Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетические эффекты водородной связи

    В этой главе будут рассмотрены некоторые проблемы, которые не раз встречались в предыдущих главах. Эти проблемы касаются главным образом механизма так, будут рассмотрены механизм переноса протона, кинетические эффекты водородной связи, а также механизм реакций катионов металлов с лигандами в водном растворе, включая обмен воды между первой координационной сферой и массой растворителя. Другие проблемы касаются энергетики реакций, например, лимитирование диффузией, энергии активации быстрых реакций и интерпретация уравнения Аррениуса. [c.263]


    Кинетические эффекты водородной связи [c.275]

    При плавлении льда его структура частично сохраняется и в жидкой воде однако при постепенном повышении температуры происходит разрушение все большего числа водородных связей. Плотность воды оказывается максимальной при 4°С, когда агрегаты ее молекул образуют наиболее хаотическую упаковку. По мере разрушения водородных связей при повышении температуры эти агрегаты становятся все меньше, но кинетические эффекты, обусловленные повышением тепловой энергии, вызывают уменьшение плотности вещества. При нормальных условиях и температуре кипения воды, которая оказывается гораздо вьппе, чем можно было бы ожидать по ее молекулярному весу, жидкая вода превращается преимущественно в изолированные молекулы [c.143]

    Положительная кривизна зависимости Е° от /В при более низких значениях диэлектрической проницаемости растворителя напоминает кривые, которые были получены из кинетических данных, когда для некоторых реакций были получены графики зависимости логарифма удельной константы скорости от обратных значений диэлектрической проницаемости. Эта положительная кривизна при низкой диэлектрической проницаемости, возможно, связана с избирательной сольватацией ионов более полярной компонентой растворителя с более высокой диэлектрической проницаемостью. В данном случае такой компонентой является вода. По-видимому, это особенно верно для растворов, содержащих ион водорода, благодаря образованию сильных водородных связей и образованию ионов НзО и ИдО в воде [41]. Эта избирательная сольватация (или связывание растворителя) остается эффективной вплоть до очень малых количеств воды в смешанном растворителе [19]. Поведение ионов в смешанных растворителях приближается к их поведению в чистой компоненте, с которой в смешанном растворителе они более прочно ассоциированы. Этот эффект был обнаружен при изучении скорости реакций [42]. Так как вода более полярная компонента смешанного растворителя и более тесно связана с ионами, она уменьшает взаимное притяжение ионов и облегчает их диссоциацию. Отсюда следует, чтобы исключить взаимное влияние противоположно заряженных ионов, требуется меньше работы, чем это можно было ожидать при более низких значениях диэлектрической проницаемости растворителя поэтому для внешнего использования остается доступной большая работа, чем можно было ожидать. Это увеличение работы проявляется в виде более высокого потенциала, чем теоретически следует для электростатических сил между противоположно заряженными попами при более низких значениях диэлектрической проницаемости. [c.296]


    Влияние ионов гидроксила отличается от влияния одноатомных анионов. В более концентрированных растворах могут формироваться связи ОН- -ОН- -ОН. Благодаря росту кинетической энергии частиц при повышении температуры структура разрушается, влияние ориентации снижается и взаимодействия частиц проявляются ощутимее, что сказывается на вязкости и проводимости раствора. Разрушение структуры воды воздействует также на структуру ионной сферы. Экранирование электрического поля ионов упорядоченными молекулами воды в гидратных оболочках ослабляется. Связывание ионами мономерных диполей снижает подвижность молекул воды в меньшей мере, чем связывание полимеров с разветвленными связями, а остающиеся водородные связи также ослабляются. Все эти эффекты снижают вязкость и повышают ионную подвижность. С другой стороны, вследствие снижения упорядоченности диполей молекул воды с повышением температуры улучшаются условия для взаимодействия ионов с противоположным знаком заряда и возрастает вероятность образования ионных пар и других локальных ионных групп. Этот эффект с повышением температуры все заметнее снижает подвижность ионов и проводимость электролита. Чем концентрированнее раствор, тем упорядоченнее в сравнимых условиях его структура и тем более высокая температура нужна для разрушения структуры воды вблизи ионов. Соответственно при повышении температуры возрастает степень ассоциации ионов. [c.396]

