Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции медленных электронов

    Диссоциативный захват медленных электронов является энергетически выгодным процессом для всех алкилгалогенидов, за исключением фторидов. В газовой фазе реакция (У.1) подтверждена масс-спектрометрически [6, 56, 57]. Высокая эффективность реакции диссоциативного захвата электронов алкилгалогенидами в конденсированной фазе следует из данных о низкотемпературном радиолизе и сенсибилизированном фотолизе этих соединений в различных матрицах. Добавки алкилгалогенидов подавляют образование стабилизированных электронов [6, 12, 21, 22, 24, 25, 58—61] и при этом наблюдаются спектры ЭПР алкильных радикалов. Кроме того, концентрация возникающих при диссоциативном захвате галоген-ионов X [12] и продуктов рекомбинации алкильных радикалов [59] согласуется с концентрацией алкильных радикалов, определенной методом ЭПР. Образование алкильных радикалов из алкилгалогенидов при фотоионизации ароматических аминов или углеводородов и других веществ с низким потенциалом ионизации в замороженных растворах [6, 7, 25, 61—63] можно объяснить только реакциями медленных электронов. [c.206]


    Реакции медленных электронов [c.259]

    Исследование реакций медленных электронов в облученны. твердых органических веществах (дисс. канд. хим. наук). [c.7]

    Изменение расстояний между атомами, происходящее в ходе химической реакции, сопровождается изменением потенциальной энергии системы реагирующих частиц. Расчет энергии, а затем и построение энергетической диаграммы осуществляется с использованием законов квантовой механики. В теории активного комплекса рассматривается лишь так называемое адиабатическое протекание реакции (не путать с понятием адиабатического процесса ), когда ядра атомов движутся гораздо медленнее электронов и это движение не сопровождается электронными переходами. Несмотря на то что учитывается лишь движение ядер, квантово-механический расчет энергии реагирующих частиц математически очень сложен и даже приближенно может быть осуществлен лишь для относительно простых молекул. Для построения энергетических диаграмм могут быть использованы спектроскопические и другие экспериментальные данные. [c.287]

    При достаточной сплошности проводящей пленки почти весь ток будет расходоваться на эти процессы. Именно в случае, когда электронная проводимость пленки сравнительно высока, а ионный перенос сильно затруднен, пассивация достигается наиболее быстро. Даже при сравнительно медленном электронном переносе на аноде протекают реакции, препятствующие возникновению сильного поля, необходимого для прохождения ионов через пленку. При этом происходит только выделение кислорода. [c.368]

    Так, Например, исследование перестройки поверхностного слоя катализатора во время реакции методом дифракции медленных электронов привело к явно неожиданным результатам, указывающим на высокое упорядочение хемосорбционных процессов. Оказалось, что адсорбция газов иа металлах происходит не хаотически, не по статистическим законам, а с образованием упорядоченной двумерной решетки. О. В. Крылов отсюда делает заключение, что эти эксперименты должны привести к радикальному отходу от классических представлений об адсорбции по Лэнгмюру. Адсорбцию, а следовательно, н катализ следует, очевидно, рассматривать как цепь скачкообразных превращений с перестройкой поверхности за счет использования энергии акта адсорбции или катализа. При каждой такой перестройке, с одной стороны, изменяется конфигурация активного центра на поверхиости, что приводит к изменению каталитической активности, с другой стороны, в момент перестройки атомы поверхности могут обладать повышенной активностью и участвовать в каталитическом акте [27, с. 8]. Эти выводы он подкрепляет рядом своих экспериментов. [c.208]


    Очень много примеров таких реакций переноса электрона, которые протекают медленно через лабильный промежуточный комплекс  [c.306]

    Перенос электрона от частицы к частице сопровождается изменением поляризации окружающих частиц, что отражается на кинетике реакции. Поляризация среды характеризуется флуктуацией диэлектрической проницаемости е как функции частоты колебания локального электрического поля т. Высокочастотная составляющая, характеризующая электронную поляризацию среды, выше характеристической частоты переноса электрона. Эта часть поляризации автоматически следует за переносом электрона. Остальная часть полной поляризации среды, так называемая инерционная поляризация, не успевает следовать за смещением электрона и создает внешнее поле для перемещающегося электрона. Координаты, описывающие поляризацию среды, и являются для такой реакции координатами реакции. Инерционность поляризации обусловлена сравнительно медленным движением ядер атомов реагирующих ионов и молекул сольватной оболочки, т. е. создает франк-кондоновский барьер при переносе электрона. В современной квантовой химии развиты два метода для описания реакций переноса электрона стохастический метод и метод эффективного гамильтониана. [c.307]

