Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция на катализаторе углеводородов

    Во всех цитированных -выше работах по конфигурационной изомеризации в зоне реакции в большей или меньшей мере всегда присутствовал водород или дейтерий. В одной из ранних работ [6] мы предположили, что водород, хемосорбированный на поверхности катализатора, может входить в состав переходного активированного комплекса и тем самым играть существенную роль в протекании реакции. Это предположение в последствии было проверено и подтверждено экспериментально. Так, в работах [11, 12] рассматривается ряд возможных механизмов конфигурационной изомеризации, основанных на различных вариантах диссоциативного и ассоциативного способов адсорбции исходного углеводорода. Адсорбция углеводорода по диссоциативной схеме может [c.69]


    На схеме представлены этапы превращения транс-1,2-диметилциклопентана в ис-форму. Исходный транс-1,2-диметилциклопентан (А) адсорбируется двумя атомами углерода и одним атомом водорода на трех центрах адсорбции катализатора с образованием (Б). Адсорбированный по соседству атом водорода атакует молекулу углеводорода с образованием переходного комплекса (В). Последний далее распадается с вхождением атакующего атома водорода в молекулу углеводорода и с одновременным уходом из нее ранее принадлежавшего ей другого атома водорода (Г). Образовавшийся при этом адсорбированный на поверхности катализатора цис-1,2-диметилциклопентан десорбируется в объем (Д). [c.71]

    Впервые влияние давления водорода на протекание гидрогенолиза пятичленного цикла было изучено в работе [144]. Хотя реакция идет с поглощением водорода, и, казалось бы, увеличение содержания водорода в зоне реакции должно быть благоприятным для ее протекания на Pt/ , а также на Ni/кизельгур, на самом деле с повышением давления водорода (до 2—5 МПа) степень превращения циклопентана уменьшается при данной постоянной температуре, но возрастает с повышением температуры при данном постоянном давлении водорода. Эта интересная закономерность объясняется, очевидно, тем, что водород способен блокировать поверхность катализатора, препятствуя адсорбции молекул углеводорода. [c.123]

    Полученные результаты, как указывалось выше, связываются с протеканием гидрогенолиза метилциклопентана по двум механизмам. Считают [177], что преобладание того или иного из них обусловлено увеличением (рост Рн, очистка водорода от примеси О2) или уменьшением (добавка О2 или Н2О) электрофильности катализатора. Однако, с нашей точки зрения, электрофиль-ность может являться существенным, подчас весьма важным (см., например, [175]), но отнюдь не единственным фактором, определяющим то или иное распределение продуктов гидрогенолиза алкилциклопентанов. Необходимо учитывать также способ адсорбции исходных углеводородов на поверхности катализатора, легкость атаки той или другой связи, наличие взаимодействия атомов в молекуле. [c.137]

    Данные работы о независимости уменьшения поверхности и активности катализатора от присутствия соединений, содержащих азот или серу, по-видимому, не противоречат выводам работ приведенным выше. В работе применялся высокоактивный гидрирующий катализатор, а добавки серы и азота вводились в виде низкомолекулярных соединений. Поэтому они не могли затруднять адсорбцию реагирующих углеводородов, а сами относительно быстро превращались. Соединения, содержащие азот и серу, видимо представляют наибольшую опасность при переработке прочно адсорбируемого сырья в условиях недостатка водорода на поверхности катализатора. [c.323]


    Влияние ароматических углеводородов на крекинг насыщенных обусловлено в первую очередь их большей адсорбционной и коксообразующей способностью. Преимущественная адсорбция ароматических углеводородов на поверхности катализатора приводит к снижению концентрации насыщенных- углеводородов, что соответственно уменьшает скорость их крекинга. Участие ароматических углеводородов во вторичных реакциях проявляется обычно в более интенсивном коксообразовании, что понижает активность катализатора и приводит к меньшей конверсии насыщенных углеводородов. [c.98]