    Кинетические эффекты. Мы несколько раз уже отмечали, что радикалы, которые участвуют в динамическом равновесии (будь то химическое или какое-либо другое равновесие), могут дать необычный спектр ЭПР, зависящий от скорости процесса. Этот вопрос мы подробнее рассмотрим в гл. 12, а здесь лишь укажем на то, что методом ЭПР были изучены кинетические процессы переноса электрона, протона, вращательной изомерии, образования водородной связи и т. д. и при этом часто получались великолепные результаты. [c.131]

    В настоящее время нет данных для того, чтобы связать кинетические эффекты, обусловленные образованием водородной связи, со строением радикалов, связанных в комплексы, или природой растворителя, являющегося донором водородной связи. В большинстве случаев, вероятно, следует считать доказанным, что комплекс радикал — растворитель имеет состав 1 1, хотя в принципе возможны и более сложные ассоциаты. На основании приведенных ниже результатов исследования окисления при 60 °С метилэтилке- [c.369]

    Нуклеофильные реагенты могут реагировать с ароматическими и особенно с некоторыми гетероциклическими соединениями (шестичленные азотистые гетероциклы) двояким образом, вызывая реакции нуклеофильного или протофильного замещения водорода в зависимости от того, атакует ли реагент атом углерода или атом водорода СН-связи. До сих пор речь шла о реакциях второго типа, при которых рвется связь между углеродом и водородом, что обычно проявляется в наличии значительного кинетического изотопного эффекта, который, действительно, имеет место при реакциях метилирования и водородного обмена с основаниями. Ниже приведены значения кинетических изотопных эффектов (КИЭ) по измерениям американских авторов [26] для тиофена и полученным в нашей лаборатории данным для трифенилметана при реакции с бутиллитием  [c.127]

    И не зависит от концентрации брома. Позднее было показано, что в аналогичных условиях иодирование происходит с такой же скоростью, как и бромирование, что также согласуется с приведенным выше кинетическим уравнением. Как уже отмечалось (см. разд. 10.5.3.1), индуцируемый основанием дейтеро-водородный обмен (в D2O) и рацемизация оптически активного кетона (53) происходят с одной и той же скоростью и обнаруживают кинетический изотопный эффект (йн> о), когда а-Н-атом замещается дейтерием, т. е. расщепление связи С—Н является медленной, скоростьлимитирующей стадией. Все это свидетельствует об образовании карбанионного интермедиата, например (91)  [c.331]

    При лю бом предполагаемом механизме сульфирования должны учитываться две дополнительные особенности этой реакции обратимость и заметно выраженный кинетический водородно-изотопный эффект. Последнее обстоятельство указывает на то, что разрыв С—Н-связи в ароматическом кольце происходит в стадии, определяющей скорость процесса в целом [56]. [c.502]

    Используя теперь уже довольно значительный экспериментальный материал, мы попытались проследить влияние строения исходного соединения (субстрата) на направленность металлирования и связать место атаки с индукционным влиянием заместителей и гетероатомов. Основой для такого рассмотрения явились взгляды, согласно которым механизм реакции металлирования подобен механизму водородного обмена в присутствии основания [20], который сводится к кислотно-основному взаимодействию субстрата и реагента. В случае дейтерообмена была продемонстрирована корреляция логарифмов констант скоростей обмена с индукционной константой Гаммета заместителей. О сходстве механизмов этих двух реакций говорят величины кинетических изотопных эффектов, которые, например, для тиофена совпадают с вычисленными для случая разрыва С—Н-связи субстрата в стадии. определяющей скорость (см. стр. 99). [c.129]


    Весьма просто была интерпретирована кинетическая роль сорбции на ферменте а-ациламидной группы субстрата (см. 3 этой главы). Сейчас нет сомнений в том, что образование водородной связи между ферментом и а-ациламидным NH-фрагментом (см. рис. 32) замораживает молекулу субстрата в благоприятной ориентации ее по отношению к нуклеофилу активного центра. Аналогичную природу имеет, по-ви-димому, дополнительный, весьма слабый эффект гидрофобности а-ациламидной группы [уравнение (4.45)]. [c.162]

