Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические методы определения урана

    Титриметрические методы определения урана делятся на несколько групп, каждая из которых основывается на использовании определенной химической особенности урана. Очень широкое распространение имеют титриметрические методы определения урана, основанные на окислительно-восстановительных свойствах ионов уранила и урана. Несколько меньшее значение имеют методы, основанные на титровании солей урана или уранила растворами осадителей или комплексообразующих веществ. Наконец, еще меньшее значение имеют все косвенные методы, состоящие в осаждении урана при помощи осадителей, содержание которых определяют в полученных осадках тем или иным титриметрическим методом. [c.77]


    Чувствительность спектрального анализа можно повысить, используя химические методы отделения и обогащения проб. Так, для спектрального определения бериллия (наряду с другими примесями) в уране и плутонии предварительно отделяют его от основных элементов [484—486]. Этот метод позволяет значительно сократить содержание тяжелых металлов в сжигаемой пробе, что чрезвычайно важно при анализе радиоактивных препаратов. [c.101]

    Кислые растворы, содержащие иодиды, при облучении ультрафиолетовым светом в присутствии урана(У1) выделяют свободный иод [177, 232, 307]. Уран(У1) при этом восстанавливается до урана(1У). Окисление иодида до свободного иода при доступе кислорода воздуха происходит в большей степени, чем в его отсутствие [296]. Это объясняется тем, что образующийся уран(1У) постепенно вновь окисляется свободным иодом до урана(У1). Реакция не проходит до конца, и поэтому она не нашла применения в химическом анализе. Однако в присутствии веществ, связывающих свободный иод (например, резорцин), она может протекать количественно, а проведение реакции в присутствии кислорода воздуха, окисляющего уран(1У) снова до урана(У1), может быть взято за основу для разработки фотокинетического метода определения урана по количеству образующегося иодированного продукта. [c.92]

    Химические свойства ниобия и тантала очень близки. Это затрудняет их разделение и анализ при помощи химических методов. Особенно трудной задачей является анализ минералов, в которых присутствующие вместе ниобий и тантал связаны с титаном, торием, ураном и редкими землями. Поэтому совершенно очевидна целесообразность применения для количественного определения этих элементов спектральных методов анализа, которые порой (при малых содержаниях Nb и Та) удобно использовать после химического обогащения. [c.191]

    Своеобразные химические свойства фтора и большое практическое значение многих его соединений обусловили развитие ряда методов, основанных на образовании или разложении нерастворимых и комплексных соединений. Известно, что ионы фтора образуют в водных растворах прочные комплексные (иногда нерастворимые) соединения с алюминием, железом, кремнием, цирконием, ураном, титаном и другими элементами. Некоторые соединения (например, фтористый алюминий) растворимы в воде, но очень мало диссоциируют и почти не подвергаются гидролизу. Эти свойства соединений фтора широко используются в химическом анализе для определения и отделения ряда элементов, а также для определения ионов фтора Для методов, основанных на образовании или разложении соединений фтора, характерны следующие группы реакций. [c.426]


    Для определения малы.х количеств платины и палладия в уране обычные методы спектрального анализа, описанные выше, непригодны. Для успешного анализа необходимо применение методов предварительного химического обогащения проб. [c.368]

    Т. широко применяют в аналитич. химии для отделения и разделения элементов методами экстракции, для концентрирования при определении следов металлов, при переработке ядерного горючего, разделения элементов, близких по химич. свойствам, как, напр., редкоземельных или трансурановых элементов. К преимуществам Т. как экстрагента относятся высокие коэфф. распределения ионов металлов в системе вода—Т.— органич. растворители, что позволяет в большинстве случаев достигнуть практически полного извлечения, нелетучесть в широком интервале темп-р, вследствие чего работа с пим безопасна, малая растворимость в воде, малая чувствительность к радиоактивным излучениям, химическая инертность. Из р-ров нитратов Т. экстрагирует U ( 1), Се (IV), Zr, Hf, Th, Pu (IV), Ru (VI), РЗЭ, Np (IV), Np (VI), Am (VI), Au (IJI), Fe (III), S , Pa (IV). При определенных условиях уран может быть отделен практически от всех элементов. Для экстракции Т. применяют в виде р-ров в различных органич. растворителях (бензол, хлороформ, спирты, эфиры и т. д.) при этом снижаются коэфф. распределения, но увеличивается селективность. Для повышения селективности, кроме того, имеет большое значение применение различных маскирующих комплексообразующих в-в (в особенности комплексонов), а также выбор концентрации Т. в инертном растворителе, концент-)ации высаливателей и концентрация азотной к-ты. [c.128]