    Эффективность процесса окисления углеводородов определяется адсорбцией исходной фракции и промежуточных продуктов превращения. Процесс пиролиза также зависит от эффективности образования олефиновых углеводородов и саморегенерации катализатора. При слабой адсорбции исходных углеводородов и сильной адсорбции продуктов превращения процесс расщепления можно записать как  [c.249]

    Относительно природы активных центров, ответственных за хемосорбцию и катализ в реакциях окислительного дегидрирования, в литературе пока мало данных. Полагают, что катализатор должен иметь окисленное (дублет 20) и восстановленное (2) места на поверхности. Адсорбция молекулы углеводорода (ее аллиль-ного фрагмента) происходит на катионитах Мо + или В1 + за счет л-связывания, а атом водорода связывается с кислородным анионом приповерхностного слоя. Атом кислорода решетки должен обладать определенной подвижностью для осуществления селективного окисления, достижения прочности связи углеводорода (и продуктов его превращения) с поверхностью катализатора и т. п. [c.181]

    Энергетическая выгодность плоскостной секстетной адсорбции циклогексанового кольца особенно отчетливо проявляется при сопоставлении условий процесса на металлах и окислах. Если на металлах процесс осуществляется при температурах около 300° С и с энергией активации 55—75 кДж/моль, то на окислах реакция идет при температуре 500—600° С с энергией активации 80— 160 кДж/моль. Наличие реберной и плоскостной ориентации доказывается на примерах циклогексана и декалина. На никеле, где осуществляется плоскостная адсорбция обоих углеводородов, циклогексан дегидрируется быстрее декалина, хотя энергия активации одинакова и составляет 52,25 кДж/моль это доказывает плоскостную ориентацию колец на никеле. На окиси хрома, где процесс осуществляется по дублетной схеме, циклогексан и декалин дегидрируются с одинаковыми скоростями и с одинаковой энергией активации 108,7 кДж/моль. Реберная ориентация углеводородов на окислах обусловливает возможность дегидрогенизации пяти- и семичленных циклов и дегидрогенизацию парафиновых углеводородов. Окись хрома — один из лучших катализаторов дегидрирования углеводородов. При гидрировании бензола обнаружены промежуточные продукты (циклогексен), что свидетельствует о более широком, чем предполагалось, распространении дублетной схемы. [c.76]

    Рассмотрим результаты гидрирования ацетиленовых углеводородов на других катализаторах с целью выяснения специфики катионных форм цеолитов в этой реакции. В отличие от реакции гидрирования диеновых углеводородов, которая исследовалась на катализаторах различной природы. гидрирование ацетиленовых углеводородов изучено только на металлических [101, 131-180] и металлокомплексных [181-196] катализаторах. Отсутствие данных по гидрированию ацетиленовых углеводородов на оксидных и сульфидных катализаторах, возможно, объясняется их незначительной активностью из-за прочной адсорбции этих углеводородов и отравления активных центров. [c.73]

    Поверхностные соединения, образующиеся при адсорбции углеводородов на различных металлах, не одинаковы. На серебре при взаимодействии с этиленом возникают формы, которые не обнаружены на платине. При адсорбции насыщенных углеводородов на металлах возникают формы, близкие по строению к радикалам при окислении они превращаются только в СО2 и Н2О. Природа поверхностных соединений влияет на направление окисления углеводородов. Поэтому возможность регулирования структуры поверхностного соединения, возникающего при взаимодействии различных углеводородов с поверхностью катализатора, позволит управлять селективностью окисления. [c.51]

    При адсорбции смесей углеводородов с кислородом было обнаружено взаимное влияние газов на характер адсорбции. Для более детального исследования такого явления были проведены опыты по последовательной адсорбции кислорода и пропилена сначала поверхность катализатора обрабатывали одним из компонентов, который адсорбировался в виде обратимой и необратимой форм. Затем обратимо адсорбированную форму удаляли с поверхности и адсорбировали второй компонент на катализаторе, содержащем только необратимо сорбированную форму первого компонента. Для выяснения влияния второго компонента на характер адсорбции первого изменяли последовательность взаимодействия исследуемых газов с поверхностью. [c.52]