    Образовавшиеся ионы и возбужденные молекулы вступают в разнообразные реакции [6, 7, 8, 9]. Эти же реакции могут происходить при воздействии квантов оптических частот, в электрическом разряде, при действии медленных электронов в ионном источнике масс-спектрометра, в кавитационных полостях внутри жидкости, создаваемых ультразвуковым полем, при поглощении микроволновой мощности и т.д. [c.158]

    Хотя применимость метода дифракции медленных электронов к изучению поверхностных реакций была признана еще со времен открытия самой электронной дифракции, но вплоть до последнего времени исследователи, за исключением автора, прилагали мало усилий в этом направлении. [c.322]

    Влияние кислорода в процессе облучения полиэтилена было вкратце рассмотрено в разделе на стр. 68. Александер и Томе [34] нашли, что критическая доза гелеобразования примерно удваивается в присутствии кислорода и что р/а увеличивается, но не за счет уменьшения а (константы реакции сшивания, которая не изменяется), а за счет увеличения 3. Чтобы учесть специфическое действие кислорода на реакцию деструкции, они приняли, что за счет взаимодействия 0,2 с медленными электронами, как уже указывалось выше, образуется 0-Г. Далее было принято, что 0-Г взаимодействует с цепями и вызывает деструкцию, но не оказывает никакого влияния на процесс сшивания. Однако для подтверждения этой гипотезы необходимо провести еше дальнейшие исследования. [c.125]

    Поскольку на каждый исходный нейтрон возникает по 2—3 новых нейтрона, то при определенных условиях может начаться очень быстро (взрывообразно) протекающая ядерная реакция. При этом одновременно освобождается энергия около 200 МэВ/моль (атомная бомба). Путем торможения (например, при помощи ПгО, графита) быстрых нейтронов, возникающих при расщеплении, и поглощения избытка медленных электронов (например, кадмием или бором) можно осуществить ядерное превращение в форме контролируемой (стационарной) цепной реакции, служащей для получения энергии (ядерный реактор) или трансурановых элементов (реактор-размножитель). [c.396]

    Теория реакций переноса электрона заставляет полагать, что важными являются несколько факторов, и результаты, о которых здесь сообщается, необходимо связать с большим экспериментальным материалом, накопленным по более медленным реакциям. [c.62]

    Следует отметить, что близкий к этому механизм, предложенный Винером и Бартоном, не учитывающий, однако, возможного участия медленных электронов в процессах активации, по-видимому, не обеспечивает наблюдаемой скорости реакции. [c.453]

    Термодинамические и кинетические характеристики реакции переноса электрона следует рассматривать одновременно, так как многие энергетически возможные реакции идут настолько медленно, что их нельзя использовать в аналитически с целях. [c.400]

    Льюис и сотрудники [43] обнаружили, что молекулярный кислород катализирует медленную реакцию переноса электрона между [ o(NHs)fi] + и [Со(МНз)б] +. Для объяснения этого факта Вейсс [46] предлагает следующий механизм окислительно-восстановительного процесса  [c.105]

    Установлено, что диффузия, дегидратация и адсорбция ионов водорода протекают с достаточной скоростью и поэтому эти стадии не могут лимитировать реакцию в целом. Работами Фрумкина и его школы [24] доказано, что для большинства металлов общая скорость процесса восстановления водорода определяется скоростью течения электрохимической реакции присоединения электрона к иону водорода, т. е. четвертой ступенью указанной выше схемы. Стадия разряда (Н + — - Наде) является более медленной, поэтому она требует некоторую энергию активации. Для того чтобы процесс разряда ионов водорода мог идти на электроде, необходимо сообщить ему некоторый избыточный (против равновесного) потенциал, который, как уже указывалось, и определяет величину перенапряжения. По мере сдвига потенциала в отрицательную сторону энергия активации уменьшается. [c.16]


