Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольный момент влияние заместителей

    ПРОСТРАНСТВЕННЫЕ ЗАТРУДНЕНИЯ СТАТИЧЕСКИЕ (стерические препятствия)— затруднения, или препятствия, для. такого размещения атомов в молекуле, при котором сохранялись бы нормальные валентные углы и межатомные расстояния, н частности для ароматических н сопряженных систем — планарное строение молекулы. П. з. с. возникают при отталкивании химически не связанных, но близко расположенных в пространстве атомов, расстояние между которыми ограничивается суммой их ковалентных радиусов. В таком случае П. 3. с. приводят к изменению нормальных валентных углов, к нарушению планарного строения ароматических и сопряженных систем, что можно наблюдать, например, по изменению окраски, отклонению дипольного момента и другим свойствам от рассчитанного значения. Молекулы, не имеющие П. з. с., могут проявлять их по отношению к другим молекулам, с которыми они реагируют, если возле реакционного центра молекулы близко расположены большие заместители, препятствующие доступу реагента к этому центру (П. з. динамические). При этом происходит снижение реакционной способности соединений без электронного влияния заместителей. П. 3. с. можно предвидеть заранее изучением моделей исследуемых молекул или построением их масштабных графических формул с учетом ковалентных радиусов близко расположенных атомов, [c.205]


Рис. 66. Влияние дипольного момента заместителя на положение полос поглощения в спектре комплексов Рис. 66. <a href="/info/487566">Влияние дипольного момента заместителя</a> на <a href="/info/1488257">положение полос поглощения</a> в спектре комплексов
    Влияние свойств адденда (размер, дипольный момент) на термическую устойчивость комплексных соединений сказывается следующим образом. Четко определить связь между термической устойчивостью комплекса и размерами входящих в его состав аддендов трудно. Часто теплота образования комплексов увеличивается по мере уменьшения размера аддендов. Поэтому соединения, содержащие заместители меньшего размера, должны быть более устойчивыми. К сожалению, экспериментальный материал ио изучению такого рода зависимости довольно ограничен (табл. 109). [c.359]

    В то же время антисимметричные валентные и деформационные колебания приводят к появлению дипольного момента молекулы. Им соответствуют интенсивные полосы в спектре поглощения. По той же причине валентные колебания двух одинаковых атомов в симметричных молекулах не проявляются в спектрах поглощения, например колебания С=С в этилене. Но при наличии разных заместителей у таких атомов на связи появляется дипольный момент, и она становится активной в спектре поглощения. Таким образом, соседние атомные группы оказывают влияние как на частоту, так и на интенсивность полос поглощения. В результате каждая молекула имеет свой вполне определенный спектр поглощения в инфракрасной области спектра. Практически невозможно найти два вещества, имеющих точно одинаковый спектр поглощения. [c.293]

    Влияние заместителей на распределение электронной плотности в ароматическом соединении обнаруживается при измерении дипольных моментов во всех случаях дипольный момент таких соединений, вычисленный по аддитивной схеме, отличается от найденного экспериментально на величину, получившее название мезомерного момента. Мезомерный момент служит ценной количественной характеристикой влияния заместителей иа ароматические соединения. [c.45]

    Уравнение распространяется на производные бензола с заместителями в пара- и. мета-положениях к реакционному центру. Коэффициент р характеризует влияние заместителя на данную реакционную серию. Полярный заместитель оказывает на реакционный центр индуктивное воздействие плюс эффект сопряжения, если заместитель содержит я-связи или атом с неподеленной парой / -электронов (К, О и Т. д.). Если реакция заключается в атаке иона с зарядом на молекулу с заместителем X, имеющим дипольный момент цх, то в рамках электростатической модели [c.231]