    Спектроскопических данных об образовании поверхностных соединений при адсорбции ароматических углеводородов почти не имеется. Изучены лишь ИК-спектры нафталина, адсорбированного на поверхности окисного ванадиевого катализатора, и продуктов его окисления [150]. Показано, что при этом образуются солеобразные соединения типа малеатов и солей фталевых кислот (даже в условиях предкатализа при 100 °С). [c.60]

    В работе [10] была использована реакция o-Hj п-Н-2 при —196° С для выяснения характера адсорбции насыщенных углеводородов на металлах на модельной системе никель — циклогексан. Получены данные о влиянии адсорбции циклогексана (а также продуктов его дегидрирования) при 30—100° С на скорость реакции ор/мо-пара-конверсии водорода (1) и изотопный обмен водорода с дейтерием (2) на никелевом катализаторе при —196° С. Реакция (1) ускоряется при адсорбции циклогексадиена и бензола. В аналогичных условиях реакция (2) не протекает. Эти данные трактуются как результат образования при адсорбции циклогексана промежуточных состояний, обладающих радикалоподобными свойствами, что и вызывает протекание реакции (1) по физическому механизму. Концентрация таких соединений с радикалоподобными свойствами увеличивается с ростом адсорбции. Отсюда следует, что диссоциативная адсорбция насыщенных соединений на металлических катализаторах является предварительной стадией в процессе дегидрирования при высоких температурах. [c.48]

    Таким образом, предложена сравнительно полная и точная теория циклизации и изомеризации на окисных катализаторах. Она основывается лишь на немногих вполне правдоподобных допущениях, как адсорбция исходного углеводорода на двух [c.290]

    С образованием сильной донорно-акцепторной связи, блокируют атомы палладия, препятствуя адсорбции ароматических углеводородов. Прокаливание катализатора, дезактивированного оксидом углерода, в токе воздуха в течение 6 ч восстанавливает его гидрирующую активность. [c.163]

    Рубинштейн и сотр. [15] провели хроматографическое изучение поведения углеводородов на алюмохромокалиевом катализаторе, применяемом в реакциях дегидрирования и дегидроциклизации парафиновых углеводородов [16], с целью выяснения характера адсорбции и его изменения с температурой. По интенсивности уменьшения времен удерживания ( н) с возрастанием величины пробы авторы судили о сравнительной неоднородности поверхности катализатора по отношению к различным углеводородам. Теплоты физической адсорбции вычислялись на основании температурной зависимости логарифма исправленного удерживаемого объема, при этом времена удерживания и удерживаемые объемы были экстраполированы к нулю. По разности между теплотой адсорбции и теплотой конденсации вычислялась чистая теплота адсорбции. График зависимости логарифма приведенного удерживаемого объема от теплоты адсорбции указывал на неоднородность поверхности катализатора и протекание адсорбции различных углеводородов на центрах различной природы (рис. 46). [c.124]

    Гидрирование в воде также протекает в условиях образования эмульсии непредельный углеводород — вода. В этом случае реакция идет за счет соударений капель углеводорода о частицы катализатора, покрытые водным слоем. Лимитирующей стадией является адсорбция непредельных углеводородов на поверхности катализатора, так как растворимость веществ в воде ничтожно мала. Характерно, что увеличение количества гидрируемого фенилацетилена в 2—10 раз не приводит к росту скорости реакции, в то время как добавка к воде лишь 2. .. 4 % (0,5. .. 1,0 см ) гексана ускоряет процесс гидрирования в 2,5 раза. Роль малых добавок гексана заключается в значительном ускорении адсорбции непредельных углеводородов на поверхности катализатора. [c.9]

    Изучено [39] влияние добавок алифатических углеводородов на газофазное окисление пропилена в присутствии смешанного катализатора из окислов висмута, молибдена и сурьмы. Экспериментально показано, что этан, этилен и пропан не мешают превращениям пропилена в акролеин. Изобутилен, бутен-1 и цис-бутен-2 тормозят окисление пропилена и сами энергично расходуются по ходу реакции, причем из первого углеводорода С4 об-)азуется метакролеин, а из второго и третьего — бутадиен-1,3. полученные результаты объясняют, [39] с позиции конкурентной адсорбции исходных углеводородов на одних и тех же активных центрах катализатора. [c.21]

