппарате, так как температура влияет на константу скорости реакции [8], а во-вторых, через гидродинамический режим. Соотношение времени гомогенизации , зависящей от организации гидродинамических процессов в реакторе (тг), и времени, необходимого для достижения заданной степени превращения (тн), определяет такое влияние. Для реакций первого порядка Тн имеет вид [c.13]

    Уменьшение производительности при более коротких периодах было связано, очевидно, с демпфированием колебаний входных концентраций на экспериментальной установке. Из-за сильного торможения водородом на рутениевом катализаторе скорость реакции синтеза NHз невелика. При циклическом ведении процесса влияние этого фактора может быть заметно ослаблено, что показано экспериментально при периодической подаче водорода на катализатор при 300°С и атмосферном давлении скорость реакции синтеза удалось увеличить на два порядка. Период импульсов при этом равнялся нескольким минутам [5]. Важно отметить, что наблюдаемая скорость химического превращения в нестационарном режиме на рутениевом катализаторе оставалась чрезвычайно малой. [c.32]

    На пути синтез-газа через катализатор уже в первой половине слоя достигается значительная глубина его преврап1ения. Для обеспечения технически приемлемого суммарного превращения синтез-газа, как показали промышленные опыты (рис. 9), необходимо иметь реактор со значительной высотой слоя, так как концентрация окиси углерода и водорода уменьшается все больше с соответствующим уменьшением скорости реакции. На практике вм есто одного большого реактора устанавливают 2 или 3 реактора меньшего размера. По сравнению с работой в одну ступень такой метод работы позволяет примерно на 7з сокра тить реакционный объем и количе- [c.91]

    Кинетическое сопротивление можно представить через константу скорости реакции k. Влиять на величину k можно не только изменением Е и k , но и температуры — см. уравнения (IX-49) и (IX-72). Скорость реакции возрастает экспоненциально с повышением температуры, т. е. очень быстро. В связи с этим реакцию в кинетической области следует проводить при максимально возможной температуре, ограничиваемой, однако, перемещением положения равновесия экзотермических реакций в нежелательном направлении, трудностями подбора конструкционных материалов и возможностями изменения механизма процесса (например, при синтезе бензина методом Фишера — Тропша из синтез-газа СО + Нз может образовываться метан). [c.417]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    Зависимость скорости синтеза от температуры приблизительно одинакова для всех катализаторов энергия активации ЛЕ в уравнении скорость = константа х где R — газовая постоянная, Т — абсолютная температура, е — основание натуральных логарифмов) находится в пределах 20—25 ккал на 1 моль прореагировавшей окиси углерода. Для синтеза па Ni- и Go-катализаторах еще ие найдено уравненио скорости реакции, описывающее экспериментальные данные с достаточной точностью [27 1]. Для синтеза на железных катализаторах вполне удовлетворительным для широкого интервала степеней превращений и составов газов является уравнение [c.521]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    Гаррис [24] запатентовал синтез перекиси водорода путем окисления нормал . ного бутана или изобутана в смесях, характеризующихся высоким отношением углеводорода к кислороду. Максимальные выходы перекиси водорода за проход были получены при температурах выше той, при которой иаблюдалась минимальная скорость реакции, т. е. выше области отрицательных значений температурного коэффициента. [c.339]

    Из шести атомов кобальта с нулевой валентностью в карбониле четыре включаются в моновалентный анион, а два дают катион Со " . Так как часть дикобальтоктакарбонила окисляется за счет другой части, эта реакция называется реакцией гомомолекулярного диспропорционирования. Попытки выделить комплексную соль кобальта (11) карбонилкобальта окончились неудачей, так как процесс сопровождается частичной потерей метанола [5]. При использовании в оксосинтезах метанола образующиеся альдегиды частично превращаются в ацетали. Однако метанол и этанол используются в качестве растворителей в реакциях гидрогенизации, относящихся к оксосинтезам [16], вследствие наибольшей скорости реакции в присутствии этих растворителей. Очень вероятно, что соли, подобные [Со(Х)в] [Со(СО) ]2, под действием синтез-газа под давлением легче других солей кобальта превращаются в дикобальтоктакарбонил и кобальт-гидрокарбонил. Изучение скорости абсорбции синтез-газа различными типами солей кобальта должно бы иметь большую ценность. [c.291]