    Наиболее удобными методами, которыми следует пользоваться в случае силикагелей, непористых или широкопористых, являются реакция с хлористым тионилом, этерификация метанолом, н-бута-нолом или высшими спиртами, ионный обмен, например, с ионом уранила (реагента, общая применимость которого пока еще не проверена). В табл. 18 сравниваются результаты, полученные для образца аэросила различными методами. Остается нерешенным еще один вопрос присутствует прочно связанная адсорбированная вода в стехиометрических количествах или нет. Если эта вода находится не в молекулярной форме, то должно наблюдаться удвоенное количество силанольных групп по сравнению с количеством, определенным различными химическими реакциями. Плотность упаковки силанольных групп в этом случае достигала бы 6,6 ОН/100 А . Это значение больше, чем плотность упаковки (около 50Н/100 А ), найденная на основе структуры сетки ЗЮг (см. раздел П1, А, 1). Трудно понять, почему с большинством реагентов должна реагировать только половина силанольных групп. Стерических препятствий для молекул, меньших чем метиловый спирт, не должно было бы наблюдаться. Из химических реакций только реакции нейтрализации гидроокисью кальция (принимая, что обмен эквивалентный) [c.254]

    Включения в техническом уране. Наиболее чистый уран, производимый в больших количествах для использования в реакторах, получается прямым восстановлением по методу, описанному в гл. IX. Количество неметаллических включений (см. рис. 9. 2) в этом уране, содержащем, по данным химического анализа, всего около 0,015% примесей, относительно мало. Такая чистота металла является определенным преимуществом для уста- [c.320]

    Широкое распространение для определения урана имеет люминесцентный метод В, С. Быковой [11] предложен ускоренный метод химической подготовки к люминесцентному определению урана в горных породах. Позднее [23] этот метод был дополнен выделением уран на фосфате титана. [c.350]

    Рентгеноспектральный метод анализа по эмиссионным спектрам элементов чаще всего используется для количественного определения состава объектов, трудно поддающихся химическому разделению и анализу. Обычно определяется содержание таких элементов, как ниобий, тантал, вольфрам, рений, молибден, цирконий, гафний, стронций, торий, уран, иттрий, свинец, титан, ванадий и некоторых других тяжелых элементов. В редких случаях этот метод применялся для количественного определения кремния, галлия, германия, теллура и селена. Так как используемые во всех этих случаях приемы анализа очень близки и отличаются лишь незначительными деталями, они будут проиллюстрированы в настоящем параграфе в основном на примере количественного определения ниобия и тантала и отчасти урана и тория. [c.191]

    В 40—50-е годы прогресс советской аналитической химии чистых веществ был прежде всего связан с развитием атомной промышленности, которой необходимы высокочистые уран, цирконий, ниобий и другие металлы, а также графит. В этой области активно работали многие химики-аналитики, например П. Н. Палей. В 60-е годы или несколько раньше еще более чистые вещества потребовались электронной технике —германий, кремний, арсенид галлия и другие полупроводники. Необходимо было наладить производство люминофоров, сцинтилляционных материалов, которые также должны отвечать жестким требованиям к чистоте. Перед химической промышленностью была поставлена задача изготовления особо чистых химических реактивов и большого числа чистых вспомогательных веществ. Стали существенно более чистыми металлы и сплавы, в частности применяемые как жаропрочные и химически стойкие. Аналитическая химия была призвана обеспечить новые области техники эффективными методами контроля. Главное требование состояло в нахождении способов определения ничтожных примесей в веществах содержание примесей часто составляет 10 —10- %. Решение этой задачи требовало снижения предела обнаружения элементов во много раз. [c.106]