    Адсорбция индивидуальных углеводородов (н-бутана, изобутана, к-гептана и н-октана) на кислотных участках алюмосиликатного катализатора была изучена Эмметтом с сотрудниками [292, 293]. При низких температурах наблюдалась значительная адсорбция, но нри температурах начала крекинга адсорбировались очень малые количества парафинов. По-видимому, не требуется, чтобы количество углеводородов, адсорбируемое катализатором в течение времени, которое необходимо для крекинга, было очень большим. Определяющей скорость стадией является, вероятно, образование карбоний-иона. [c.340]

    При адсорбции линеарных углеводородов (аценов) (рис. 10 а, б, в) на площадке, занимаемой углеводородом, находятся два активных центра катализатора, против которых расположены активируемые связи с повышенной электронной плотностью. Таким образом, эти углеводороды находятся в сравнимых условиях, и скорость тидриро-вания определяется кратностью связи. [c.155]

    Установленные результаты позволили предположить следующую модель Механизма образования волокнистого углеродного вещества. При адсорбции молекулы углеводорода на некоторых участках поверхности никелевого катализатора образуется мультитетный комплекс, в котором происходит перераспределение связей и образование новых, более прочных. Учитывая сродство никеля к атомам водорода, последние отщепляются от исходной молекулы углеводорода. В результате этого происходит упрочнение связи никеля с углеродом за счет дополнительных валентностей углерода, освободившихся при дегидрировании. Последовательное дегидрирование адсорбированной молекулы углеводорода приводит к притягиванию и внедрению углеродных атомов в межкристаллическое пространство никеля. Многократное повторение этой стадии вызывает насыщение никеля углеродом. Вследствие этого на других участках поверхности никелевого катализатора образуются центры кристаллизации углеродного вещества, на которых происходит рост углеродных волокон. [c.85]

    На этих катализаторах углеводороды окисляются до углекислого газа и воды, т. е. происходит полная деструкция молекулы альдегидов кислот в продуктах реакции не обнаружено. Выше было высказано нредположение, что на поверхности протекает ценная реакция, которая приводит к полному окислению молекулы углеводородов. Знаки зарядов при адсорбции компонентов реакции, измеренные по КРП, такие же, как и иа других простых окислах. [c.120]

    Таким образом, поверхностно-объемная стадия характерна только для некоторых окислительных катализаторов, на которых при всех условиях не удается получить пз углеводородов ничего, кроме СО2 и Н2О. Особенно следует отметить платиновый катализатор, на котором имеет место объемное продолжение реакции даже нри температурах 50—70°. На катализаторах VjOj, СпаО, серебре и некоторых шпинелях в обычных условиях (при относительно высоких температурах) катализа объемного продолжения реакции не наблюдается. На всех изученных катализаторах углеводороды легко сорбируются. На платине сорбированный углеводород закрепляется исключительно прочно. С другой стороны, на катализаторах типа шпинелей (Mg r Oi) адсорбция углеводородов при температурах, близких к условиям катализа, протекает слабо и обратимо, а выход в объем наблюдается как для прочно, так и слабо сорбированного углеводорода. Следовательно, выход реакции в объем не может быть объяснен прочностью связи углеводорода с поверхностью катализатора. Вероятно, причиной, обусловливающей наличие объемной стадии, является природа связи продукта взаимодействия кислорода и адсорбированного углеводорода с поверхностью катализатора, т. е. строение и свойства перекисного радикала типа RO3 или R0. Разберем возможные типы соединений, образующиеся в этом случае. [c.125]