    Оксо-синтез—реакция между олефинами, водородом и окисью углерода, проводимая с целью получения окисленных соединений, главным образом альдегидов, которые впоследствии можно гидрировать в спирты. При этом применяются температура 150—205 °С и давление 150—300 ат катализатором служит кобальт (в первоначальном процессе использовали твердый катализатор Фишера— Тропша). Активным агентом является дикобальтоктакарбонил [Со(С04) з. в установке с неподвижным слоем твердого катализатора сырьем может Служить жидкий гептен, который подается с объемной скоростью 0,4 ч . В случае применения пасты ее прокачивают через реактор с объемной скоростью 1,3—3 тогда как объемная скорость газа составляет 250 Катализатором является 2,5%-ный нафтенат кобальта на носителе. Порядок величины константы скорости реакции в жидкой фазе к= =0,02—0,07 мин при температуре 110 °С и давлении около 200 ат. В настоящее время опубликованы обзоры по оксо-синте- [c.330]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    В ряде случаев оптимальные температуры для проведения гетерогенных каталитических реакций совпадают с областью температур, при которых наблюдается активированная адсорбция реагирующих веществ. Например, температуры, при которых ведется процесс синтеза аммиака, совпадают с температурами, при которых наблюдается активированная адсорбция азота. Как показывают опыты с изотопами азота, молекула азота при активированной адсорбции не расщепляется на атомы. Изо-тоииый обмен N2" -N2 ->2N N " на катализаторе синтеза аммиака прн температурах синтеза хотя и идет, но значительно медленнее самого синтеза. Такой обмен может идти только путем разрыва связей в молекулах азота. Но этот процесс медленный, поэтому он не может быть ответственным за более быстрый процесс синтеза аммиака. Следовательно, в реакции син-тезг аммиака атомы азота участия не принимают, скорость же процесса активированной адсорбции азота, не вызывающего диссоциации молекулы азота на атомы, совпадает со скоростью реакции синтеза аммиака. [c.311]

    При реакции аллилбромида с октакарбонилдикобальтом в бензольном растворе с 5 н. NaOH и ТЭБА при комнатной температуре был получен трикарбонильный комплекс (Т) я-аллил-кобальта с выходом 70—80% [511]. В этом случае МФК-мето-дика также превосходит старые методы синтеза по выходам, скорости реакции, простоте и мягкости условий. Экстрагируемым анионом является, по-видимому, Со (СО) 4  [c.285]

    Выше упоминался теплообмен между 1 ходящим и выходящим потоками. Такой теплообмен щироко используют в промышленных реакторах для того, чтобы перогвести их работу полностью или частично на автотермический режим и, следовательно, снизить количество энергии, потребляемой из других источников. Например, при синтезе аммиака холодный исходный газ пропускают через трубки, находящиеся в слое катализатора. При этом его температура повышается настолько, что при прохождении газа через катализатор скорость реакции оказывается достаточной для осуществления экономичного процесса. [c.165]

    По Кьеру скорость реакции синтеза аммиака в порах зерна [c.318]

