Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степень действие ионов металла

    Затем медь была удалена из комплекса действием сероводорода, в результате чего был получен цитруллин. Куртц провел таким образом синтезы различных аминокислот. Эффективность маскирующего действия ионов металлов в сильной степени зависит от стабильности комплекса. [c.370]

    Использование ионитов в качестве катализаторов имеет преимущества перед растворимыми кислотами и щелочами благодаря более мягкому воздействию ионообменных групп уменьшается протекание побочных реакций продукты реакции и катализатор легко разделяются фильтрованием устраняется коррозионное действие кислот на металл, что упрощает конструктивное оформление процесса. Иониты легко регенерируются, а потому используются многократно, что снижает расход катализатора на целевой продукт [236, 238—240]. Во многих случаях каркас ионита используют как носитель металла-катализатора. Насыщая катионит соответствующими ионами металла с его последующим восстановлением, удается достичь высокой степени дисперсности катализатора [241]. Однако твердые органические контактные массы отличаются [c.175]


    Скорость коррозии в значительной степени зависит от совместного действия всех факторов, влияющих на процесс. Изменение состава окружающей среды может замедлить или ускорить коррозию. Так, ионы СГ в ряде случаев увеличивают скорость коррозии, разрушая защитную пленку. В том же направлении действуют и ионы металлов с переменной валентностью + е). Другие вещества (ингибиторы) замедляют процесс коррозии. Температура окружающей среды (грунта) также способствует изменению скорости коррозии, которая увеличивается с ростом температуры и наоборот. Отсюда следует, что при прокладке трубопроводов в мерзлых грунтах скорость коррозии невелика, но она резко увеличивается при их оттаивании. [c.13]

    Попадание ионов тяжелых металлов в почву может иметь нежелательные последствия, так как ионы никеля, меди, кадмия способствуют ослаблению жизнедеятельности почвенных бактерий, в значительной степени определяющих плодородие почвы. Ионы свинца и кадмия приводят к уменьшению урожая и изменениям в химическом составе растений, причем р увеличением возраста растений концентрация в них кадмия, свинца и цинка повышается. Ионы металлов оказывают вредное воздействие на организм человека. Так, кадмий вызывает заболевание почек, а никель оказывает канцерогенное действие на различные органы человека [3]. [c.4]

    К ионным относятся и окислительно-восстановительные каталитические реакции в растворах, ускоряемые ионами металлов с переменной степенью окисления Си +, Мп2+, Ре +. Примером может служить ускоряющее действие ионов Ре + при гомогенном окислении 50г в 50з в растворе сульфата железа, при пропускании че- [c.221]

    Этот процесс медленный, но он ускоряется при нагревании и воздействии света. Поэтому определения с использованием растворов иода следует проводить на холоду. Ионы металлов с переменной степенью окисления (особенно также оказывают каталитическое действие на окисление иодида. Окисление иодида способствует уменьшению pH в нейтральных растворах иода окисление незначительно. В связи с этим необходимо хранить стандартный раствор иода в темной бутыли с притертой пробкой. [c.321]

    В каталитическом процессе с металлами или окисями металлов в качестве катализаторов Писаржевский различает две стадии. Первоначально электроны, освобождаемые металлом, располагаются в виде тонкого слоя вокруг металла. Это соответствует конечному состоянию равновесия первой стадии. Лишь быстро двигающиеся электроны излучаются металлом в обыкновенных условиях электроны, обладающие малой скоростью, уходят обратно в металл, притягиваясь его ионами. Во второй стадии слой электронов притягивает молекулы (к своей адсорбирующей поверхности эти молекулы проникают внутрь металла, образуя твердый раствор. Быстро окисляющиеся металлы (например, цинк) образуют на поверхности пленку окиси, которая препятствует образованию слоя электронов поэтому металлическая поверхность должна быть чистой, чтобы она могла катализировать реакцию. Это ограничение действительно для обычных условий, но не для тех, когда применяется энергия видимого света или лучей Рентгена, которая освобождает электроны с такой силой, что пленка из окиси не может предохранить металл и влияние состояния поверхности, как и влияние адсорбции, становится незначительным. Катализирующее действие окисей металлов Писаржевский объяснял с той же точки зрения, что и действие металлов. Диссоциацию на электроны и ионы (хотя и идущую в очень малой степени, как это показывает положение окислов в электродвижущем ряду), можно представить следующим образом  [c.65]