    Ионно-молекулярные реакции пзучены в основном в газовой фазе при низких давлениях. Однако есть основания считать, что они могут достаточно эффективно протекать и в конденсированной фазе. Поскольку энергия активации ионно-молекулярных реакций обычно близка к нулю, они могут происходить и при низких температурах. Ионно-молекулярные реакции конкурируют с процессом диссоциации молекулярных катионов. Это, очевидно, является еще одной причиной уменьшения вероятности диссоциации молекулярных ионов в конденсированной фазе. Радикалы и другие парамагнитные частицы могут образовываться также в результате реакций медленных электронов с молекулами. Реакция простого захвата электрона [c.84]

    Для электронов с энергией меньшей потенциала возбуждения молекул правило аддитивности, вообш е говоря, неприменимо. В одних веш,ествах такие электроны медленно теряют энергию при неупругих столкновениях до тех пор, пока она пе станет равной тепловой, а в других они захватываются молекулами среды. Реакции медленных электронов могут быть причиной значительных отклонений от аддитивности при облучении смесей, где один из компонентов является акцептором. [c.259]

    Ранее было показано, что уже прп сравпительно небольших концентра-ПИНХ СС эффективно захватывает медленные э.чектроны. при этом образуются радикалы СС1з. Такой процесс, одпако, не должен увеличивать суммарный выход стабилизированных радикалов, так как в чистом спирте в результате реакции медленных электронов с молекулами образуется такое же количество радикалов. СН.ОН. [c.269]

    В многокомпонентных системах имеют место более сложные кинетические особенности накопления радикалов, чем в одноком-понентных. Большой интерес представляет явление увеличения выхода продуктов, в том числе радикалов, наблюдающееся в бинарных смесях, по сравнению с выходами, которые следует ожидать, исходя из принципа радиационно-химической аддитивности. Оно может вызываться различными причинами передачей энергии электронного возбуждения, реакциями медленных электронов, передачей зарядов, реакциями атомов и радикалов, локализацией возбуждения на одном из компонентов и наличием межмолекулярных взаимодействий в системе [34]. Последняя причина наглядно иллюстрируется увеличенным выходом радикалов (по сравнению с аддитивным) при облучении замороженных смесей воды с пе- [c.52]

    Соморджай и соавт. [236—239] для выяснения механизма каталитических превращений углеводородов на ступенчатых поверхностях платины пытались идентифицировать атомные центры монокристаллов Р1, ответственных за разрыв связей С—С, С—Н и Н—Н. Структура и состав поверхности монокристаллов Р1 были исследованы методами Оже-спектроскопии и дифракции медленных электронов. Полученные результаты сопоставлены с каталитическими свойствами Р1 ь реакциях О—Н-обмена, дегидрирования циклогексана в бензол и гидрогенолиза циклогексана с образованием н-гексана. [c.165]

    Несомненный интерес представляет цикл работ Со-морджая и сотр. [174—177] по исследованию кинетики различных реакций (в том числе дегидроциклизации) на монокристаллах металлов (Р1, 1г, N1, Ag) с одновременным определением структуры и состава поверхности методом дифракции медленных электронов и Оже-спект-роскопии. Показано, что атомные ступеньки на поверхности монокристалла Р1 являются активными центрами процессов разрыва связей С—Н и Н—Н. Зависимость скоростей реакций дегидрирования и гидрогенолиза циклогексана и циклогексена от структуры поверхности Р1 свидетельствует о существовании изломов и выступов на атомных ступеньках. Такие дефекты структуры являются особенно активными центрами процесса расщепления С—С-связей. Установлено, что активная поверхность Р1 в процессе реакции покрывается слоем углеродистых отложений свойства этого слоя существенно влияют на скорость и распределение продуктов каталитических реакций. Показано, что дегидрирование циклогексана до циклогексена не зависит от структуры поверхности (структурно-нечувствительная реакция). В то же время дегидрирование циклогексена и гидрогенолиз циклогексана являются структурно-чувствительными реакциями. Полученные результаты позволили расширить классификацию реакций, зависящих от первичной структуры поверхности катализатора и от вторичных изменений поверхности, возникающих в процессе реакции. При проведении реакций на монокристаллах 1г показано, что ступенчатая поверхность 1г в 3—5 раз более активна в [c.252]