    Однако на первом этапе исследований а тем более при расчетах по прогнозированию свойств катализатора, до проведения экспериментальных работ необходимые данные о параметрах моделей, естественно, не известны. Выход заключается в выработке стратегии исследования в виде многоэтапной итеративной процедуры принятия решений (ППР) 1) прогноз химического состава катализатора 2) по данным первого этапа и по имеюш имся аналогам получение начальных оценок скорости реакции 3) начальный ири-ближенный прогноз качественного характера о целесообразной текстуре катализатора (например, круннонористый с малой поверхностью, либо мелкопористый с развитой поверхностью и т. п.) 4) экспериментальная проверка результатов качественного прогноза текстуры катализатора 5) экспериментальное определение кинетики процесса на удовлетворяюш,ем требованиял катализаторе пз числа занрогнозированных 6) расчет оптимальной текстуры катализатора и ее приспособление к реальным возможностям синтеза катализаторов 7) выбор способа синтеза приемлемого катализатора 8) выбор способа формирования структуры катализатора 9) приготовление образца катализатора и его опробование. [c.121]

    Автоматизация програвширования построения кинетической модели [37—40]. Расширяющиеся возможности современных ЭВМ в сфере интеллектуального обеспечения делают вполне реальной автоматизацию процедур принятия решений при синтезе кинетической модели сложной химической реакции (типовую схему см. на рис. 4.1) [37]. Речь идет фактически о создании программирующей программы (ПП), которая на основании располагаемой информации о механизме строила бы подпрограммы расчета скоростей реакций, отвечающих данному механизму. ПП работают совместно со стандартной программой расчета функции отклонения (ПРФО) и программой минимизации. ПП может быть ориентирована либо на построение аналитических формул для скоростей реакций [41—43], либо на реализацию численных алгоритмов расчета скоростей реакций. В первом случае ПП могут оказаться более эко- [c.200]

    Рис, 2.6. Зависимость константы скорости реакции [в моль/(л-мин)] синтеза мочевины от днэлектрнче-ской постоянной растворителя  [c.36]

    При фотохимическом хлорировании выбор температуры не ограничен какими-либо рамками, так как она почти не влияет па скорость реакции. Тем не меиее выгодно работать ири охлаждении водой, поэтому фотохимический синтез гексахлорциклогексаг[а ведут при 40—60 °С. [c.113]

    Синтез простых эфиров из хлорпроизводных применим для широкого круга веществ, причем скорость реакции зависит как от нукл( 0фильн0сти алкоголята (фенолят), так и от реакционной способности хлорпроизводного, которая изменяется в последовательности, обычной для нуклеофильных реакций. [c.267]

    Окислительное дегидрирование проводят при недостатке кислорода, поэтому глубокое окисление не получает значительного развития. В то же время само дегидрирование, инициируемое кислородом, протекает быстрее, и все ранее упомянутые побочные реакции не так заметны, как при дегидрировании первичных спиртов. Это позволяет работать при более высокой температуре (500—600°С), большой скорости реакции и времени контакта 0,01—0 03 с. Выход формальдегида на пропущенное сырье достигает 80—85% при степени конверсии метанола 85—90%. Замечено, что добавление воды к исходному метанолу повышает выход и степень конверсии, по-видимому, в результате разложения ацеталей. Р атализаторами синтеза формальдегида этим методом служит металлическая медь (в виде сетки или стружек) или серебро, осажденное на пемзе. Последний катализатор оказался более эффективным и широко применяется в промышленности. [c.475]


Смотреть страницы где упоминается термин Синтез скорость реакции: [c.346]    [c.45]    [c.220]    [c.526]    [c.213]    [c.287]    [c.89]    [c.96]   
Основы общей химической технологии (1963) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Возможное уравнение скорости реакции синтеза

Диеновый синтез Дильса—Альдера реакция влияние растворителя на скорость

Константы скорости реакций синтеза

Константы скорости реакций синтеза аммиака

Константы скорости реакций синтеза метанола

Равновесие и скорость реакции синтеза

Реакции синтеза

Синтез САР для управления процессом в окрестности экстремального значения константы скорости реакции

Синтез САР при лимитировании процесса константой скорости реакции

Синтез САР при лимитировании процесса скоростью поверхностной химической реакции

Синтез алмаза из смесей углеводородов (неаддитивность скоростей реакций)

Скорость реакции прямого синтеза

Скорость реакций синтеза аммиака



© 2024 chem21.info Реклама на сайте