    Значительно меньший рост скорости этой реакции прн повышении полярности растворителя, большая отрицательная энтропия активации, а также электронные и пространственные эффекты заместителей и ее стереоспецифичность свидетельствуют о согласованном, а не синхронном одностадийном механизме. Неодновременное образование связей в активированном комплексе является причиной появления частичных зарядов, стабилизирующихся в более полярных растворителях. Среда не должна оказывать влияния на реакцию (5.34), если дипольный момент активированного комплекса приближается к величине 10,Ы0 2 Кл М (т. е. к сумме дипольных моментов реагентов), которая соответствует дипольному моменту продукта реакции. Обнаруженная экспериментально зависимость скорости реакции от природы растворителя показывает, что в активированном комплексе заряды разделены в большей степени, чем в ад-дукте [100]. [c.228]

    Отмечается [41], что способность производных этиленимина к полимеризации непосредственно связана с их дипольным моментом и что возрастание поляризации связей кольца под влиянием заместителей облегчает его раскрытие в реакции полимеризации. С другой стороны, эффективность полярных соединений типа АХ как катализаторов полимеризации этиленимина возрастает с ростом поляризуемости аниона X [6, 35]. [c.160]

    Английская школа отмечает четыре раздельных эффекта, которые составляют суммарный эффект заместителей. Ре-мик [22] обсуждает эти эффекты. Индуктивный эффект отражает изменение парциального момента данной связи под влиянием заместителя, находящегося в другой части той же молекулы. Мезомерный эффект — резонансный эффект. Величина дипольного момента определяет наличие мезомерного эффекта. Для алифатических аминов имеет место только индуктивный эффект. Для ароматических аминов мезомерный эффект противоположен индуктивному и, возможно, перекрывает его, в результате чего дипольный момент рассматриваемой связи имеет противоположное направление по сравнению с алифатическими аминами, особенно вследствие низкой электроотрицательности атома азота [c.168]

    Натан и Уотсон [44, 68] следующим образом выразили влияние полярного заместителя (дипольный момент (л) на кажущуюся энергию активации реакций между ионом и рядом молекул, каждая из которых первоначально имела один и тот же дипольный момент (Хв  [c.263]

    Поскольку для этих реакций не были определены температурные коэффициенты, приходится считать, что предэкспоненциальный множитель в уравнении Аррениуса во всех случаях один и тот же. Кроме того, в данном случае, когда заряд иона В и дипольный момент ионизированной группы лв накладываются друг на друга, оба г равны. Тогда, если влияние заместителя полностью определяется электростатикой, получим  [c.266]

    Мерой влияния заместителя X на распределение зарядов [62, 474] может служить мезомерный момент X (алгебраическая разность дипольных моментов соединений фенил-Х и алкил-Х). Дипольные моменты можно использовать и для оценки влияния 2 (табл. ХЫХ). [c.588]

    Ясно, что вариации в величинах дипольных моментов указанных ароматических производных являются следствием неодинакового сопряжения заместителя с различными ароматическими ядрами, т. е. неодинаковых мезомерного и л-индукционного эффектов. Оба эти эффекта полностью отсутствуют в насыщенных системах. Поэтому понятно, что первые попытки определения их влияния на величины дипольных моментов были связаны со сравнениями значений моментов алифатических и ароматических соединений в первую очередь — соединений бензольного ряда, по которым накоплено наибольшее количество данных. [c.175]

    Различие дипольных моментов объясняется тем, что полярные группы, находящиеся в одной части молекулы, оказывают большее или меньшее влияние на остальную ее часть в зависимости от ее структуры. Эффект воздействия полярного заместителя на молекулу в целом и на ее отдельные части будет рассмотрен в гл. III. [c.98]

    Очевидно, что у всех этих соединений положительно заряженной -является группа СН3. Поляризующее действие заместителей есть проявление их отрицательных индуктивных влияний, поэтому на основании приведенных дипольных моментов рассматриваемые группы и атомы можно расположить в порядке уменьшения их отрицательных индуктивных влияний следующим образом  [c.138]

    При оценке влияния групп на состояние молекул соединений жирного и ароматического рядов путем сопоставления дипольных моментов или констант диссоциации получают несколько отличающиеся друг от друга данные. Это обусловливается тем, что в случае жирных соединений имеет значение только индуктивный эффект, а в случае ароматических—оба эффекта—индуктивный эффект и эффект сопряжения. Последний особенно сильно проявляется о время химических процессов как динамический эффект сопряжения. Вследствие этого те заместители, которые проявляют эффект сопряжения, влияют на константы диссоциации более сильно, а иногда и иначе, чем на дипольные моменты (константа диссоциации представляет собою отношение констант двух процессов—диссоциации и моляризации). [c.149]