    Метод ультрамикрообъемного определения натрия разработан сравнительно подробно. Он является одним из наиболее точных методов определения металлов и может быть использован для определения всего лишь 0,1 у натрия с точностью, близкой или равной точности, достигаемой с помощью обычных микрометодов. Почти все химические методы определения натрия основаны на осаждении комплексной соли триацетата натрия и уранила с цинком [1 ], магнием 12] или марганцем [3]. На этой же реакции основан ультрамикрометод [4], который состоит в осаждении уранилацетата натрия-цинка, отделении осадка фильтрованием и определении количества натрия восстановлением уранила, содержащегося в осадке, и в последующем оксидиметрическом титровании четырехвалентного урана, полученного в результате восстановления ура- [c.156]

    Химические методы количественного определения урана, к которым относятся весовые и титриметрические методы, отличаются большим разнообразием. Это разнообразие обусловлено тем, что уран принадлежит к числу элементов, способных легко проявлять различную валентность, а также обладает ярко выраженной склонностью к образованию труднорастворимых соединений и комплексов с большим числом различных реагентов. Эти свойства урана находятся в тесной связи со строением его электронной оболочки, а такж с легкой поляризуемостью его ионов [54, 171 ]. [c.55]

    Большинство методов определения плутония основано на электрохимическом окислении плутония(III) до плутония (IV). Анализ выполняют в специально сконструированных электролитических ячейках, снабженных соответствующим рабочим электродом и обеспечивающих безопасность работы с радиоактивными растворами. При определении плутония в твердых и жидких плутонийсодержащих материалах [223], керамических огнеупорных топливных материалах [234], смесях урана и плутония [229, 236—238, 241], в растворах нитрата уранила, в продуктах облученного ядерного топлива [239, 240], металлокерамике, содержащей 15 7о РиС + иС и 10 % Ре [223], Ри после растворения анализируемого объекта химически или электрохимически восстанавливают до Ри . Его окисляют при контролируемом потенциале на платиновом или золотом электродах. Предложен прецизионный кулонометр для определения основного компонента — плутония методом ППК показаны способы устранения мешающего влияния примесей Ре, 1г, Р1, основанные на варьировании условий эксперимента [238, 235] и использовании новых вариантов прямой кулонометрии — хроматокуло-нометрии [168]. [c.67]

    Химические и электрохимические свойства лития таковы, что амперометрическое титрование его затруднено. Он почти не образует малорастворимых солей, образованием которых можно было бы воспользоваться для прямого титрования, не образует также комплексных соединений и имеет сильно отрицательное значение стандартного потенциала. Поэтому пока известно только два способа определения лития амперометрическим методом косвенное определение, заключающееся в осаждении лития уранилацетатом цинка, отделении и растворении осадка с последующим титрованием цинка раствором ферроцианида калия на фоне тартратно-ацетатного буферного раствора с рН=7,5—8 в водно-этанольной среде. Титруют при потенциале -Ь0>8 В (Нас. КЭ) на платиновом электроде. Количество определяемого лития — от 1 до 3 мг. Мещает определению уран (VI). Метод опробован на литийсодержащих материалах [1]. Второй способ — титрование вереде изопропилового спирта раствором щавелевой кислоты. Электроды — медный амальгамированный катод и медный анод, Дф=1,0 В. Нижний предел определения ЫО— моль/л. Метод разработан для последовательного определения калйя (см. Калий ), натрия и лития, причем авторы статьи [2] замечают, что оксалат лития образуется в последнюю очередь и что в отсутствие калия и натрия литий практически не титруется. [c.199]