    Наиболее распространены методы определения фторид-ионов, основанные на реакциях разрушения окрашенных комплексов металлов. Фторид-ионы образуют комплексы с рядом катионов (железо, титан, цирконий и др.). С другой стороны, эти катионы образуют окрашенные комплексы со многими реактивами. Некоторые из окрашенных соединений разлагаются при действии ионов фтора. Фторидные комплексы металлов не очень прочны, поэтому для определения фтора можно применять только сравнительно малопрочные окрашенные комплексы металлов или необходимо создать такие условия реакции (например, повышая кислотность), при которых уменьшается их прочность. Это еще в большей степени относится к определению хлорид- и сульфат-ионов. [c.29]

    При исследовании реакции декарбоксилирования уксусной кислоты в процессе каталитического окисления /г-ксилола при температурах 130—215 С установлено, что при использовании (Со—Мп—Вг)-катализатора наиболее важным фактором, определяющим протекание побочной реакции декарбоксилирования, является совместное действие катализатора и промотора. Степень декарбоксилирования зависит от соотношения ионов металла и бромида И не зависит от их абсолютного содержания в реакционной смеси [128]. [c.49]

    В пласте под воздействием температуры, pH и пластовой воды происходит загущение закачиваемого состава вплоть до образования гидрогелей различной степени подвижности. Добавление в раствор сшивателя (ионов металла) позволяет целенаправленно регулировать свойства растворов. При применении ЭЦ без сшивания на ранней стадии заводнения происходит загущение закачиваемой воды без образования гидрогеля. На этой стадии в результате снижения подвижности закачиваемого агента происходит общее выравнивание фронта вытеснения нефти без языкообразного прорыва воды. На поздней стадии разработки при высокой степени обводненности под действием ионов металла, содержащихся в пластовой воде, образуется гидрогель. Для получения стойких, неподвижных гидрогелей применяются сшийатели. В результате образования малоподвижных и неподвижных гелей происходит блокирование поступления воды в промытые зоны пласта и направление рабочего агента в зоны, не охваченные воздействием. [c.531]

    Лредполагается, что в связывании принимает участие тирозин так, что молекула тестостерона располагается параллельно циклу тирозинового остатка, а группы СО или ОН тестостерона вступают во взаимодействие с фенольной группой. Степень специфичности при таких явлениях столь велика, что даже септические изомеры ингибиторов оказывают различное ингибирующее действие. Ионы металлов также присоединяются лишь к небольшому числу центров. Для сывороточного альбумина было найдено, что его молекула может связать восемь ионов кальция или магния или 16 ионов меди, причем энергия связывания каждого последующего иона меньше энергии связывания предыдущего, как это наблюдается в комплексных соединениях. Тот же белок может связать 24 молекулы фенилбутрата, 22 молекулы метилового оранжевого и т. д. [c.163]

    Для многих металлов известны соединения, в которых их положительно заряженные атомы, как и у неметаллов, входят в состав анионов. К таким соединениям относятся КМПО4, КгСгО и др. Одна из характерных особенностей металлов — их способность образовывать в водных растворах свободные, а вернее гидратированные, положительно заряженные ионы. Способность гидратироваться выражена в меньшей степени у ионов металлов, имеющих 8-элект-ронный внешний слой, в связи с тем что эти ионы слабее деформируются сами и оказывают меньшее поляризующее действие на окружающие их молекулы и другие ионы, чем ионы, во внешнем слое которых находится 18 и близкое к этому число электронов. Кроме того, способность гидратироваться увеличивается с уменьшением размеров ионов и увеличением их заряда. О способности ионов к гидратации можно судить по теплотам их гидратации. Очевидно, чем больше у иона выражена способность к гидратации, тем больше и теплота этого процесса. Теплота гидратации составляет 121 ккал/г-ион, а s" — 63 ккал1г-ион. Ионы Mg " имеют боль- [c.373]

