Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение окиси и двуокиси азота

    Выбор того или иного вида абсорбционного метода зависит от свойств анализируемой среды. Например, пары ртути, хлор и фтор поглощают определенные длины волн в спектре ультрафиолетового излучения, метан, окись и двуокись углерода — в спектре инфракрасного излучения, а двуокись азота — в видимой части спектра. [c.93]


    Окись и двуокись азота. При суммарном определении этих газов их пробу вводят в предварительно эвакуированную колбу, где имеется некоторое количество перекиси водорода. Окись азота окисляется до двуокиси, которая при растворении в воде образует азотную и азотистую кислоты. Ход реакций с.ледующий  [c.60]

    Скорость превращения параводорода в орто- в присутствии кислорода пропорциональна концентрации последнего реакция является, повидимому, мономолекулярной относительно водорода, с учетом того, что между орто- и пара-состояниями достигается определенное равновесие. Превращение параводорода в орто- и наоборот происходит, повидимому, при соответствующих столкновениях между молекулами кислорода и водорода. Парамагнитные окись и двуокись азота, но не ассоциированная форма — азотноватый ангидрид — влияют на орто-пара-превращение водорода таким же образом. Азот, закись азота, окись углерода, аммиак, двуокись серы и другие диамагнитные газы на процесс превращения не влияют. [c.103]

    Сообщалось, что бериллиевый порошок (размер частиц не указан) горит на воздухе при 1200° С и вступает в реакцию с азотом при 500° С [5]. Фтор вызывает коррозию бериллия при комнатной температуре, а другие галогены, двуокись азота и сероводород— при повышенных температурах [5]. Сухой хлористый водород легко взаимодействует с твердым бериллием при температуре выше примерно 500° С с образованием летучего хлорида бериллия. Аналогичному воздействию подвергаются также карбид и нитрид бериллия, а окись бериллия в такую реакцию не вступает. Это различие используется в одном из методов определения наличия окиси бериллия в металлическом бериллии. [c.172]

    Двуокись азота окрашена в желто-бурый цвет. Интенсивность окраски газа пропорциональна содержанию в нем двуокиси азота. Содержащаяся в газовой смеси окись азота окисляется кислородом, содержащимся в смеси, в двуокись азота. Определение содержания двуокиси азота проводят путем сравнения окраски исследуемого газа с окраской эталонов. [c.31]

    Химические реакции, осуществляемые в процессе создания контролируемых атмосфер из СНГ в смеси с воздухом, весьма разнообразны. Они обязательно сводятся к удалению кислорода. Помимо остаточного кислорода и азота защитные атмосферы в различном соотношении содержат двуокись и окись углерода, водород, пары воды и углеводороды. Дальнейшее изменение состава газовой среды требует специальных реакций. Поскольку двуокись углерода может взаимодействовать с определенными металлами и углеродом, содержащимся в стали, ее содержание в этой атмосфере необходимо снижать или полностью исключать. Для обеспечения взаимодействия между углеродом и поверхностью сплава металла (карбюризация) дополнительно может быть конвертирован пропан, а для нитрирования (азотирования) поверхности стали — введен аммиак. При термообработке стали нежелательно иметь высокую точку росы избыточной влаги, поэтому перед подачей на термообработку газы следует предварительно осушать, а окись углерода удалять во избежание поверхностного науглероживания низкоуглеродистых марок стали. [c.318]


    Настоящий стандарт устанавливает метод определения компонентного состава сухого газа, содержащего углеводороды i — С5, а также неуглеводородные компоненты (водород, азот, окись и двуокись углерода и сероводород), массовая доля которых 0,1% и выше. [c.110]

    При определении общего содержания углерода и водорода прямым сжиганием необходимо принять меры для того, чтобы сжигание было полным, чтобы двуокись углерода не связывалась и не удерживалась золой, чтобы не образовалась окись углерода, чтобы вся двуокись углерода и вода поглотились абсорбентами, чтобы были удалены галогены, окислы серы и азота, а также другие соединения, помимо СОа, которые могли бы быть поглощены применяемыми поглотителями, чтобы влажность воздуха при входе и выходе из поглотительной системы была одинакова и, наконец, чтобы воздух, вводимый в систему, был свободен от углеродсодержащих веществ, двуокись углерода, водорода и воды. [c.850]