    В настоящее время известно, что характер взаимного влияния двух или нескольких заместителей, находящихся в одной и той же молекуле, может быть различным. Взаимное влияние может проявиться лишь в изменении состояния электронного облака тех связей, которые соединяют эти заместители с соседними углеродными атомами, я также между последними при этом, в случае одноименных (с точки зрения электронной характеристики) групп происходит уменьшение дипольных моментов этих связей, что приводит обычно только к изменению скорости взаимодействия молекулы с реагентом по сравнению с монозаме-щенными производными, имеющими соответственно такие же группы. Такое взаимовлияние было обсуждено в статьях Д. В. Тищенко и названо вицинальный эффект [4]. Во многих случаях, однако, взаимное влияние заместителей не ограничивается лишь изменением скорости реакции вследствие проявления вицинального эффекта, но во время процесса происходят такие электронные смещения, в которых принимают участие электроны углеводородных групп (особенно часто я-электрон-ные облака бензольных ядер, если последние также находятся по соседству), и в результате реакции образуются соединения с [c.210]

    Постоянное смещение электронов, проявляющееся в дипольном моменте, соответствует индукционному эффекту, который по мнению Льюиса, высказанному несколько раньше, является причиной влияния различных заместителей на силу органических алифатических кислот и оснований. [c.74]

    Применив для объяснения правомерности такого приближения теорию мезомерии, Уотерс считал неудачным, что развитие теории резонанса стремилось заменить первоначальные концепции Робинсона и Инголда. Согласно этим концепциям, электромерные перегруппировки объяснялись прямым влиянием заместителей на ход реакции. Робинсон и Инголд установили из определения дипольных моментов и других физических измерений, что мезо-мерия приводит в нормальных положениях ароматических молекул, даже до протекания реакции, к неравномерному распределению электронной плотности на различных углеродных центрах . Отсюда Уотерс сделал следующий основной вывод Ошибочность предположения, что своеобразная английская теория ароматического замещения является только наглядным примером применения теории резонанса Полинга к определению стабильных состояний ароматических систем, оказала отрицательное влияние на развитие. .. теории ароматического замещения [49, стр. 727]. [c.22]

    П. определяет величины дипольных моментов, индуцируемых на связях внутримол. электрич. полями, к-рые создаются совокупностью зарядов молекулы. Во мн. случаях влияние заместителей на хим. и физ. св-ва молекул также обусловлены прежде всего П, В частности, вклад А Е в изменение энергии молекулы при введении заместителя определяется взаимод. заряда или дипольного момента, связанного с реакц. центром, с дипольным моментом, индуцируемым заместителем (см. Индуктивный эффект). Наиб, существенны эти вклады для малополярных углеводородных заместителей. Так, поляризационное взаимод. обеспечивает более 80% изменения рК при переходе от уксусной к-ты к пропионовой. Проявление эффектов, связанных с П. заместителей, особенно алкильных радикалов, отмечено в закономерностях изменения констант скорости и констант равновесия хим. р-ций, физ. св-в в-в. [c.67]

    Авторы цитируемой работы [316] подчеркивают, что постоянство разности между значениями рКа для одного и того же заместителя в аксиальном и экваториальном положениях, независимо от величины дипольного момента этого заместителя, в принципе не может быть объяснено электростатической моделью Кирквуда—Вэстхаймера. В то же время отмеченная зависимость эффекта заместителя от пространственной ориентации, названной стереополярным эффектом, не следует и из модели последовательной поляризации связей, если не вводить какой-либо дополнительной гипотезы, например, о дополнительной поляризации связей (через пространство) под влиянием С—Н-связи, различной для [c.169]