    Опыт 3. Образование микрогальванопар. Поместить в пробирку кусочек гранулированного цинка. Прилить несколько миллилитров разбавленной серной кислоты. Обратить внимание на медленное выделение водорода. Добавить несколько капель раствора сульфата меди. Чем объяснить энергичное выделение пузырьков водорода Написать уравнения реакций и электронные уравнения. [c.135]

    Наиболее быстро прогрессирующим разделом электрохимии в настоящее время является учение о кинетике и механизме электрохимических процессов. Развитие квантовой электрохимии позволило существенно прояснить проблему природы элементарного акта переноса заряда и подойти с единой точки зрения к реакциям переноса заряда в объеме раствора и на границе фаз. Своеобразие электрохимических процессов на границе электрод — раствор определяется их реализацией в области пространственного разделения зарядов, условно называемой двойным электрическим слоем. Теоретические и экспериментальные исследования строения двойного слоя составляют важный раздел современной электрохимии, новый этап в развитии которого ознаменован разработкой молекулярных моделей двойного слоя, применением прямых оптических методов in situ и мощных современных физических методов изучения поверхности ех situ (дифракция медленных электронов, рентгеновская фотоэлектронная спектроскопия, Оже-спектроскопия и др.), использованием в качестве электродов граней монокристаллов. [c.285]

    При количеств. И. м. гетерог. материалов с резко отличающейся работой выхода электронов из разл. фаз используют реакц. эмиссию, при к-рой в камеру микроанализатора впускают реакционноспособный газ (напр., О2, Н2) для выравнивания работы выхода. При анализе диэлектриков проводят нейтрализацию поверхностного заряда медленными электронами или наносят на пов-сть образца металлич. сетки и диафрагмы. [c.260]

    В последние годы наблюдается бурное развитие органической электрохимии. Это обусловлено рядом причин. Стоимость электроэнергии, как уже сейчас можно предвидеть, будет расти медленнее, чем стоимость химических реагентов электрон ис загрязняет окружающую среду контроль электрохимических процессов легко автоматизировать. С точки же зрения химика-органика ценность электрохимических исследований заключается и в том, что многие из результатов, полученных электро-аиалитическими методами (например, окислительно-восстанови-тельные потенциалы, реакции переноса электрона), могут быть полезны для исследования обычных химических реакций. [c.26]

    I рафия ен е конкурентоспособна, особенно при изучении реакций переноса электрона, сочетающихся с медленными химическими стадиями, как в случас бнантроннла, плч же при исследовании эчектродиых процессов, осложненных абсорбционными явлениями. [c.123]

    Представление об энергии активации и о свойствах актив ного комплекса уточняется с помощью энергетических диаграмм Такая диаграмма представляет собой график зависимости энер ГИИ системы реагирующих частиц от расстояния между ними Изменение расстоянии между атомами происходящее в ходе химическои реакции сопровождается изменением потенциальной энергии системы реагирующих частиц Расчет энергии а затем и построение энергетической диаграммы осуществляется с ис пользованием законов квантовой механики В теории активного комплекса рассматривается лишь так называемое адиабатиче ское протекание реакции (не путать с понятием адиабатического процесса ) когда ядра атомов движутся гораздо медленнее электронов и это движение не сопровождается электронными переходами Несмотря на то что учитывается лишь движение ядер, квантово механическии расчет энергии реагирующих час тиц математически очень сложен и даже приближенно может быть осуществлен тишь для относительно простых молекул Для построения энергетических диаграмм могут быть использованы спектроскопические и другие экспериментальные данные [c.287]

    Данные по исследованию ИК-спектров, дифракции медленных электронов и дрзтие методы позволяют считать, что на поверхности серебра также имеется двухатомная форма кислорода Oj", которая, возможно, активна в реакции окисления этилена в оксид. [c.702]

    Влияние, оказываемое реакциями элиминирования на сульфитный варочный процесс, сложно с одной стороны, они должны благотворно влиять на процесс делигнификации, так как способствуют возникновению в лигнине новых высокоактивных группировок, а с другой — эти же группировки не только способны реагировать с сульфит и бисульфит-ионами, но могут вступать в реакции конденсации, препятствующие растворению лигнина Эффект, оказываемый реакциями элиминирования на делигнификацию, зависит от условий процесса В кислой среде температурный коэффициент реакций элиминирования, а вместе с тем и конденсации выше, чем реакции сульфитирования [45, 83], поэтому при кислой бисульфитной варке необходимы медленное повышение температуры и возможно низкая конечная температура реакции В этих условиях обеспечивается быстрое образование бензилсульфокислоты, и одновременно блокируются реакции элиминирования и конденсации При нейтральной сульфитной варке элиминирование -метилольной группы способствует фрагментации макромолекул, так как в результате этой реакции возникает электронный мост от фенольного гидроксила к Ср-атому, а это облегчает сульфитолитическое расщепление р-алкиларилэфирной связи, что обеспечивает глубокую деструкцию лигнина (см схему VI 4) Реакции конденсации Превращения лигнина в кислой и щелочной средах, приводящие к его сшивке и конденсации, подроб- [c.324]