    Данные по адсорбции пропилена и кислорода на различных катализаторах, полученные методом последовательной адсорбции газов (табл. 33), оказались одинаковыми. Для сравнения изучали адсорбцию каждого газа в отдельности (индивидуальная адсорбция). В результате адсорбции на поверхности устанавливается определенное соотношение кислорода и олефина, от которого зависит состав образовавшихся поверхностных соединений, представляющих собой кисло род-углеводо-родные комплексы. На катализаторах глубокого окисления адсорбируется значительно больше кислорода, чем углеводорода, и наоборот, поверхностные соединения, образующиеся на селективных катализаторах, обогащены молекулами олефина. Аналнз адсорбции смесей углеводорода с кислородом показал [141], что при указанных в табл. 33 соотношениях наблюдаются оптимальные условия образования кислород -углево дородных комплексов— активных форм, ведущих различные стадии процесса ойисления. [c.53]

    Интересные наблюдения, непосредственно связанные с гетерогенностью реакции, были сделаны ] 1едведевым и сотрудниками [46] при изучении полимеризации в системе этилен—Ti lg—AIR3 в присутствии небольших количеств других мономеров (бутадиена, стирола и др.). Эти мономеры, не участвуя в нолимеризации в силу значительно меньшей реакционноспособности по отношению к данному катализатору, понижают скорость полимеризации этилена, причем молекулярный вес полимера не меняется. Причина этого состоит в экранировании поверхности катализатора. По-видимому, процессу полимеризации этилена препятствует адсорбция катализатором других углеводородов. [c.428]

    Механизм гетерогенного кислотного катализа принципиально не отличается от описанного выше гомогенного кислотного катализа. Предполагается образование ионов карбония на бренстедовских кислотных центрах поверхности катализатора [10]. В последнее десятилетие было выполнено много работ, показавших, что ряд окисных катализаторов и некоторые другие кислоты Льюиса обладают окислительной способностью [22]. Так, ка окиси алюминия происходит окисление спиртов [23], СО до СО2 [24], азота до окиси азота [25], а на алюмосиликате анион иода окисляется до 2 [26]. Адсорбция ароматических углеводородов на некоторых окиспых поверхностях сопровождается появлением интенсивных сигналов ЭПР, т. е. возникновением катион-радикалов из органических молекул [27—34]. То же установлено для ряда солей типа катализаторов Фриделя—Крафтса при взаимодействии с ароматическими системами в жидкой фазе [35,36]. Найдена линейная зависимость между поверхностной кислотностью специально приготовленных образцов окиси алюминия и концентрацией парамагнитных частиц, образующихся на поверхности этих образцов [33]. [c.13]

    В пользу представлений об основной роли Сг +-ионов как активных центров дегидрирования свидетельствуют также данные недавно опубликованных работ Дельмона и др. [30, 31]. Исследовалась активность и селективность ряда твердых растворов СгаОз—AI2O3 различного состава и разной кристаллической структуры в реакции дегидрирования изобутана в изобутилен. Авторы приходят к заключению, что нормальными активными центрами дегидрирования служат Сг +-ионы, возможно, с неполной координацией. Сг +-ионы считаются ответственными за начальную высокую активность и быструю дезактивацию алюмо-хромового катализатора, что согласуется с данными Рубинштейна и Словецкой [21] о соответствии количества хемосорбированного на поверхности катализатора углеводорода количеству ионов Сг +. Действительно, адсорбция парафина на Сг +-ионах происходит с участием одного электрона из катализатора, что обусловливает сильную хемосорбцию и, следовательно, большое время жизни поверхностных комплексов. Последние успевают, таким образом, реагировать с адсорбированными или свободными молекулами парафина, образуя полимерные цепи, прикрепленные к поверхности катализатора [32] это объясняет быструю частичную дезактивацию катализатора в начале реакции. При адсорбции на Сг +-ионах электроны проводника участия не принимают и поэтому осуществляется только слабая хемосорбция. Таким образом, ответственными за процесс дегидрирования должны быть медленно дезактивирующиеся Сг +-ионы (или пары ионов Сг—Сг, Сг—А1, Сг—О, в состав которых входит Сг +-ион). [c.151]