    Проблема- еще в большей степени осложняется, если учесть изменение физического состояния системы в процессе конденсации вместо исходных мономеров образуются олигомеры с гидроксильными группами, способными к образованию водородных связей, т. е. взаимодействие между продуктами конденсации выше, чем между исходными реагентами. Возможно, именно ассоциацией продуктов объясняются кинетические эффекты, обнаруженные Бяяхманом с сотрудниками [43, 44]. Наличие гидроксильной группы не только 5 величивает относительную реакционную способность соответствующего олигомера вследствие каталитического действия, но и меняет направление процесса. Было показано, что первый член гомологического ряда диглици-диловых эфиров дифенилолпропана с ж-фенилендиамином реагирует с образованием продукта, в котором замещены обе эпоксидные группы. Вместе с тем второй член этого ряда дает продукт второго присоединения с двумя гидроксильными группами. Иными словами, продукт первого присоединения в первом случае реагирует преимущественно с амином, во втором — с эпоксигруппой [43]. Следовательно, наличие гидроксильной группы не просто [c.15]

    Отсутствие изотопного эс зекта дейтерия не является достаточно веским аргументом, чтобы отвергнуть гипотезу Чепмена. Этот вывод можно обосновать, рассматривая влияние водородной связи в переходном состоянии на кинетический изотопный эффект, как это было сделано выше, когда обсуждался механизм катализа основаниями тех же реакций с аминами. Проведенное там обсуждение сохраняет силу и в данном случае. [c.62]

    Электрофильное замещение в молекуле фенола протекает с большей легкостью, чем в бензоле. Сам фенол нитруется разбавленной азотной кислотой, нитрозируется азотистой кислотой, трибромируется бромом и сочетается с солями диазония (во всех случаях достаточно быстро при температурах, не превышающих комнатной). Скорости замещения фенолов оказались неожиданно высокими [161] по сравнению с фениловыми эфирами (например, для бромирования анизол/ фенол — 92). Этот факт обьясняют влиянием индуктомерного эффекта (электроны связи О—Н) на сопряжение в переходном состоянии важное значение имеет и образование водородных связей с растворителем. В большей части обзоров ароматическое замещение рассматривается с точки зрения механизма и реагентов (не отделяя химии фенолов), однако и в этих общих обзорах можно найти весьма полезную информацию [162]. Имеется сводка литературы по электрофильному замещению самого фенола [163]. Нитрование фенола в органических растворителях проходит необратимо, причем для раз-л-ичных растворителей характерно постоянное значение соотношения орго/лара-замещения. Галогенирование также протекает необратимо, однако с меньшим соотношением орго/пара-продуктов, чем при нитровании, тогда как сульфонирование и алкилирование по Фриделю — Крафтсу обратимы. При сульфонировании при низких температурах получают главным образом орто-продукты, при более высоких температурах — мара-продукты. При длительных реакциях накапливаются значительные количества жета-сульфо-новой кислоты, так как десульфонированне жета-сульфоновой кислоты является самым медленным из всех обратных процессов. При алкилировании по Фриделю — Крафтсу также наблюдаются различия в соотношении орто/пара-продуктов при кинетическом и термодинамическом контроле. При бромировании 3,5-диалкил-фенолов выделено диеноновое промежуточное производное (135). [c.236]

    Несмотря на то что по гидродинамическим свойствам полиадениловая и полицитидиловая кислоты в нейтральных и щелочных средах представляют собой статистические клубки 229-232 наличие гипохромного эффекта 232.233 кругового дихроизмаи дисперсии оптического вращения 2зе, 237 свидетельствует о том, что между основаниями в этих полинуклеотидах существуют взаимодействия. Кривые дисперсии оптического вращения и кругового дихроизма очень схожи с аналогичными кривыми для динуклеозидмонофосфатов (см. стр. 238), и это дает основание предположить, что в случае гомополимера водородные связи между основаниями не образуются. Расчеты кривых дисперсии оптического вращения для полиадениловой и полицитидиловой кислот, выполненные исходя из свойств динуклеозидфосфатов, дают результаты, согласующиеся с экспериментальными . Наиболее прямыми доказательствами односпиральной структуры этих полинуклеотидов является аналогия их свойств со свойствами полинуклеотидов, у которых невозможно образование водородных связей в силу замешения соответствующих водородов алкильными радикала-,vijj 71,239,2 g также результаты кинетических исследований реакции с формальдегидом [c.283]