    Если самой медленной стадией электродного процесса является диффузия (см. разд. 10.1.6), электродный процесс называют обратимым. Дпя обратимых щюцессов характерны высокие константы скоростей гетерогенной реакции переноса электронов. В условиях классической полярографии, т.е. 1фиц>вменижизиикапли 3 сискоростнразверткипотенциала [c.165]

    Для экспериментальной оценки степени однородности поверхности адсорбентов применяются разные методы термодинамические (газохроматографический и вакуумный адсорбционный — методы -определения формы хроматографического пика и изотермы адсорбции), калориметрический (определение зависимости теплоты адсорбции от заполнения поверхности адсорбированными молекулами), различные электронно-микроскопические методы (в частности, метод декорирования), дифракция медленных электронов, спектроскопические методы, химические реакции с поверхностными соединениями, в частности, изотопный обмен [54, 97]. В соответствпп с содержанием этой книги ниже рассмотрены некоторые термодинамические методы такой оценки. [c.24]

    Кроме различных химических взаимодействий, исследовались также реакции фотохимического и радиационного разложения. Расширение монослоев яичного альбумина под действием ультрафиолетового излучения Каплан и др. [179, 182] объясняют вероятным разрушением связей более прочных, чем относительно слабые связи (главным образом водородные), разрывающиеся при растекании. Смит [183] исследовал инактивацию пленок каталазы и бычьего сывороточного альбумина рентгеновским излучением Хатчинсон [184] изучал инактивацию этого же белка медленными электронами. Огенстайн и Рэй i[185] описали влияние ультрафиолетового и рентгеновского излучения на ферментативную активность трипсиновых монослосв. [c.141]

    Реакции окисления, в которых атмосферный кислород реагирует с горючими газами и парами, настолько хорошо известны и часто протекают так быстро, что, естественно, возникает тенденция рассматривать молекулу кислорода как весьма реакционноспособную. В действительности она химически весьма инертна по отношению к другим молекулам, а быстрота процессов горения обусловлена реакцией кислорода со свободными радикалами в стадии роста цепных реакций [1]. Цепные реакции протекают также и при медленном окислении насыщенных, ненасыщенных углеводородов, их производных и некоторых неорганических веществ как в растворах, так и в чистых жидкостях. Цепной характер этих автоокисли-тельных реакций был впервые установлен Бэкстрёмом путем сравнения фотохимического и термического окисления альдегидов и сульфита натрия (см. стр. 359). Подобно всем цепным реакциям, скорости этих реакций можно увеличить, добавляя катализаторы, дающие соответствующие свободные радикалы при термическом или фотохимическом разложении или за счет реакции переноса электрона их скорости можно уменьшить введением ингибиторов, которые заменяют активные радикалы неактивными или молекулами. Некатализируемые реакции автоокисления обычно идут медленно, потому что медленной является начальная стадия взаимодействия между реагентами, приводящая к образованию свободных радикалов. Однако при некоторых обстоятельствах реакции автоокисления обнаруживают самоускорение или автокатализ, обусловленный бирадикальными свойствами молекулы или атома кислорода. Поэтому представляет интерес рассмотреть некоторые общие особенности реакций автоокисления в связи с реакционно-способностью молекулы кислорода. [c.444]