    К легким газам в хроматографии относят водород, азот, кислород, элементы нулевой группы периодической таблицы, а также метан, окись и двуокись углерода. Определение состава смесей, включающих эти газы, необходимо при анализе воздуха нефтяных, болотных и рудничных газов продуктов радиоактивного распада, производства редких газов и продуктов электролиза газов, растворенных в металлах, в крови газов, выдыхаемых человеком, и многих других смесей. Для хроматографического разделения таких смесей необходимы сильные адсорбенты типа активированных углей, силикагелей, алюмогелей и молекулярных сит. Однако вследствие очень высокого давления пара и примерно одинаковых размеров молекул разделить некоторые пары веществ даже на колонке с молекулярным ситом удается лишь при весьма низких температурах. [c.257]

    Выполнение определения. Разберем в качестве примера анализ дымовых газов. В состав их входят кислород, азот, двуокись углерода и окись углерода. Если определяют полный состав газа, то составные части газа поглощают в следующем порядке сначала двуокись углерода, затем кислород и, наконец, окись углерода, остаток пробы газа относят к азоту. [c.101]

    Единственный метод прямого определения кислорода в органических веществах, который можно считать надежным, заключается в восстановлении продуктов термического разложения вещества накаленным углем в токе азота. По этому методу вещество подвергают разложению в токе азота (предварительно тщательно очищенного от примеси кислорода) в кварцевой трубке. Продукты разложения проходят через накаленный до 1150° слой гранулированной сажи. При этом кислород количественно переходит в окись углерода, которая, проходя через нагретый слой пятиокиси иода, количественно окисляется в двуокись углерода по следующему уравнению  [c.36]

    Ход определения. Анализ газа проводят в два этапа из проб объемом 4—5 мл. Пробы газа вводят с помощью дозатора. В первом этапе пробу газа подают на две последовательно соединенные колонки сначала выходит Аг, затем СО СО необратимо сорбируется молекулярными ситами. Во втором этапе колонку с молекулярными ситами отключают и пробу газа подают на колонку, заполненную активированным углем. Кислород, азот и окись углерода выходят вместе (общий пик), затем выходит двуокись углерода. [c.21]

    Перед масс-спектральным анализом азот образца переводится в измеряемую газообразную форму. Наиболее распространенной формой для изотопного измерения азота на масс-спектрометре является N2 (табл. 13). Для газообразных образцов вся подготовка сводится к очистке N2 от примесей, мешающих определению. Обычно это окись углерода, метан, вода, кислород и двуокись углерода [699]. Другими газообразными формами, используемыми для изотопных измерений, служат окись азота и атомарный азот. Азот аммонийных, нитратных, нитритных и органических соединений в общем случае переводится в N2 либо по методу Дюма [1188], либо по методу Риттенберга окислением аммонийного азота гипобромитом натрия [1309]. Окисленные формы азота предварительно восстанавливаются до аммиака сплавом Деварда. При использовании последних методов возможно достижение точности изотопного определения +0,01% [1278]. [c.133]

Рис. 26. Хроматограмма определения примесей окиси и двуокиси углерода в этилене на порапаке / —отклонение нулевой линии при вводе пробы 2—кислород + азот 3—окись углерода 4—метан 5—двуокись углерода. Рис. 26. <a href="/info/219552">Хроматограмма определения</a> примесей окиси и двуокиси углерода в этилене на порапаке / —<a href="/info/1073240">отклонение нулевой линии</a> при <a href="/info/39420">вводе пробы</a> 2—кислород + азот 3—<a href="/info/11665">окись углерода</a> 4—метан 5—двуокись углерода.

    Кондуктометрический метод применен для прямого микроопределения кислорода в органических соединениях [52, 53]. Определение основано на разложении вещества в атмосфере инертного газа и последовательном превращении кислорода сначала в окись углерода, а затем в двуокись. Методика определения [52] заключается в том, что органическое вещество подвергают пиролизу в атмосфере азота или аргона. Газообразные продукты пиролиза пропускают над слоем платинированной сажи, нагретой до 900 °С, где кислород количественно превращается в окись углерода. Затем СО окисляют до СОг над окисью меди при 300 °С. Двуокись углерода поглош,ают в электролитической ячейке, наполненной [c.27]