    Было обнаружено, что определенные ионы металлов способны функционировать как суперкислоты (или суперэлектрофилы) и за счет этого в сильнейшей степени ускорять некоторые реакции. Окислительно-восстановительные свойства ионов переходных металлов были с успехом использованы для катализа реакций переноса электрона. Развитие координационной химии значительно способствовало пониманию действия ионов металлов как катализаторов и интенсифицировало поиск каталитически активных металлсодержащих систем включающих новые необычные лиганды. [c.10]

    Детальные исследования по определению оптимальной концентрации деактиваторов для подавления каталитического действия металлов, встречающихся при хранении и применении автомобильных бензинов, показали, что увеличение концентрации от О до 0,010% почти пропорционально увеличивает химическую стабильность бензина, добавление деактиватора в концентрации свыше 0,010% малоэффективно, так как лишь незначительно улучшает стабильность бензинов. Оптимальной концентрацией деактиваторов типа салицилиден-о-аминофенола и дисалицилиденэтилендиамина для химической стабилизации товарных автомобильных бензинов является 0,01%. Следует отметить, что если действие деактиватора заключается в том, что он связывает растворенные ионы металла, то можно предположить, что добавление деактиватора может вызвать увеличение степени растворения металла в бензине. Для проверки этого предположения были поставлены опыты по окислению бензина в присутствии меди с разным, заведомо большим, количеством деактиватора. Полученные результаты показывают, что присутствие деактиватора не вызывает увеличения степени растворения металла изменение массы медной пластинки при окислении бензина с разным количеством салицилиден-о-аминофенола показано ниже  [c.258]


    Действие большинства ингибиторов травления связано с образованием на поверхности металла адсорбционных слоеб, по-видимому, не толще одного монослоя. Они существенно препятствуют разряду ионов Н+ и переходу в раствор ионов металла. В частности, иодиды и хинолин именно таким образом ингибируют коррозию железа в соляной кислоте [31 ]. Некоторые ингибиторы затрудняют в большей степени протекание катодной реакции (увеличивают водородное перенапряжение), чем анодной, другие— наоборот, однако в обоих случаях адсорбция происходит, вероятно, по всей поверхности, а не на отдельных анодных или катодных участках, и в какой-то степени тормозятся обе реакции. Следовательно, при введении ингибитора в кислоту не происходит значительного изменения коррозионного потенциала стали (<0,1 В), в же время скорость коррозии может существенно уменьшаться (рис. 16.3). [c.269]

    Амальгамы, например, щелочных и щелочноземельных металлов обладают более сильными восстановительными свойствами. Но при недостат1че в ириэлектрод-иом слое ионов металла восстанавливаются ионы водорода, Тогда в растворе образуется свободная щелочь, под действием которой ионы многих металлов дают осадки гидроксидов. Этот метод применим и для получения растворов или осадков солей металлов, находянгихся в низшей степени окисления (напрпмер, Ре+з, У+ , [c.27]

    Таким образом, в VIII группе периодической системы изменение устойчивости соединений с характерными степенями окисления элемента-металла подчиняется тем же закономерностям, которые свойственны элементам-металлам других групп переходного ряда при переходе по группе сверху вниз степень окисления наиболее стабильных соединений растет. Мы уже много раз обращали внимание читателя, что это связано с двояким характером изменения поляризующего действия в группах переходных металлов и сопровождающим это изменение переходом от соединений с преобладающе ионной связью (низкая степень окисления, например, [РеЧ(Н20)в][Fe " (Н20)б] +) к соединениям с преобладающей ковалентной связью (высокая степень окисления, например, 0s i"04). [c.152]