    Чтобы убедиться, что ДМФ не проявляет себя в этих реакциях как агент обрыва кинетических цепей, был сделан контрольный опыт, в котором чистый ММА полимеризовался в бензоле (50%) в присутствии (10%) и отсутствии ДМФ. Из рис. 64 видно, что на эту реакцию ДМФ не оказывает никакого влияния. Следовательно, влияние ДМФ на механизм совместной полимеризации целиком и полностью обусловлено его избирательным взаимодействием с карбоксилсодержащими звеньями прорастающих цепей. Поскольку это взаимодействие сводится к превращению сил притяжения (Н-связей) в электростатические силы отталкивания (в результате ионизации карбоксилов) (рис. 65), правдоподобной представляется следующая интерпретация этих измерений. ММА уже сам по себе является довольно плохим растворителем собственного полимера (что и служит причиной гель-эффекта и улавливания радикалов при блочной полимеризации ММА ср. 7). При сополимеризации положение дополнительно осложняется образованием межцепных водородных связей, нрпводяпщх к вы- [c.238]

    Было предпринято много попыток объяснить специфический эффект а-заместителей на свойства гетероатома. Ясно, что он не может быть обусловлен только сопряжением, ибо последнее, по крайней мере в пиридиновой системе, эффективнее проявляет себя из положения 4, чем из положения 2. В этой связи часто употребляют весьма туманный термин эффект близости , говорят о необходимости разработки специальной шкалы с-кон-стант для а-заместителей в пиридиновом ядре, выдвигают тезис о возможной роли сольватационных факторов. Остановимся несколько подробнее на последней идее, которая представляется наиболее конструктивной. Суть ее заключается в том, что в протонодонорных растворителях, в которых изучалось большинство реакционных серий, пиридиновый азот сильно сольватирован за счет образования межмолекулярных водородных связей. Это приводит к увеличению кажуш,ейся а-констан-ты по сравнению с апротонной средой на 0,2—0,25. Если в а-положении пиридинового ядра находится заместитель, он может по стерическим причинам затруднять сольватацию и в результате снижать кажущуюся электроотрицательность азагруппы в большей степени, чем если бы он был расположен в положении 4. Для проверки этой идеи сопоставлены кинетические данные для реакций сольволиза и газофазного пиролиза [c.122]

    Второй эффект состоит в том, что ири сближении двух молекул до расстояния, допускающего легкий переход протона, последний притягивается к обоим атомам силами той или иной природы при этом связь может перемещаться и да ке неоднократно от одного атома к другому. Одпако силы, действующие в обоих направлениях, остаются, в результате чего все три атома будут удерживаться вместе. Такая форма связывания двух атомов через водород называется водородной связью. Можно упомянуть три тина явлений, обусловленных водородными связями 1. Водородная связь может оказаться достаточно прочной, чтобы обеспечить длительное существование комплексов с водородной связью как кинетически независимых частиц в растворе. Таким кинетически устойчивым образованием является, например. ион дифторида водорода (FHF) . 2. Более слабые водородные связи отчетливо проявляются в ассоции])ованных системах, где они могут образовываться с такой частотой, что, несмотря на тгепродолжительность их существования, общее количество таких связей всегда велико. Этим объясняется ассоциация молекул, вызывающая уменьше1[ие летучести, увеличение вязкости и изменение других физических свойств, которое наблюдается во многих чистых жидкостях, например в аммиаке, воде, фтористом водороде, первичных и вторичных аминах, спиртах, фенолах, минеральных и орга- [c.19]