    Избирательный катализ при крекинге обусловливается избирательной адсорбцией различных углеводородов на поверхности каталЕЗатора. В первую очередь катализатор адсорбирует нена-сыщен ые, богатые энергией соединения диолефины, олефины, ароматические углеводороды адсорбция парафинов, при работе с сырьем сложного состава, незначительна. Количество адсорбированного вещсстга при постоянной температуре зависит от коэф-фицкента адсорбции, характерного для данного вещества, и его давления (концентрации) в исходной смеси. Эта зависимость дается уравнением изотермы Лангмюра  [c.244]

    Л. С. Полак и сотр. [92] исследовали спектры ЭПР катали заторов и систем катализатор — углеводород как необлученных, так и подвергнутых действию -у-излучения. Адсорбция углеводородов на окиси алюминия и алюмосиликатном катализаторе, независимо от действия излучения, слабо проявляется в спектрах ЭПР. При облучении алюмомолибденового катализатора и адсорбированных на нем углеводородов наблюдался эффект насыщения число образующихся носителей неспаренного спина быстро достигало максимума. Облучение резко изменяет вид спектра алюмомолибденовых и алюмохромовых катализаторов с адсорбированными углеводородами. При изменении температуры нагрева. системы было установлено существование акти-вацио нных барьеров скорости убыли носителей неспаренного спина. Исследование кинетики радиолиза н-гептана, адсорбированного на окисных катализаторах, показало, что передача энергии происходит только в монослой и не имеет места для любого следующего слоя. Скорость радиолиза в любом слое, кроме первого, равна скорости гомогенного процесса. Было предположено, что вероятность передачи энергии от катализатора в адсорбированный монослой является основной характеристикой системы при гетерогенном радиолизе и были определены соответствующие ее значения для различных катализаторов [93, 94  [c.312]

    Интересен тот факт, что при добавлении к гексану небольших объемных долей воды (2... 8%) скорость насыщения углеводородов резко снижается 1 фенилацетилен = 8. .. 9 СмЗ/мИН, И зопрен == = 4 MVMИH, 1 фенилзцети. ен-изопрен =5 СМ /МИН (сМ. рИС. 2). По-видимому, в эмульсиях с малой объемной долей воды частицы катализатора, окруженные водной пленкой, из-за электростатического взаимодействия при интенсивном перемешивании слипаются , что наблюдается визуально. В результате этого поверхность контакта катализатор — раствор углеводородов в гексане становится очень малой. Кроме того, молекулы реагентов оттягиваются в относительно большой объем гексана. В данном случае адсорбция непредельных углеводородов на поверхности катализатора в значительной мере затруднена. Низкая скорость гидрирования, вероятно, опрёделяется растворимостью гексана (точнее, раствора веществ в гексане) в воде. [c.7]

    Основное достоинство метода ЭПР заключается в том, что он представляет чрезвычайно чувствительный метод обнаружения неспаренных электронов. С тех пор как этот метод был открыт Завойским [309], он очень широко применяется именно для этих целей. В области катализа этот метод еще не нашел себе большого применения, потому что многие катализаторы не содержат неспаренных электронов, однако с помощью метода ЭПР удалось показать, что нри адсорбции некоторых углеводородов на ряде важных промышленных катализаторов на носителях образуются свободные радикалы. Так, Руней и Пинк [310] наблюдали хорошо разрешенные спектры ЭПР при адсорбции на алюмосиликатных катализаторах полициклических ароматических углеводородов, например антрацена и перилена. Эти авторы [311], а также и другие исследователи [312—314] установили, используя метод ЭПР, что 1) образование положительных ион-радикалов из нолицикличе-ских углеводородов происходит на новерхности алюмосиликатных катализаторов на льюисовских кислотных центрах, где имеется дефицит электронов  [c.121]