    При погрул<ении металла, например цинка, в воду ионы металла, входящие в кристаллическую решетку, под действием диполей воды отрываются и переходят и раствор. Происходит поверхностное растворение металла, отчего на цинковой пластинке остаются в избытке электроны, т. е. она зарядится отрицательно. Возникающий отрицательный заряд будет все в большей степени препятствовать уходу положительных ионов цинка в раствор. Наконец, растворение металла прекратится вообще, точнее между пластинкой и раствором установится динамическое равноиесне, подобное равновесию в насыщенном растворе (скорость растворения металла станет равной скорости обратного втягивания положительных ионов цинка из раствора в решетку). [c.278]

    Скорость коррозии в значительной степени зависит от совместного действия внешних факторов. Изменения состава среды может замедлить коррозию или, наоборот, активизировать ее. Так, ионыС1- в ряде случаев увеличивают скорость анодного процесса, разрушая защитную пленку. Ионы металлов с переменной валентностью, как, например, Ре + реЗ-1- - - е, способствуя деполяризации микрокатодов, ускоряют катодный процесс и в конечном счете процесс коррозии. Другие вещества (ингибиторы) могут замедлить коррозию. [c.5]

    Структура И. зависит от кол-ва ионогенных групп и типа иона металла. При низкой концентрации ионизованньпс групп (менее б% по массе) наблюдается образование иоиных ассоциатов, содержащих по неск. ионных пар. Последние выполняют роль межмол. связей, придавая И. св-ва сетчатых полимеров. С увеличением концентрации ионизованных групп образуются ассоциаты с размерами от неск. нм до 15 нм. Ионные ассоциаты разрущаются при повыш. т-рах, действии сильных к-т или щелочей. Наличие ионных ассоциатов изменяет характер упаковки полимерных цепей и приводит к резкому ограничению внутримол. теплового движения, повышению т-ры стеклования, затруднению кристаллизации и, следовательно, к снижению степени кристалличности, уменьшению размеров кристаллов и изменению морфологии кристаллич. структуры. [c.262]

    Циммерманн и Чу ЯОО] подтвердили наблюдения Гудингса Я07 ] о своеобразном стабилизирующем действии перемешивания. По их данным, приведенным да рис. 4.20 и 4.21, число образующихся при 280 "С карбоксильных групп в условиях перемешивания примерно в 1,5 раза меньше, чем без перемешивания. Влияние катализатора на степень пиролиза Циммерманн и Чу объяснили более легким распадом по связям —С—Н и —С — О— под влиянием иона металла, облегчающего отщепление протона и образование ви-нильной структуры  [c.88]

    ДЛЯ галогенидов щелочных металлов. Отметим, что энергия решетки возрастает по мере уменьшения размеров катиона или аниона. Например, она систематически возрастает в рядах Lil, LiBr, Li l, LiF или sF, RbF, KF, NaF, LiF. В первом из этих рядов происходит последовательное уменьшение размеров галогенид-иона (при постоянном ионном заряде), а во втором ряду — уменьшение размеров иона щелочного металла. Наблюдаемые изменения энергии решетки на самом деле обусловливаются не только электростатическим притяжением ионов, которое характеризуется ионным потенциалом. Определенную роль играют и такие факторы, как изменение сил отталкивания между ионами с зарядами одного знака, а также степень деформации ионов под действием окружающего их электрического поля. Оба эти фактора в свою очередь в какой-то мере зависят от взаимного расположения ионов в кристалле и от их ионного потенциала (подробнее об этом см. гл. 10). Данные факторы проявляются не столь заметно при сопоставлении энергий решетки различных галогенидов щелочных металлов, но приобретают важное значение при сравнении свойств веществ, состоящих из ионов с более высоким ионным потенциалом или имеющих не такое электронное строение, как у атомов благородных газов. В рассматриваемом случае налицо преобладающая роль ионного потенциала. [c.131]