    Вещество, смешанное с окисью меди, сжигают в трубке, из которой предварительно полностью вытесняют воздух двуокисью углерода. Образовавшийся азот собирают в измерительной трубке (азотометре) над раствором едкого кали. Наряду с азотом и окислами азота получаются следующие продукты разложения окись углерода, двуокись углерода, кислород и вода. Кроме того, в газообразных продуктах сожжения могут находиться галогены, галогеноводороды, двуокись и трехокись серы. Все эти газы проходят через раскаленные металлическую медь и окись меди. Окислы азота разлагаются медью на азот и кислород, при этом последний вместе с кислородом, находящимся в газах сожжения, образует с металлической медью окись меди. Окись углерода на своем дальнейшем пути через накаленную окись меди окисляется до двуокиси углерода, для чего требуется определенная продолжительность соприкосновения с окислителем. Вода и продукты сожжения, образующиеся из соединений, содержащих галогены и серу, поскольку они не связываются наполнением трубки, попадают в раствор щелочи, находящийся в азотометре, и поглощаются им. [c.179]

    Количественный элементарный анализ (Ю. Либих, 1830 г.) в его наиболее распространенном виде осуществляется сожжением вещества в трубке, через которую проходит ток кислорода и в которой находится окислитель (окись меди или хромат свинца). Во всех случаях продуктами сгорания являются одни и те же газы углерод превращается в двуокись углерода, водород—в воду, а азот выделяется в свободном состоянии. Два первых газа определяют весовым методом, а азот — объемным галоиды и серу определяют в соединениях, содержащих эти элементы, разрушением органического вещества за счет окисления или гидрирования с последующим определением получающихся ионов. Кислород можно определять непосредственно деструктивным гидрированием вещества, однако в большинстве случаев его определяют по разности. [c.15]

    Сложность этой методики заставила искать иные пути анализа N0 и N02 при совместном их присутствии. В качестве такого метода было предложено И. И. Кузьминых и Э. Я. Турканом колориметрическое определение, поскольку двуокись азота имеет желто-бурую окраску, а окись азота бесцветна. [c.61]

    Параллель между магнитной чувствительностью и каталитической активностью элементов, служащих катализаторами, была доказана экспериментально в нескольких примерах. Фаркаш и Захссе [97] показали, что парамагнитные газы (кислород, двуокись азота и окись азота) индуцируют каталитическую конверсию pH2->i H2 таким же образом, как и ионы группы железа или ионы редких земель. Однако нельзя провести параллели между ролью парамагнитных катализаторов в этой реакции и ролью, которую они играют в любой другой известной реакции, так как пара- орто- превращение происходит без разрушения или образования химических связей, скорее оно заключается в изменении магнитных свойств существующей связи, поскольку магниты, как и следует ожидать, являются хорошими катализаторами для осуществления магнитных возмущений (Кассель). Розенбаум и Хогнесс [2П] нашли, что атомы иода катализируют пара-орто-превращение водорода вследствие своего парамагнетизма. Была сделана попытка сравнить изменения магнитных свойств определенных каталитических смесей при термической обработке, и их поведение при каталитическом разложении окиси азота или окислении окиси углерода [146]. Увеличение активности катализатора совпадало с образованием на поверхности парамагнитной аморфной пленки, специфичной для природы смешанных катализаторов в определенных интервалах температуры. [c.82]

    Химический анализ проводился на окись двухвалентного металла, двуокись титана и оксалат-ион. Для анализа газообразных продуктов (окись углерода, двуокись углерода и пары воды) через реакционную трубку, нагретую до определенной температуры, пропускали азот. Выделяющиеся двуокись углерода и пары воды поглощались в кали-аппаратах. Непоглощенная окись углерода сжигалась над окисью меди и затем поглощалась в виде углекислого газа [10]. На рис. , а, б, в, г приведены результаты комплексного термографического анализа титанилоксалатов бария, стронция, кальция и свинца. Подобно простым оксалатам бария, стронция и кальция [И], комплексные оксалаты при нагревании разлагаются ступенчато. Это термическое разложение, как видно из записи дифференциальной кривой, имеет сложный характер и сопровождается рядом эндотермических и экзотермических процессов. [c.233]