    Изомерные о-, м- и /г-хлоранилины значительно более слабые основания, чем анилин они отличаются друг от друга по силе основности в зависимости от положения галоида в кольце, причем наблюдается такой же поряД Зк, что и в ряду нитроанилинов, но менее резко выраженный. Так как атом хлора, как известно из данных определения дипольных моментов, является электроноакцепторным заместителем, то указанное соотношение, очевидно, обусловлено сходством индукционных эффектов атома хлора и нитрогруппы. Введение метоксильной или этоксильной группы в пара-положение оказывает незначительное противоположное влияние. Наприме]), основность /г-анизидина и /г-фенетиди-на несколько выше, чем у анилина. Как можно было ожидать, дифениламин очень слаб Ое основание, и его соли, образующиеся при взаимодействии с концеитрированнымн кислотами, легко гидролизуются. [c.236]

    Таким образом, удается выяснить целый ряд особенностей механизма образования ион-молекулярных и межмоле1олярных связей в изучаемых системах На стадии сближения партнеров до 7 а е решающую роль играют электростатические эффекты молекулярные поля, дипольные моменты, заряды сближающихся частиц Образование же собственно меж-частичной связи определяется степенью переноса заряда от донора электронов к акцептору и главным образом зависит от локального окружения реакционного центра Поскольку, однако, образующаяся связь имеет явно ионный характер, влияние электростатического поля оказывается существенным и на расстояниях равновесной длины При увеличении электростатического потенциала связь становится прочнее и короче Появление в молекулах полярных заместителей приводит к изменению полного молекулярного поля и существенно сказывается на характере сближения партнеров, характер образования межчастичной связи при этом меняется мало [c.193]

    Спектроскопические свойства гидроксильной группы представляют большой интерес для структурного анализа замеш,енных фенолов. Экспериментальные данные показывают влияние изомерии на сдвиг ДуОН, и, следовательно, энергию межмолекулярной водородной связи (МВС). В ряду орто-, мета- и пара-изомеров алкилфенолов частота у(ОН)мвс уменьшается, а смещение ДуОН увеличивается соответственно возрастает прочность водородной связи. При этом большее различие в величинах частот наблюдается у орто- и пара- и у орто- и мета-изомеров аналогичные параметры у мета- и пара-изомеров отличаются незначительно. Этот факт иллюстрирует наибольшее стери-ческое влияние на ОН-фуппу орто-заместителя. Влияние сказывается как на спектроскопических параметрах (частота, полуширина и интенсивность полосы поглощения), так и на физико-химических свойствах гидроксила (дипольный момент, способность к образованию водородной связи, константа ионизации). Так, последовательному ряду орто-заместителей 2—СНз 2-изопропил- 2-втор-бутил->2-трет-бутил соответствует следующий ряд значений уОН вс 3435-> ->3480->3485 3540 см->. Чем больше объем орто-радикала, тем больше степень экранирования ОН-фуппы и тем выше сдвиг ДуОН по сравнению с незамещенным фенолом. [c.13]

    Экспериментально установлено, что значительный сольватохромный эффект характерен только для таких молекул с системой л-электронов, в которых распределение зарядов (а следовательно, и дипольный момент) в основном и возбужденном состояниях существенно различны. По этой причине растворители оказывают только относительно небольшое влияние на спектры поглощения в УФ- и видимом диапазонах многих органических веществ, в том числе ароматических соединений, лишенных электронодонорных и (или) электроноакцепторных заместителей, например бензола [21, 22], полиенов (например, ликопина [23], каротиноидов [24]), нолиинов (например, полиацетиленов [25]) и симметричных полиметиновых красителей [26—28, 292, 293], например изображенного ниже гептаме-тинового цианинового красителя (293]. [c.406]