    Как известно , в реакциях протофильного изотопного обмена водорода СН=кислот с диметилсульфоксидом (вмзо), катализируемых трет.-бутилатами щелочных металлов, наблюдается низкий кинетический изотопный эффект (КИЭ). Отношение констант окорости обмена дейтерия (кд) и трития (к ) мало отличается от единицы. Имеются два объяснения этого явления. Согласно Краму между образующимися на первой стадии обменной реакции карбанионом СН=кислоты и молекулой (СНд)дСОН возникает прочная водородная связь. Скорость обменной реакции лимитирует диффузия молекулы спирта - процесс, практически не зависящий от изотопного замещения. По Джонсу скорость реакции лимитируется скоростью ионизации СН=кислоты. Низкое значение КИЭ обусловлено несимметричностью переходного состояния реакции, которое рассматривается в рамках трехцентровой линейной модели. О несимметричности переходного состояния свидетельствует значительная величина ДрК-разности констант ионизации СН=кислоты (в частности, толуола) и кислоты, сопряженной основанию-катализатору, т.е. (СНд)зСОН. Зависимость мевду величинами КИЭ и ДрК теоретически [c.947]

    При водородном обмене с основанием оно взаимодействует с атомом водорода СН-связи, вызывая ее растяжение или разрыв в переходном состоянии, причем в предельном случае образуется карбанион [14], Это находит подтверждение в измерениях кинетического изотопного эффекта при дейтерий(тритий)-обмене. Его величина близка к вычисленной при условии полного разрыва связей углерода с изотопами водорода [15]. Указанный механизм называется протофильным, так как замещение водорода обусловлено протофильностью реагента. Протонизации водорода благоприятствует такая поляризация СН-связи, при которой у атома водорода понижена электронная плотность. [c.129]

    Исследование кинетического изотопного эффекта при водородном обмене в жидком аммиаке позволило доказать, что скорость обменной реакции с основанием так же, как и скорость реакции металлирования лимитируется стадией разрыва связи С—Н. Это было показано в одной из работ ЛИР [10] путем измерения в аммиачном растворе кинетики обмена на протий трития и дейтерия, предварительно введенных в метиленовую группу флуорена. Установлено, что при 25° тритийобмен протекает в два раза медленнее дейтерообмена (к = 8-10 и 1,6- 10" сек" ). Это является следствием того, что ввиду большей массы атома трития по сравнению с массой дейтер>1я нулевая энергия связи С — Т ниже нулевой энергии связи С — В. [c.349]

    Присоединение формально идет против правила Марковникова, поскольку водородный атом идет не к более гидрогенизован-ному углероду. В действительности же правило Марковникова соблюдается, так как в роли электрофильного агента выступает атом бора, нуклеофилом же является водород, переходящий к олефину вместе со своими связующими электронами (т. е. в виде гидрид-аниона). В согласии со сказанным и с четырехзвённым переходным состоянием при присоединении В2ВС1 к стиролу или гек-сену наблюдается кинетический изотопный эффект от 1,8 до 2,4 [134]. Переходное состояние мало полярно, что следует из малой константы реакции для присоединения борана к замещенным в ядре стиролам (р = —0,7) [134]. В результате правило Марковникова в общем соблюдается (хотя и не полностью) у концевых олефинов [133], в случае стиролов оно действует ограниченно [135], а неконцевые олефины дают примерно равные количества продуктов присоединения по правилу и против правила Марковникова [133]. Возникшие при гидроборировании триалкил-бораны щелочной перекисью водорода могут быть окислены в спирты. Для этой реакции предполагают следующий механизм [136]  [c.476]

    Электродные процессы всегда протекают на границе фаз. Особенностью этих реакций является то, что они зависят еще от одной интенсивной переменной — потенциала или поля,— влияющей нз свободную энергию а) адсорбции реагентов, б) адсорбции промежуточных частиц и в) активации реакции. Что касается последнего, то роль потенциала аналогична роли давления, например в изменении скоростей реакций в конденсированных фазах. На протекание электродных реакций оказывают влияние также специфические поверхностные свойства металлов, такие, как работа выхода электрона, поверхностная концентрация дефектов, энергия адсорбции промежуточных и исходных частиц, и именно в этом отношении можно говорить о предмете электрокатализа. Аналогично тому как скорость реакции обмена Нз — Вг меняется в весьма широких пределах при катализе на различных металлах и окислах, кинетическая степень электрохимической обратимости, например в случае реакции выделения водорода при обратимом потенциале, изменяется более чем на одиннадцать порядков при переходе от активной платины к гладкому свинцу. Позднее электрокатализом стали называть реакции электрохимического окисления органических соединений, протекающие через стадию диссоциативной хемосорбции на электроде, в которых специфические эффекты каталитической диссоциации тесно связаны с электрохимическими процессами переноса заряда. Однако подобное толкование термина электрокатализ не является новым по существу, аналогичные стадии каталитической диссоциации и электрохимической ионизации имеют место в реакции водородного электрода, исследовавшейся с подобной точки зрения Фрумкиным и его сотрудниками начиная с 1935 г. Таким образом, большое значение в электрокатализе имеет электрохимическое поведение промежуточных частиц, возникающих либо в стадиях перехода заряда, либо в результате диссоциативной хемосорбции, предшествующей или сопутствующей стадии перехода заряда. Большое количество рассматриваемых работ было посвящено исследованию реакций выделения и растворения водорода и кислорода, а в последнее время — реакций окисления органических соединений. [c.392]