    Взаимодействие между органическим реагентом и ионом металла можно условно разбить на две стадии Первая — это сближение реагирующих частиц, точнее катиона металла и функционально-аналитической группы реагента Вторая стадия, проявляющаяся на расстояниях, близких к длине химической связи, — это непосредственное взаимодействие катиона металла с отдельными донорными атомами, входящими в состав функционально-аналитической группировки Это взаимодействие характеризуется электронным обменом и приводит к образованию продукта реакции Здесь не рассматриваются осложняющие обстоятельства, ю)то-рые сопровождают этот процесс десольватация реагирующих частиц, образование циклов и другие Необходимо обратить внимание на то, что, согпасно приведенным выще соображениям, удаленные заместители разной природы лищь в незначительной степени изменяют электронное состояние атомов функционально-аналитической группировки реагента Эти изменения поэтому не должны существенно отражаться на реакционной способности данной группировки по отнощению к определяемому иону металла Действительно, опыт показывает, что реакционная способность и избирательность действия реагентов-аналогов существенно не изменяется с изменением природы заместителей [c.183]

    Таким образом, введение атома Р" вместо М", повышая селективность комплексообразования хеланта по отношеник> к ряду катионов, одновременно снижает устойчивость комплексона к действию окислителей и соответственно ограничивает число ионов-комплексообразователей низшими степенями окисления соответствующих металлов Нередко при комплексообразовании дентатность таких лигандов реализуется не полностью. Для таких катионов, как никель(П) и цинк(П), по-видимому характерно образование связей либо с атомами кислорода, либо с атомами фосфора [301—303]. Однако имеются и примеры замыкания циклов, включающих одновременно атомы Р и О. Здесь следует упомянуть комплексонат родия(1) с дифенилфос-финуксусной кислотой [394]. [c.220]

    Неконкурентное ингибирование вызывается веществами, не имеющими структурного сходства с субстратами и часто связывающимися не с активным центром, а в другом месте молекулы фермента. Степень торможения во многих случаях определяется продолжительностью действия ингибитора на фермент. При данном типе ингибирования благодаря образованию стабильной ковалентной связи фермент часто подвергается полной инактивации, и тогда торможение становится необратимым. Примером необратимого ингибирования является действие йодацетата, ДФФ, а также диэтил-и-нитрофенилфосфата и солей синильной кислоты. Это действие заключается в связывании и выключении функциональных групп или ионов металлов и молекуле фермента. [c.150]

    К числу наиболее распространенных реагентов химической промышленности принадлежат серная, фосфорная, азотная, соляная и уксусная кислоты. Они используются в производстве других реактивов, очистке металлов, нанесении металлических покрытий и в целом ряде других производств. Когда кислоты используются, например, для протравливания металлических поверхностей, остаются растворы, содержащее неиспользованную кислоту и ионы таких цветных металлов, как медь, ванадий, серебро, никель, свинец. Эти весьма обильные отходы, которые по традиционным технологическим схемам обычно попадали в ближайшие водоемы, не только представляют большую экологическую опасность, но и содержат исключительно ценное вторичное сырье. В последнее время были разработаны безотходные производственные процессы, рационально использующие такие отходы. Кислоты отгоняют при нагревании, причем промежуточная очистка пара позволяет в ряде случаев достигнуть более высокой степени чистоты, чем в традиционном основном производстве тех же кислот. Остающийся раствор, содержащий 1 яжелые металлы, собирают в специальные емкости, откуда металлы выделяются действием солей, содержащих анионы, селективно осаждающие ионы металлов. Далее металлы могут быть извлечены из осадков обычными методами и использованы вторично. [c.485]