    Вечержа [6, 7] предложил метод автоматического определения углерода, водорода, азота, в котором хроматографическая колонка заменена химическими поглотителями. В качестве окислителя использована закись-окись кобальта при температуре 600—700° С. Для определения каждого элемента применялся соответствующий газ-носитель. При определении углерода сожжение проводят в токе кислорода. Образующуюся воду и окислы азота поглощают ангидроном и двуокисью марганца, а двуокись углерода определяют по теплопроводности. При определении водорода вещество сжигают в токе азота воду восстанавливают железными стружками до водорода после поглощения двуокиси углерода водород фиксируют катарометром. При определении азота вещество сжигают в токе СОг, элементарный азот определяют также по теплопроводности. Точность определения углерода 0,46%, водорода 0,16%, азота 0,27%. [c.116]

    Ограничение, заключающееся в том, что число молей газа должно быть постоянным, налагается для того, чтобы закон объяснял необычное поведение некоторых газов. Дело в том, что в отличие от обычных газов, таких, как кислород, водород, азот, окись углерода, двуокись углерода и др., подчиняющихся закону Бойля, имеются некоторые газы, которые не подчиняются этому закону. Одним из таких газов является двуокись азота NO2, молекулы которой могут соединяться в двойные молекулы — четырехокись азота N2O4. При обычных условиях в этом газе имеется некоторое количество молекул NO2 и некоторое количество молекул N2O4. При изменении дав [ения, под которым находится определенное количество этого газа, изменяется и число молекул каждого вида, а это обусловливает сложный характер зависимости объема от давления вместо простой зависимости, описываемой законом Бойля. Это явление объясняется в гл. XX. [c.239]

    Раздельное определение окислов азота основано на различ ной окраске окислов. Двуокись азота N02 окрашена в желтобурый цвет, а окись аз10та N0 бесдветна. Интенсивность окрас ки гава пропорциональна содержанию в нем N02. Сравнивая окраску анализируемого газа с окраской газа в эталонных трубках, концентрация N02 в которых известна, определяют содержание N02 в газе. [c.219]

    Окись азота может быть определена путем окисления перманганатом калия. Образовавшуюся двуокись азота определяют колориметрическим путем, применяя упомянутые выше реак тивы или используя реакцию с сульфаниловой кислотой и а-наф-тиламином в уксуснокислом растворе. Под действием окиси азота образуется азосоединение, придающее раствору розово-красную окраску. Последний метод может быть использован вообще для определения N0 при любом способе ее окисления до N02- [c.60]

    Из табл. 26 видно, что большинство газов не намного отличается друг от друга по магнитным свойствам. Но среди этих газов резко выделяется парамагнитный кислород. К числу парамагнитных газов относится также окись азота. Небольшой пара-магнитностью обладает двуокись азота. Известно несколько методов и конструкций приборов для определения кислорода [31—34]. [c.347]

    В последние годы газо-адсорбционный метод начинает широко использоваться для биохимических исследований. Так, состав воздуха (азот, кислород, двуокись углерода) важно знать для изучения процессов фиксации азота, фотосинтеза и дыхания [100]. Аргон, содержащийся в воздухе в количестве до 1%, также может быть определен хроматографически, хотя его определение менее важно для биохимии, так как он неактивен. Описаны методики газохроматографического анализа газов в крови, в частности окиси углерода [1011, анализ газов в биологических жидкостях [102], анализ газов в медицине и физиологии, в почвах и удобрениях и в продуктах разложения различных органических веществ [103]. В последнем случае образуются также закись, окись и двуокись азота, аммиак и сероводород. Разделение и анализ этих газов методом газовой хроматографии представляет собой более трудную задачу. На силикагеле двуокись углерода и закись азота не разделяются, но могут быть разделены на угле [104]. [c.152]

    Анализ окислов азота проводился по несколько видоизмененной методике, разработанной ГИАП [5]. Содержание N0 и NOg определялось раздельно сульфаниловой кислотой и а-пафтил-амином. Реагируя с указанным реактивом, двуокись азота давала розово-красную окраску. Интенсивность окраски сравнивалась с интенсивностью окраски стандартного раствора, приготовленного из нитрита натрия. Определение содержания окислов азота проводилось колориметрическим методом при помощи фотоэлектрического колориметра модели ФЭК-М. После поглощения двуокиси азота оставшаяся в реакционном газе окись азота окислялась перманганатом калия снова до двуокиси азота, содержание которой определялось поглощением ее в растворе сульфаниловой кислоты и а-нафтиламина. До поглощения и после поглощения окислов азота вся система продувалась азотом. Сходимость результатов была достаточно хорошей, и ошибка опыта не превышала 5%. [c.118]