    В качестве примера рассмотрим ряд тория. Элемент торий сравнительно очень стоек (его период полураспада равен 13 миллиардам лет). Химически он хорошо изучен и атомный вес его равен 232,1. Распад его идет через мезоторий, радиоторий и т. д. до ториевого свинца. Разные стадии его сопровождаются выбрасыванием а- или р-частиц, как видно из табл. 3. Для радиотория, получаемого отнятием от тория одной а- и двух р-частиц, находим атомный вес 232,1 —4,0 = 228,1. Он тоже был изолирован химическими методами. Наконец для конечного стойкого продукта — ториевого свинца ThD имеем суммарный процесс Th = ThD + 6а 4р, откуда атомный вес тория D равен 232,1 — 6-4,0 = 208,1. Другой ряд радиоактивных превращений начинается со сравнительно стойкого урана (период полураспада около 5 миллиардов лет), атомный вес которого был определен химическими путями и равен 238,2. Распад идет через радий, его эманацию (радон) и заканчивается урановым свинцом. При превращении в радий уран теряет три а-частицы и две (или несколько больше) р-частиц. Атомный вес радия должен быть равным 238,2 — 3 4,0 = = 226,2 (химическими методами получено 226,0 небольшое расхождение почти исчезает, если учесть еще поправку на потерю массы, связанную с выделением энергии). Суммарный процесс превращения урана в урановый свинец U=RaQ4--f 8я - - бр приводит к атомному весу последнего 238,2 — 8 4,0 = 206,2. [c.37]

    При определении азота в уране [327] хорошо согласуются результаты, полученные методами Дюма и Кьельдаля. При сравнении трех методов определения азота в сталях [876] (восстановительное плавление, окислительное плавление, химический метод) указывается, что результаты, иолученные первым методом, не всегда совпадают с данными двух других методов. Вместо широко распространенного способа определения азота в смеси экстрагированных из образца газов по разности давлений рекомендуется для повышения точности -анализа измерять непосредственно парциальное давление азота. В работе [1229] критически рассмотрены преимущества и недостатки масс-спектрометрического, активационного методов и метода изотопного разбавления при определении многих примесей, в том числе и азота, в бериллии. В области концентраций 0,003—0,2% N в н<елезе и стали наблюдается хорошее согласие между результатами, полученными методами Кьельдаля и изо-топного разбавления метод вакуум-плавления дает хорошие результаты лишь при 2100—2240° С. По данным работы [1157], при определении азота в сплавах Ре—81 наиболее удобным и точным оказался метод изотопного уравновешивания по сравнению с химическим методом и вакуум-плавлением. [c.235]

    При проведении анализа воздушной среды на содержание радиоактивных вешеств необходимо установить, с какими радиоактивными элементами проводится работа — короткожи-вушими или долгоживушими, какой вид излучения испускают изотопы, имеются ли радиоактивные цепочки (дочерние продукты) и процент их возможной равновесности, а также другие неактивные примеси, которые могут влиять на определение исходного вешества. Так, например, в условиях работы с минералами, содержащими уран и торий, могут выделяться одновременно с основными элементами продукты их распада (радий, полоний и др.). Для определения содержания радиоактивных элементов в большинстве случаев применяют радиометрический метод. Некоторые элементы (например, уран и торий) можно определять и химическим методом. Когда заранее известно, что в воздухе нет примесей других радиоактивных элементов, искомое вещество определяют по активности непосредственно на фильтрующем материале с помощью счетных установок (см. гл. V). [c.98]

    Стидмен и Страсхейм применяли экстракцию в том случае, когда прямой метод определения урана в рудах оказывался недостаточно чувствительным. Дальман и Райнигер экстрагировали уран из раствора эфиром для определения малых количеств этого элемента в образцах переменного состава. В дальнейшем уран определялся спектрально с использованием железа в качестве внутреннего стандарта. Описан также метод Р ] определения урана в двуокиси марганца. В этом случае проводилась экстракция гексаноном, и после химической обработки экстракта уран спектроскопически определялся в дуге с использованием серебряных электродов. [c.458]