    Многие данные показывают, что молекулы, содержащие группы с большими локализованными электрическими диполями, могут образовывать весьма стабильные соединения, причем стабильность их зависит от силы локализованного диполя. Так, Ричи и сотр. [92] установили, что добавление диметилсульфоксида к разбавленному раствору бензонитрила в четыреххлористом углероде сопровождается уменьшением интенсивности поглощения в той области ИК-спектра, которая характерна для группы С=М. Характер уменьшения можно объяснить образованием комплекса нитрила с сульфоксидом состава 1 1. Константа равновесия для образования комплекса равна 0,9 та же величина найдена для п-хлор-, п-нит-р0- и л-нитробензонитрила. Суммарный дипольный момент молекулы п-производного намного меньше, чем молекулы незамещенного бензонитрила, однако приблизительная аддитивность групповых дипольных моментов в ряду производных бензола показывает, что заместители почти не влияют на величину собственного дипольного момента группы С=Ы. С другой стороны, те же заместители оказывают большое влияние на скорос ч> и равновесие реакций, на первом этапе протекающих по атому азота или атому углерода рассматриваемой группы. Поэтому Ричи и сотрудники считают, что комплексообразование бензонитрила сдиметилсуль ксидом происходит за счет бокового взаимодействия диполей групп и [c.331]

    Для указанной цели одним из первых применили метод определения дипольных моментов Он оенован на том, что все заместители оказывают на связанное с ними бензольное ядро электронное влияние - донорное или акцепторное и таким образом поляризуют молекулу Степени этой поляризации, а следовательно, и величина дипольного момента молекулы зависят как от природы заместителей, так и от их взаимного расположения Два заместителя, обладающих одинаковым по знаку (донорным или акцепторным) полярным влиянием на бензольное ядро, индуцируют наибольший дипольный момент, когда находятся в орто-попожешт Два заместителя с различным по знаку полярным влиянием обеспечивают наибольшую поляризацию молекулы, когда они расположены в иоро-положении Сказанное может быть проиллюстрировано на примере дихлорбензолов [c.86]

    Ряд различных фактов свидетельствует о том, что метильная группа —СНз, присоединенная к системе, в которой имеется резонанс, или даже просто к отдельному атому, обладающему я-электронами, ведет себя так, как будто участвует в сопряжении. В меньшей степени эго относится к радикалу —СН2СН3 и другим алкильным радикалам, а также к группе >СНг. В более ранних исследованиях по этому вопросу отмечали эффект влияния алкильного замещения на скорость реакций бром- и хлорбензола казалось, что алкильное замещение приводит к притоку электронного заряда в бензольное кольцо, причем этот перенос электронов наиболее эффективен, когда в качестве заместителя выступает метильный радикал. Данные по скоростям реакций всегда трудно однозначно интерпретировать, но имеется ряд других сведений, подтверждающих это явление. Следуя Малликену [263], мы будем называть описанное явление сверхсопряжением, т. е. сопряжением, дополнительным к обычному. Прежде всего, способность метильной группы в молекуле толуола ориентировать в орто-, пара-положешя подтверждается наличием у этой молекулы дипольного момента, равного 0,4 D. В молекуле метана группа —СНд, очевидно, [c.377]

    Из влияния заместителей на жесткость связи группы СО, измеряемую через К, изученного на примере СНд-СО -Х и gHg СО X, был сделан вывод, что значения К изменяются параллельно со значениями дипольного момента для связи С—X. i Это находится в соответствии е тем, что влияющий отрицательно заместитель повышает энергию активации, необходимую для отрыва отри1 ательного конца диполя. [c.132]

    Как статическое явление мезомерия вносит свой вклад в статическую часть общей поляризавдш, измеряемой дипольным моментом. На последнем сказывается, однако, и индуктивный эффект, налагающийся на мезомерный. При этом оба эффекта могут действовать как в одном, так и в противоположных направлениях, т. е. могут как векторно суммироваться, так и вычитаться. Оба влияния на дипольный момент можно определить расчетным путем, сравнивая дипольные моменты насыщенного соединения, несущего данный заместитель, с диполь-иым моментом аналогичного а, р-ненасыщенного соединения. Так как только в этом последнем возможен мезомерный эффект, увеличивающий или уменьшающий момент в сравнении с насыщенным соединением, то разность можно рассматривать как мезомер1 ый вклад в Д1шольный момент. Результаты таких расчетов приводятся в габл. 12. [c.68]