    Определение содержания окиси азота. Метод основан на том, что окись азота, содержащаяся в выхлопных газах, окисляется лрисутствующим в них кислородом до ЫО2. Двуокись азота образует с водой азотную кислоту, которую титруют раствором дкого натра. При этом протекают реакции  [c.468]

    Для контроля содержания кислорода в аппаратуре применяют газосигнализатор ГГМК-12, предназначенный для определения содержания кислорода в бинарных и многокомпонентных газовых смесях. Газоанализатор представляет собой прибор непрерывного действия, его выпускают со следующими шкалами О—1, О—2, О—5, О—10, О—21% (об.) кислорода. В составе анализируемой смеси в качестве неизмеряемых компонентов могут присутствовать азот, двуокись углерода, гелий, аргон, окись углерода и непредельные углеводороды до С включительно. Датчик газоанализатора ДК-6М выполнен во взрывонепроницаемом исполнении, его можно устанавливать во взрывоопасных помещениях всех классов. [c.108]

    Превращение органических соединений в летучую форму, удобную для анализа на масс-спектрометре, может быть осуществлено одним из лшогих методов, предложенных для прямого определения кислорода [42, 579]. Одним из наиболее важных является метод Тер-Мейлена [1390], по которому кислород, содержащийся в органических соединениях, количественно превращается в воду при испарении в токе чистого водорода, крекинге или пиролизе соединения при высокой температуре и пропускании продуктов реакции над никелевым катализатором при 350°. Другой метод был предложен Шютце-[1806] и модифицирован Унтерцаухером [669, 2066]. В методе Шютце — Унтерцаухе-ра образец термически разлагается в токе чистого азота, и полученные продукты пропускаются над углеродом при температуре около 1000°, причем они превращаются в окись углерода и далее в двуокись углерода под действием пятиокиси иода. Дёринг и Дорфман [501], используя этот метод, получили хорошие результаты. В случае работы на масс-спектрометре с высокой разрешающей силой превращение окиси углерода в двуокись необязательно. Для исследования смеси СО и N2 необходимо, чтобы отношение М/АМ было равно 2300. Если применяется метод анализа Тер-Мейлена, то вода может быть исследована непосредственно, как и при определении дейтерия, либо по двуокиси углерода. Для этого перемешиванием воды и двуокиси углерода в запаянных стеклянных трубках в течение нескольких часов при комнатной температуре, как это описано Коуном и Юри [368], достигают состояния равновесия [1403]. Содержание 0 в воде может быть вычислено из состава равновесной смеси двуокиси углерода и воды по константе равновесия обменной реакции, равной 2,094 при 0° 2141]. [c.89]

    Применение метода для определения углерода, азота, кислорода и серы в органических соединениях было детально рассмотрено Гроссе, Гиндиным и Киршенбаумом [794—796, 798, И17, 1118]. Для того чтобь создать равномерное распределение изотопов каждого из этих элементов в различных присутствующих соединениях, необходимо нагревать компоненты до температуры красного каления в течение часа, иногда в присутствии катализатора. Предварительные опыты со смесями двуокиси углерода, воды и обогащенного кислорода показали, что. в условиях эксперимента достигается равновесие для кислорода. Кислород, обогащенный 0, использовали в качестве изотопного индикатора при определениях кислорода [1119]. Добавлять достаточное количество кислорода для полного превращения органического материала в двуокись углерода и воду нет необходимости. Даже в том случае, когда присутствует окись углерода, кислород полностью распределяется среди различных кислородных соединений. Для измерения распространенности 0 в различных образцах лучше всего использовать молекулярные ионы в масс-спектре двуокиси углерода. Для определения углерода использовалась смесь СОг и кислорода в количестве, обеспечивающем полное сжигание. В этом случае, ввиду количественного образования двуокиси углерода при сжигании, нет необходимости в установлении равновесия, и СОг нужно лишь смешать с образцом газа. [c.113]