    Отношение содержаний свинца из урана (РЬ ) и свинца из актино-урана (РЬ о ). Еще один метод определения возраста очень древних пород, содержащих уран, основан на определении отношения содержаний РЬ и РЬ207 — конечных продуктов распада в радиоактивных семействах урана (1)2 ) и актино-урана (и ). Этот метод проще в экспериментальном Отношении, чем метод 2. Результаты, полученные при его использовании, в меньшей степени зависят от механических и химических потерь урана и [c.494]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    В качестве среды использовались буферные ацетатные и карбонатные растворы [8, стр. 59]. Уран (порядка нескольких миллиграммов) выделяли на катоде в виде окисла, химическая и физическая природа которого зависела от условий осаждения. Этот осадок не пригоден для электровесового определения урана, и метод используют для изотопного анализа урана путем измерения интенсивности -излучения. Лучшими электролитами для получения тонких, плотных и равномерных пленок являются растворы Hg OONaH-СН3СООН, (NH4)2QO HNaF. Осаждение из оксалатной среды лучше, чем из ацетатной, так как точность взвешивания пленки составляет 0,1% вместо 0,3%, а методика в первом случае несколько проще [8, стр, 348—350]. Количественное электроосаждение и воспроизводимые результаты получены для микрограммовых количеств урана при использовании раствора оксалата аммония [860]. [c.340]

    Оказалось, что трехфтористый уран нелегко получить, и впервые он был приготовлен при широком исследовании соединений урана в 1938—1945 гг. В результате этих работ предложены два основных метода его получения, заключающиеся в восстановлении четырехфтористого урана а) тонко измельченным металлическим ураном, приготовленным разложением гидрида, и б) водородом. По первому методу при 1500 °С образуется черная коксообразная масса, загрязненная иОгРг, иОг, ир4 и ураном з. Химический анализ образцов, основанный на определении общей восстановительной способности, показал, что содержание урана в лучшем из образцов составляет около 91% это, однако, минимальное значение . Восстановление водородом высокой степени очистки при 1000°С требует строгого контроля как температуры, так и чистоты реагентов. Невозможность осуществления такого контроля явилась, по-видимому, причиной безуспешности многих прежних попыток применения метода восстановления водородом. [c.147]

    Выбор химической реакции. Если от колориметрического метода не требуется очень большая точность, то можно использовать любую из" большого числа имеющихся реакций образования окрашенных соединений, даже если воспроизводимость результатов невелика. Но когда хотят получить очень точные результаты, надо выбирать методы, дающие наиболее воспроизводимые результаты, например определение марганца в виде перманганата, фтора — по ослаблению окраски сульфосалицилатоферрата (III), никеля и кобальта — в виде их комплексов с ЭДТА и т. п. Часто используют светопоглощение самих определяемых ионов, не проводя никакой химической реакции, например при определении ионов уранила, меди, кобальта, никеля. В этих случаях коэффициенты погашения относительно невелики, и поэтому приходится анализировать сравнительно концентрированные растворы. [c.283]

    Таким образом, при выделении нептуния необходимо отделять его от продуктов деления, а также от урана или плутония или от того и другого вместе. Для этих целей широко используется многообразие степеней окисления, проявляемых ураном, нептунием и плутонием. В зависимости от валентного состояния эти элементы ведут себя по-разному при соосаждении, комплексообразовании, экстракции растворителями, катионном и анионном обмене. Следовательно, при выделении любого из этих элементов возможно широкое применение разнообразных химических способов. При выделении какого-либо из этих элементов из смеси продуктов используется его способность проявлять различные свойства в зависимости от степени окисления, которую молено изменять на протяжении всего цикла очистки. Смысл большинства из этих процедур состоит в том, что примеси, сопроволедаюшие уран, нептуний или плутоний в одном из их состояний окисления, ведут себя совершенно иначе, когда эти элементы переводят в другое состояние окисления. Таким образом, окислительно-восстановительные циклы являются основой для очистки урана, нептуния и плутония от продуктов деления. Вместе с тем суш ествуют большие различия в том, как получить эти элементы в определенной степени окисления. Благодаря тому что одни и те же валентные состояния этих трех элементов обладают относительно разной стабильностью, удается получать растворы, содержащие все три элемента в различных состояниях окисления. На этом основаны методы разделения этих трех элементов. [c.317]