    СИККАТИВЫ, катализаторы окислит, полимеризации ( высыхания ) ненасьш , растит, масел ускоряют пленкообразование маслосодержащих лакокрасочных материалов (олиф, масляных и алкидных лаков и др.). Наиб, распрост раненные С.— соли (мыла) металлов со степенью окисл >2 и одноосновных орг. к-т, преим. нафтенаты, линолеаты таллаты, резинаты, октоаты. Не раств. в воде, раств. в рас тит. маслах и орг. р-рителях. По механизму действия под разделяются на первичные, или истинные (напр., соли Со Мп, РЬ, Ре), и вспомогательные, или промоторы (соли Са 2п), к-рые самостоят. каталитич. действия не проявляют но активируют первичные С. В пром-сти использ. обычно комбиниров. С., содержащие ионы неск. металлов, или смеси различных С. Содержание ионов металла в лакокрасочных материалах естеств. сушки составляет 0,01—0,5% (от массы масла), в материалах горячей сушки — в 3—5 раз меньше. Получ. взаимод. ацетата, сульфата или др. соли металла с Ма-солью орг. к-ты в водном р-ре (осажденные [c.524]

    В практическом отношении нри выборе системы раствор— носитель всегда следует помнить о возможной сильной агрессивности раствора в отношении носителя при очень высоком или очень низком pH. Степень этого воздействия зависит, кроме всего прочего, и от величины поверхности носителя. Опыт показывает, что вещества в активной форме (например, у-АЬОз) намного реакционноспособнее, чем вещества, подвергнутые высокотемпературной обработке и превращенные в кристаллические модификации с низкой поверхностью и с низкой собственной активностью (например, а-А Оз). Уголь относительно инертен, особенно в сильнографитированном состоянии, но окись алюминия с высокой поверхностью и окись хрома чувствительны к воздействию растворов с высоким и низким pH на алюмосиликаты и цеолиты действуют растворы с низкими pH, а на двуокись кремния с высокой поверхностью— растворы с высоким pH. Эта проблема возникает главным образом при выборе pH раствора, применяемого для ионного обмена или пропитки, с тем чтобы стабилизовать желаемый ион металла в растворе в таком случае необходимо поступиться или стабильностью иона, или химической устойчивостью носителя. Едва ли следует подчеркивать, что добавляемые кислоты или основания (или буфер) должны образовывать летучие соединения, так как это позволяет избежать загрязнения катализатора. Тем не менее, когда кислоты или основания применяют в отсутствие буфера и начальное pH соответствует значениям, при которых носитель не взаимодействует-с ними, полностью устранить возможность агрессивного воздействия на носитель все же трудно, так как концентрация кислоты или основания может возрастать в процессе сушки. Даже если в раствор, применяемый для пропитки или обмена, не добавляют кислот или основ.аний, способность носителя взаимодействовать с ними может оказаться важной. Например, обладающий основными свойствами носитель увеличивает степень гидролиза растворенного вещества, если гидролиз сопровождается образованием кислоты. [c.185]

    С этой точки зрения заслуживают внимания те случаи, в которых ионы металлов активируют действие ферментов, яе образуя в то же время каких-либо определенных соединений с ними. Эффект ориентации, позволяющий достигать определенной степени порядка после того, как завершились превращения в сильно хаотизированном переходном состоянии, очевидно, чрезвычайно расширяет круг процессов, которые данная система может катализиров ать. [c.207]

    Сульфид-ионы, как уже было упомянуто, редко используют в качестве осадителей в весовом анализе из-за их неспецифического осаждающего действия, а также из-за неподходящих для целей весового анализа свойств. Осаждение ионов металлов в виде гидроксидов в большой степени страдает теми же недостатками, но все же находит применение. Примером служит осаждение Ре + и аммиаком. Метод считается наиболее точным для определения этих металлов. Использование аммиака в качестве осадителя имеет то-преимущество, что большая часть двухвалентных катионов, таких, как Си +, N12+, 2п +, 0(1 +, в аммиачной среде образует устойчивые комплексы, которые остаются в растворе. Употребление аммиака, однако, не предотвращает осаждения других трех- и четырехвалентных ионов (Сг +, Т1 +), а при определенных условиях даже и некоторых двухвалентных [например, осаждение Mg(0H)2 в отсутствие избытка солей аммония в растворе]. Иногда при анализе пород и минералов на определенном этапе производится осаждение соответствующих гидроксидов при помощи аммиака, их прокаливание и совместное взвешивание. Полученный результат обозначается как РгОз и представляет собой сумму нескольких оксидов, обычно РегОз + АЬОзТ102-Ь Р2О5, а при наличии в пробе хрома и циркония —еще и оксидов этих, элементов. При необходимости отдельные компоненты смеси оксидов можно определять раздельно. [c.221]