    Найтингел и Уолкер 8] разработали метод одновременного определения углерода, водорода и азота быстрым сожжением (в течение 30 сек.) анализируемой пробы с помощью индукционной печи. В качестве окислителей использованы перманганат серебра и окись меди. Быстрое сожжение пробы с катализатором в потоке гелия позволяет непосредственно без предварительного концентрирования разделять простые продукты окисления в хроматографической колонке. Навеску анализируемого вещества, смешанного с окислителем, сжигали в угольном тигле, футерованном кварцем. Продукты окисления проходили через реактор, заполненный на /з окисью меди и на /з металлической медью для завершения окисления и восстановления окислов азота. Далее газовый поток проходил через реактор с карбидом кальция, где вода превращалась в ацетилен. Карбид кальция в реакторе заменяли новым перед каждым анализом. Смесь простых продуктов (азот, двуокись углерода, ацетилен) разделяли на хроматографической колонке с молекулярными ситами 5А. Среднее отклонение при определении углерода 0,52%, водорода 0,22%, азота 0,58%. [c.116]

    Определение кислорода обычно производится косвенным путем если после определения процентного содержания в веществе всех найденных элементов сумма отличается от 100%, то разность и составляет процентное содержание кислорода. Единственный метод прямого определения кислорода в органических веществах, который можно считать надежным, заключается в восстановлении продуктов термического разложения вещества накаленным углем в токе азота. По этому методу вещество подвергают разложению в токе азота (предварительно тщательно очищенного от примеси кислорода) в кварцзвой трубке. Продукты разложения проходят через накаленный до 1150°С слой гранулированной сажи. При этом кислород количественно переходит в окись углерода, которая, проходя через нагретый слой пятиокиси иода или окиси меди, количественно окисляется в двуокись углерода. [c.41]

    К легким газам в хроматографии относят водород, азот, кислород, элементы нулевой группы периодической таблицы, а также метан, окись и двуокись углерода. Определение состава смесей, включа-эющих эти газы, необходимо при анализе воздуха нефтяных, болотных и рудничных газов продуктов радиоактивного распада, производства редких газов и продуктов электролиза газов, растворенных т металлах, в крови газов, выдыхаемых человеком, и многих других смесей. Для хроматографического разделения таких смесей необходимы сильные адсорбенты типа активированных углей, сили-жагелей, алюмогелей и молекулярных сит. Однако вследствие очень [c.228]

    В 1939 Г. Шютце [603] впервые описал метод прямого определения кислорода, основанный на ином принципе и дающий удовлетворительные результаты. Метод заключается в разложении органического вещества нагреванием его до высокой температуры в токе чистого азота. Образующаяся при этом смесь паров и газов, содержащая весь кислород органического соединения, про ходит над углеродом, нагретым до 1100°. При этом кислород образует окись углерода, которая при окислении йодноватым ангидридом образует двуокись углерода  [c.120]

    В 1756 М. В. Ломоносов )та основе количественных опытов установил, что горение и окисление являются процессами соединения окисляемого вещества с частицами воздуха, а А. Лавуазье в 1774—77 доказал, что это соедипепие происходит о определенной составной частью во.здл ха — кислородом. В 1748 Ломоносов и независимо от него в 1774 Лавуазье открыли з а к о п сохранения массы веществ в химических реакциях. После открытия этого закона X. была превращена из качественно-описательной в количественную науку. Вторая половина и особенно последняя четверть 18 в. весьма богаты эксперимеитальнымн открытиями в области X. К началу 18 в. было известно только 1.Я хпмпч. элементов, а к концу 18 в.— 32, т. е. за одно столетие было открыто 19 элементов, в т. ч. кислород, водород, азот, хлор. Кроме того, в 18 в. установлен состав воздуха и воды, открыты окись и двуокись углерода, аммиак, сер]и1стыи ангидрид и др. газообразные соединения. Исследование газов приобрело широкий размах и составило направление пневматической X и м и и. [c.332]

    Такой метод концентрирования инертных примесей, основанный на обратимом химическом поглощении основного вещества, применен для определения углеводородных примесей в двуокиси углерода Сорбенто.м служит диэтаноламин, хорошо сорбирующий двуокись углерода при комнатной температуре и легко регенерируемый при повышении температуры до 100 °С. Метод фронтально-вытеснительного концентрирования применен для определения легких микропримесей таких как кислород, азот, окись углерода, метан и др. в этилене и пропи-лене 2. [c.168]