    Каталитическое окисление этилена на серебряном катализаторе служит примером реакции, при которой кислород непосредственно присоединяется к ненасыщенному углеводороду. Марголис [30] показала, что, хотя при температурах около 200° на чистой поверхности серебра этилен почти не адсорбируется, на серебряной поверхности, предварительно адсорбировавшей кислород, адсорбция этого углеводорода происходит быстро. Результаты калориметрических исследований Стоуна [1, 31] подтвердили, что кислород, предварительно адсорбированный на новерхности закиси кобальта, увеличивает адсорбцию этилена. Последовательный напуск порций этилена на обезгаженную и обработанную кислородом поверхность закиси кобальта показал, что теплота сорбции этилена снижается от 80 до 18 ккал-молъ по мере постепенного увеличения степени заполнения кислородом поверхности катализатора. Наблюдения за изменением теплот адсорбции выявили три характерные стадии парциального окисления этилена а) образование окиси этилена, б) образование ацетальдегида и в) образование формальдегида. Теплоты адсорбции, соответствующие образованию этих веществ в адсорбированном состоянии, соответственно равны 15, 40 и 100ккал-моль . Таким образом, на начальных стадиях взаимодействия этилена с предварительно адсорбированным кислородом одна молекула этилена, по-видимому, реагирует с двумя атомами адсорбированного кислорода в результате этой реакции образуется формальдегид. На более поздних стадиях одна молекула этилена взаимодействует с одним атомом адсорбированного кислорода, при этом образуются окись этилена и ацетальдегид. Эти результаты в значительной степени согласуются с более ранними выводами Твига [32, 33], который исследовал кинетику окисления этилена на серебряном катализа- [c.325]

    Указывалось, что скорость обменной реакции определяется процессом адсорбция/десорбция, но, по-видимому, главным и единственным фактором, определяющим реакционную способность различных углеводородов на различных металлах, является легкость хемосорбции углеводорода на катализаторе. Доказательством тому могут служить результаты работ Райта с сотрудниками 31] и Трепнела [48]. Андерсон [17] показал, что существует параллелизм между эффективностью металлов в обмене этана и прочностью связей между атомами металла. Поскольку прочность адсорбции водорода на различных переходных металлах не изменяется сильно при условии, что поверхность заполнена в достаточной степени, вполне возможно, что легкость адсорбции молекулы углеводорода на различных металлах зависит главным образом от прочности образовавшейся связи металл — углерод. Соотношение, о котором упоминает Андерсон, по-видимому, является результатом параллельных тенденций в прочности связей металл — металл и металл — углерод. [c.289]

    Для оценки каталитической активности предложен целый ряд физических методов испытаний, но все они применимы лишь для испытания катализаторов во время их приготовления, и ни один из них не может заменить прямого испытания активности относительно самой реакции крекинга. Такие испытания, как измерение избирательной адсорбции ароматических углеводородов из стандартной бинарной смеси ароматических и парафиновых соединений [19] или измерение теплоты омачивания метанолом [20], [c.12]

    Указанная последовательность объясняется избирательной адсорбцией различных углеводородов на поверхности катализатора. В первую очередь катализатор адсорбирует ненасыщенные, богатые энергией соединения диолефины, олефины, ароматические. Адсорбция парафинов при работе с сырьем сложного состава незначительна. Именно поэтому ускорение реакции крекинга в присутствии катализаторов для олефицов и ароматических углеводородов в сотни и даже тысячи раз превышает ускорение распада парафинов. Однако по мере обеднения реакционной смеси ненасыщенными углеводородами парциальное давление предельных углеводородов над катализатором увеличивается. Это приводит к усилению адсорбции и увеличению скорости превращений. [c.238]


Смотреть страницы где упоминается термин Адсорбция на катализаторе углеводородов: [c.141]    [c.248]    [c.290]    [c.264]    [c.111]    [c.319]    [c.19]    [c.65]    [c.65]    [c.9]    [c.10]    [c.127]    [c.264]    [c.319]   
Окисление углеводородов на гетерогенных катализаторах (1977) -- [ c.47 , c.51 , c.69 , c.133 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция углеводородов

Катализаторы углеводородов



© 2025 chem21.info Реклама на сайте