    Относительная скорость гидролиза данной пептидной связи должна зависеть от различных факторов, как стерических, так и электростатических, которые влияют на возможность атаки водородными ионами. Синг [6] провел кинетические исследования гидролиза нескольких дипептидов смесью 10 н. соляной кислоты и ледяной уксусной кислоты (1 1 по объему) при 37°. Валилсодержащпе пептиды и в меньшей степени лейцилсодержащие пептиды оказались наиболее стабильными. Стабилизирующий эффект не сильно выражен, если большая но размеру боковая цепь принадлежит С-конце-вому остатку аминокислоты, как в дипептиде Гли-Вал. Ниже приведены полученные Сингом относительные величины скорости гидролиза (скорость гидролиза Гли-Гли принята равной 1)  [c.117]

    Скорость мономолекулярной реакции, вообще говоря, изменяется при изотопном замещении в реагирующей молекуле. Исследование изотопных эффектов важно, поскольку оно часто может способствовать более детальному пониманию процесса реакции, чем это может быть достигнуто при исследовании одного лишь незамещенного соединения. Изотопное замещение может приводить к нескольким одновременным эффектам, и это усложнение порождает иногда странные на первый взгляд результаты. Например, дейтерозамещен-ное соединение при высоких давлениях может изомеризоваться медленнее, чем исходное соединение, а при низких давлениях — быстрее. Общая теория кинетических изотопных эффектов подробно описана в работе [1], и данное обсуждение ограничивается обзором основных принципов и некоторых деталей их применения к мономолекулярным реакциям. В этой связи полезен обзор Рабиновича и Сетсера [2] многие иллюстративные расчеты, приводимые ниже, взяты из этого источника. Для простоты обсуждение ведется в терминах водородно-дейтериевых изотопных эффектов, однако, очевидно, те же принципы применимы и к другим системам. Часть терминологии, используемой для изотопных эффектов, представлена в табл. 9.1. [c.295]

    Об относительном значении разрыва и образовании связи, вообще говоря, можно судить [15] по изотопному эффекту, и этот подход много дал для понимания электрофильного замещения в ароматическо ядре. К сожалению, при нуклеофильном ароматическом замещении точно измерить водородный изотопный эффект невозможно, так как анионное вытеснение водорода сопровождается побочными реакциями, которые мешают точным кинетическим измерениям. Хотя скорость замещения галогена можно измерить со значительно большей точностью, изотопные эффекты для галогенов слишком малы, чтобы их можно было измерить (см. [386]). [c.402]

    Свен с сотрудниками , исходя из факта увеличения кинетического изотопного эффекта с ростом реакционной способности атакующего основания, выдвинул предположение, что в активированном комплексе основнокаталитической енола-зации связь между основанием и L- водородным атомом является очень слабой. Разрыв связи мекду углеродным и водородным атомами близок к завершению и величина изотопного эф- [c.501]


Смотреть страницы где упоминается термин Кинетические эффекты водородной связи: [c.402]    [c.402]    [c.150]    [c.236]    [c.38]    [c.220]    [c.185]    [c.338]    [c.312]    [c.384]    [c.202]    [c.378]    [c.232]    [c.257]    [c.198]    [c.211]    [c.313]    [c.211]    [c.311]    [c.206]    [c.222]    [c.104]   
Смотреть главы в:

Быстрые реакции в растворах -> Кинетические эффекты водородной связи




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь

Эффект кинетический



© 2024 chem21.info Реклама на сайте