    Экспериментсшьно установлено два типа связи водорода с медью,никелем, платиной, железом и вольфрамом [44,45]. При г-типе связи атом водорода заряжен отрицательно и расположен над поверхностным атомом металла на расстоянии 0,25 нм при 5-типе атом водорода заряжен положительно и находится между ионами металла на глубине -V 0,05 нм. При адсорбции 5-типа водород ведет себя, подобно растворенному водороду в решетке металла. Большое влияние на проникновение водорода в металл оказывают стимуляторы или промоторы наводороживания. К основным стимуляторам относятся гидриды элементов И / , Аз, 5в, В / и и /5, 5е, Те/ групп, которые увеличивают долю внедряющегося в сталь водорода 43,46,47]. Только гидриды перечисленных элементов проявляют катализирующее действие. Слои элементных Аз, 5в, 5е и Те, которые в определенных условиях осаждаются на поверхность металла, тормозят проникновение водорода, т.е. действуют как ингибиторы наводороживания 43]. Катализирующее действие гидридов может достигаться за счет торможения рекомбинации или в результате облегчения разряда в обоих случаях растет степень заполнения поверхности адсорбированными атомами водорода. Предполагается, что промотирующие гидриды снижают энергию активации процесса Н, уменьшая силы сцепления между атомами металйа 47]. На рис. 2 показана относительная эффективность новодороживания стальных катодов под действием некоторых элементов, введенных в количестве 10 мг в 10%-ный раствор серной кислоты [46]. Как [c.17]

    Бор имеет отчетлйьо выраженный неметаллический характер. Однако его аналоги — типичные металлы. Соответственно своему неметаллическому характеру бор проявляет склонность к образованию гомеополярных соединений. Аналоги бора образуют преимупцественно гетерополярные соединения. Все они способны существовать в водных растворах в виде свободных, если не принимать во внимание оболочку из молекул воды, положительных трехзарядных ионов. Бор таких ионов не образует. Все же в соединениях с сильно электроотрицательными элементами бор также можно рассматривать как положительно трехвалентный необходимо только учесть, что свойства этих соединений вследствие сильного поляризующего действия иона В , обусловленного сочетанием небольшого радиуса с относительно большим зарядом, в значительной степени приближаются к свойствам гомеополярных соединений. [c.352]

    Конденсация радикалов магнийорганического соединения. Под действием некоторых неорганических галогенидов алкильные группы реактива Гриньяра могут конденсироваться. Поскольку участвующий в реакции ион металла при этом восстанавливается, такую конденсацию можно классифицировать как реакцию окисления. Так, под действием хлорной меди бензилмагнпйхлорид в значительной степени превращается в сгшж-дифе-нилэтан  [c.393]

    Исследование действия на наводороживание стальных катодов свыше 120 органических веществ, принадлежащих более чем к 20 классам органических соединений, позволяет утверждать, что для проявления каким-либо органическим веществом ингибирующего наводороживание металла катода действия необходима адсорбция молекул этого вещества на поверхности металла катода. От степени покрытия поверхности металла адмолекулами ингибитора, от прочности связи зтих адмолекул с поверхностью металла и будет зависеть проницаемость адсорбционного слоя ингибитора для разряжающихся ионов Н3О+ или молекул Н2О. [c.250]


Смотреть страницы где упоминается термин Степень действие ионов металла: [c.533]    [c.116]    [c.185]    [c.127]    [c.71]    [c.309]    [c.284]    [c.524]    [c.366]    [c.34]    [c.264]    [c.102]    [c.230]    [c.316]    [c.104]    [c.362]    [c.19]   
Химия древесины Т 1 (1959) -- [ c.276 ]




ПОИСК







© 2025 chem21.info Реклама на сайте