    Появление в последние годы многочисленных теорий смешанных растворов электролитов подчеркивает назревшую в. химической практике, особенно экстракционной (см., например, работы [1, 58, 86, 90—94] и др. по коэффициентам актив-.ности уранил- и плутонилнитратов, НМОз и др. в смешанных, тройных системах), необходимость быстрого определения направления. изменения характера процесса при изменении условий эксперимента и количественного расчета параметров процесса в изменившихся условиях. Изложенные выше феноменологические теории и методы весьма полезны для полуколичественной интерпретации явления высаливания в экстракционных системах. Особенно привлекательны методы, основанные на правиле Здановского, требующие в настоящее время минимальных усилий для расчета, коэффициентов активности компонентов в тройных системах В + С -ьН20 из данных для бинарных растворов. С помощью этих методов можно быстро и в некоторых случаях с приемлемой в технологии точностью оценить влияние высали-вателя С на ув и в общем выяснить направление изменения коэффициента распределения вещества В в присутствии посторонней соли. [c.18]

    В 1958 г. Буфатин, Зайдель и Калитеевский [804] описали метод химического концентрирования платины и палладия, содержащихся в уране, и последующее их спектральное определение. Лосев [805] описал методику рентгеноспектрального определения платины в руде путем пробирного концентрирования и химической обработки королька перед анализом. Пьянков [806] описал метод коллектирования платины, палладия, золота и родия в меди после растворения руды и химического обогащения. Затем благородные металлы определяли в меди спектрографически. Брукс и Аренс [204] определяли благородные металлы в силикатных породах, используя ионообменные смолы для выделения этих металлов из раствора. Растворы упаривали до сухого остатка, который вводили в хлористый натрий как в основу для спектрального анализа, и анализировали качественно. Авторы считают, что эту методику можно превратить в количественную. Миамото [807] в 1961 г. использовал пробирный зо-лото-серебряный королек для спектрального определения платины и палладия в рудах. [c.286]

    Куркуминовый метод благодаря исключительно высокой чувствительности пригоден для определения очень малых количеств бора. Работы по применению куркуминового метода включают определение бора в кремнии ]2, 41—44], хлорсиланах [26, 41, 45], германии [2], уране [35, 46, 47], цирконии и его сплавах [35, 48—50], гафнии и титане 150], никеле [51, 52], стали [5, 35, 53], металлическом натрии [13], бериллии и магнии [35], силикатах ]54], фосфатах [55], почве [56], растительных материалах [32, 56], химических реагентах [57, 58] и морской воде [59]. [c.119]

    МасЬ-спектрометрия . Применение метода изотопного разбавления в соединении с масс-сцектрометрией позволяет производить определение ряда элементов в твердых образцах с концентрацией до 10 . После того как образец введен в раствор, добавл5 ется известное количество изотопного индикатора определяемого элемента. Затем элемент (исходный плюс разбавитель) отделяют химически изменение в изотопном составе, обусловленное индикаторным разбавлением, определяют масс-спектрометрически и таким образом находят первоначальное количество элемента. Таким способом успешно определяли уран в каменных метеоритах с концентрацией до 0,01 ч. на млн. Около 70% всех элементов имеет несколько стабильных изотопов и могут, по крайней мере в принципе, определяться методом изотопного разбавления. Современные масс-спектрометры дают возможность анализировать металлы и тугоплавкие вещества при температурах вплоть до 2500° таким образом, теперь приготовление соединений с высокой упругостью пара при низкой температуре не так важно, как раньше. [c.16]

    Данные опытов, полученные Чермаком [14] при полярографических исследованиях дитиоиата 8204 в щелочной среде, подтвердили результаты решений первой из приведенных схем. Диспропорционирование пятивалентного урана, частично регенерирующее шестивалентный уран, как исходный деполяризатор, является примером медленной химической реакции. Кинетические константы, вычисленные при помощи полученных уравнений из полярографических данных, приведенных в работе Ко-рыты и К оутецкого [15], соответствуют величинам, определенным другими методами. [c.145]


Смотреть страницы где упоминается термин Химические методы определения урана: [c.539]    [c.64]    [c.194]    [c.194]    [c.214]    [c.230]    [c.214]    [c.340]    [c.420]   
Смотреть главы в:

Аналитическая химия урана -> Химические методы определения урана

Аналитическая химия урана -> Химические методы определения урана




ПОИСК





Смотрите так же термины и статьи:

Уранил определение



© 2024 chem21.info Реклама на сайте