    Анализ газов пиролиза с гомогенным теплоносителем, которые включают водород, окись и двуокись углерода, проводили на трех параллельно работающих хроматографах ХПА-2. В двух случаях сорбентом служил активированный уголь, в третьем — дибутират тризтиленгликоля и трепел Зикеевского карьера. Первый прибор служил для определения водорода (газ-носитель — азот, расчет концентрации — методом абсолютной калибровки), второй — для определения СО, СОз и метана (газ-носитель — водород), третий — как обычно, для определения углеводородов до С5. Хроматограммы, полученные на первых двух приборах, приведены на рис. 7. [c.164]

    Уравнение Бенедикта — Вебба — Рубина (приложение V) использовалось для определения констант равновесия смесей легких углеводородов [127, 128], а также для систем азот — окись углерода и пропан — двуокись углерода [38, 129]. Константы равновесия определяются с помощью уравнения (14), данного в приложении V, при условии равенства величин Т, Р, fi между фазами. Метод сложен и обычно используется при расчетах на ЭВМ. [c.383]

    По Ледебуру, окислы металла восстанавливают водородом при высокой температуре. Образовавшуюся при этом воду поглощают фосфорным ангидридом, взвешивают и пересчитывают на кислород. Метод Ледебура был усовершенствован Кейтманном и Обергоффером [15], Гартманом [16] и др. Было установлено, что при 950° С водород восстанавливает только окислы железа, при 1100—1150° С — также окислы марганца. Вейнберг [17] считает, что, добавляя плавень, можно при 1200° С восстановить водородом также двуокись кремния и окись алюминия. Однако в результате дальнейших исследований [18] было установлено, что определение кислорода в сталях с большим содержанием кремния приводит к заниженным результатам. В этом случае содержащиеся в стали окислы железа частично восстанавливаются кремнием с образованием двуокиси кремния, которая не восстанавливается водородом. Было выяснено, что в углеродистых сталях окислы железа частично восстанавливаются углеродом, содержащимся в стали. При этом образуется окись и двуокись углерода. Были предложены способы количественного определения окислов углерода. Было исследовано также влияние относительно больших концентраций азота, фосфора и серы. При высоких температурах водород реагирует с этими элементами, образуя соответственно аммиак, фосфористый водород и сероводород, что искажает результаты определения кислорода. Таким образом, водородный метод определения кислорода может давать верные результаты лишь при анализе железных порошков с малым содержанием [c.32]

    Кислород в органических соединениях обычно определяют по разности, поэтому полученные значения включают сумму ошибок определения остальных элементов. В последние годы прямой метод определения, разработанный Шутце и усовершенствованный Унтерзаухером, находит все большее применение. Однако для большинства анализов полимеров, где нужно определять только небольшие количества кислорода, затраты времени на создание и проверку специальной аппаратуры делают этот метод непригодным. Органические соединения подвергают пиролизу в атмосфере азота при этом образуются углеводороды, окись углерода и вода, которые затем пропускают через графитовую колонку, нагретую до 1150°. Двуокись углерода количественно превращается в окись углерода. Выходящие газы пропускают над гранулированным КОН для удаления паров кислотных веществ, которые могут образоваться, если в исследуемом материале присутствуют азот, сера или галогены. Затем газы пропускают через подогретую пятиокись иода, с которой реагирует окись углерода. При этом образуются двуокись углерода и иод. Иод возгоняется и поглощается в трубке с поташом, из которой его вымывают и титруют стандартным раствором тиосульфата. Подробности метода описаны Стейермарком [144, стр. 208]. [c.63]


Смотреть страницы где упоминается термин Определение окиси и двуокиси азота: [c.145]    [c.215]    [c.657]    [c.68]    [c.355]    [c.34]   
Смотреть главы в:

Методы органической химии Том 2 Издание 2 -> Определение окиси и двуокиси азота

Методы органической химии Том 2 Методы анализа Издание 4 -> Определение окиси и двуокиси азота




ПОИСК





Смотрите так же термины и статьи:

Азот, определение

Азот, определение азота

Азот, определение окись

Двуокись азота, определение



© 2025 chem21.info Реклама на сайте