    Влияние галогенов как заместителей долгое время рассматривалось как аномальное. Хлор-, бром- и иодбензолы менее реакционноспособны, чем бензол, но подвергаются преимущественному замещению в орто- и пара. положения. Фторбензол также замещается в орто- и геара-положения, а ио реакционной способности примерно равен бензолу. Все другие заместители, которые ориентируют в орто- и ,ара-положения, активируют ароматическое ядро ). Интересное влияние галогенов зависит от взаимодействия индуктивного и слабого резонансного эффектов. Галогенбензолы обладают дипольным моментом с отрицательным концом па галогене, но момент этот ниже, чем у соответствующих алкилгалогенидов. Очень упрощенное объяснение припп-. сывает этот результат частичной компенсации полярности а-связи С—X путем некоторого использования неноделенных р-электронов галогена за счет [c.359]

    Разность между наблюдаемым и вычисленным дипольными моментами находится почти в пределах ошибки эксперимента для Л-СН3С6Н4Х, если X—С1, Вг, NO2 и N. Однако, когда в пара-поло-жении друг к другу находятся два заместителя первого рода, способные к значительному сопряжению с кольцом, Цнабл—Цвыч= 0. Причиной этого является взаимодействие мезомерных влияний двух заместителей через я-электроны кольца. Степень взаимодействия может быть оценена по величине момента взаимодействия (Нвз), которую определяют как разность [c.217]

    Наиболее интересной особенностью циклогексаионового кольца, отличающей его свойства от циклогексанового, является небольшая разность энергий конформаций кресла и ванны . Конформация ванны вследствие своей гибкости (псевдовращения) не является закрепленной и может быть легко искажена под влиянием различных структурных факторов, например введения заместителей или утяжеления молекулы дополнительными циклическими группировками. Указанный эффект наблюдается в случае различных кетостероидов производных холестан-З-она [113, 151] я аллобетулона [113], лупан-З-она [113, 149], гомоаидростан-3,17-диона [150] и др. Конформации этих соединений были определены с помощью измерений и расчетов дипольных моментов, выполненных для всех пространственно возможных структур. [c.142]

    Вопрос о взаимодействии М-заместителей с сопряженными гетерильными системами и влиянии этого взаимодействия на полярные свойства изучен пока весьма не систематически. В значительной мере это объясняется трудностями синтеза подходящих реакционных серий соединений. Можно указать лишь на отдельные работы по дипольным моментам производных хинолина [85], индола [87], фурана [71, 88] и тиофена [89]. [c.193]

    Уравнение (XIV. 13), видимо, отражает влияние не специфической соль- ватации, а зависимость истинной полярности среды от строения молекул X растворителя. Истинная полярность (величины ° или (Ь—1)/(20+1)) о должна быть тесно связана с дипольными моментами молекул растворителя. В этой связи указанное уравнение перекликается с осуществленными Экснером [476] корреляциями дипольных моментов различных типов соединений (в и том числе и замещенных бензолов) с постоянными заместителей. [c.302]

    Все же, как правило, имеется определенная взаимосвязь между влиянием заместителя X на изменения дипольных моментов молекул СНдХ и влиянием того же заместителя на константу диссоциации соответственно замещенной уксусной кислоты (рис. 12) [11]. [c.138]

    Таким образом, взаимное влияние заместителя и углеводородной группы является весьма важным обстоятельством, которое надо обязательно учитывать при выводе заключения о степени проявления /-эффектов отдельными атомами или группами. Нельзя считать, что состояние молекулы, например 4H9 I, обусловливается только электроотрицательностью атома хлора и собственно некоторой определенной полярностью связи С—С1. Следует иметь в виду, что дипольный момент связи С—С1 не является постоянным, величина его зависит от структуры углеводородной группы 4Hg и от взаимодействий всех атомов, составляющих молекулу [12]. [c.140]


Смотреть страницы где упоминается термин Дипольный момент влияние заместителей: [c.186]    [c.102]    [c.558]    [c.109]    [c.151]    [c.306]    [c.70]    [c.25]    [c.546]    [c.112]    [c.17]   
Курс теоретических основ органической химии (1959) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент

Заместителей влияние



© 2025 chem21.info Реклама на сайте