    Роль геометрических факторов. В теории катализа значение геометрических факторов получило наиболее общее выражение в принципе геометрического соответствия мультиплетной теории Баландина. Близкий принцип лежит в основе теории матричных эффектов, общепринятой в современной молекулярной биологии для объяснения действия ферментов, нуклеиновых кислот и других регуляторов биохимических процессов. Применительно к выяснению возможности ускорения сравнительно простых реакций использование геометрических характеристик требует большой осторожности. Трудности начинаются с выбора геометрических параметров поверхности. Во-первых, эти параметры различны для идеальных плоскостей разных индексов (одного и того же монокристалла), которые обычно одновременно наблюдаются на поверхности. Во-вторых, как показывают прямые исследования дифракции медленных электронов, не только расстояния, но и тип структуры могут быть различными на поверхности и в объеме кристалла. Так, в частности, Ое и 81 в объеме имеют кубическую структуру алмаза, а на поверхности — гексагональную структуру расстояния З — 81 или соответственно Се — Се в объеме и на поверхности различаются, как известно, весьма существенно. В-третьих, по данным электронографии и эмиссионной микроскопии, атомы поверхности [c.25]

    Применительно к реакциям горения Миле [1260] предложил механизм тормозящего действия примесей типа СГзВг, осуществляющегося при участии свободных электронов, присутствующих в пламенах. Согласно этому механизму, медленные электроны взаимодействуют с молекулой ингибитора по схеме е -Н СГдВг = Вг -]- СГз. Образующиеся при этом отрицательные ионы или радикалы реагируют с активными центрами реакции, например, Н -Н Вг" = НВг е или Н -Н СГ зСРзН, что приводит к уменьшению концентрации последних. [c.418]

    Новая точка зрения на природу и механизм химической активации в разряде недавно была выдвинута Бартоном и Маги [471]. Согласно этим авторам, важную роль в процессе химической активации должны играть медленные электроны (/< = 0,5 — 4 эв), присутствующие в зоне разряда в значительных количествах. По их мнению, роль этих электронов заключается в последовательном (ступенчатом) возбуждении различных электронных уровней имеющихся в зоне разряда молекул и радикалов, в результате чего образуются активные частицы различной степени активности, в частности, такие, энергия которых значительно превын1ает энергию медленных электронов и которые не могут быть возбуждены при единичном соударении с медленным электроном. Применяя эти представления к реакции образования ацетилена из метана в электрическом разряде, Бартон и Маги постулируют формальный механизм реакции, в котором, наряду с атомами Н и радикалами СН и СНз, существенную роль И1 рают радикалы СН >, находящиеся на различных ступенях возбуждения и в силу этого способные к различным превращениям. Из этого механизма они получают кинетический закон реакции (скорость образования ацетилена пропорциональна концентрации метана и корню квадратному из силы разрядного тока), тождественный с законом, установленным Винером и Бартоном [1287] эмпирическим путем для стационарной реакции, осуществляющейся при пропускании струи метана через разряд. Совпадение теоретического и эмпирического законов реакции, конечно, нельзя рассматривать как доказательство правильности постулированного Бартоном и Маги механизма Однако несомненно, что в известных условиях медленные электроны должны играть существенную роль в процессе химической активации. [c.453]

    Так же мало сведений имеем в настощее время н о механизме так называемых холодных пламен (см. 41), возникающих в определенных областях температуры и давления при окислении углеводородов, а также некоторых других органических веществ. Для холодного пламени характерны повышение температуры 2 и наличие свечения, спектр которого состоит из полос электронно-возбужденного формальдегида Н2СО. Проводя реакцию в замкнутом сосуде, при окислении некоторых углеводородов наблюдают несколько последовательных (во времени) холодных пламен, обнаруживаемых по появлению свечения и по скачку давления, обусловленному повышением температуры. Так, например, при окислении пропи-.лена НзС—СН = СН2 наблюдаются три холодных пламени. Связанные с этими холодными пламенами скачки давления на кривой Ар, t (время) отчетливо выступают на рис. 152, взятом из работы В. Я. Штерна и С. С. Поляк [300]. Как видно из этого рисунка, холоднопламенные процессы, накладываясь на реакцию медленного окисления, на короткий про- [c.532]


Смотреть страницы где упоминается термин Реакции медленных электронов: [c.88]    [c.257]    [c.269]    [c.246]    [c.260]    [c.118]   
Смотреть главы в:

ЭПР Свободных радикалов в радиационной химии -> Реакции медленных электронов




ПОИСК





Смотрите так же термины и статьи:

Реакции диссоциативного захвата медленных электронов

Реакции медленные

Реакции медленных электронов с молекулами

Электронного медленная



© 2025 chem21.info Реклама на сайте