Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Политетрафторэтилен цепей

    Один из наиболее термостойких фторированных полимеров, известных в настоящее время, — это политетрафторэтилен (— F2— F2—)п, который устойчив к действию кислорода до сравнительно высоких температур. Например, при 300°С и выше он может быть использован в контакте с кислородом. Однако из-за высокого потенциального барьера вращения вокруг связей С—С и регулярного строения полимерной цепи этот полимер, молекулы которого представляют собой закрученные спирали с 16-ю атомами углерода в витке, является высокоплавким кристаллическим материалом и размягчается лишь при температурах, близких к температуре разложения [7]. [c.502]


    Такая большая разница в проницаемости связана с разницей в смещениях и гибкости полимерных цепей, которые, в свою очередь, причинно связаны с полярностью и размерами молекул. При всех прочих равных условиях такие полярные макромолекулы, как политетрафторэтилен, по сравнению с неполярными имеют более сильную тенденцию к образованию жестких связей, приводящих к появлению кристаллитов. [c.66]

    Вопросам получения и технического применения сополимеров этого типа посвящена обширная литература, так как методы синтеза привитых сополимеров (как и блок-сополимеров) в значительной степени позволили разрешить проблему контролированных полимеризаций для получения высокомолекулярных соединений с заданными свойствами и заданной структуры [72]. Так, например, прививка водорастворимых боковых цепей к макромолекулам маслорастворимых полимеров, или наоборот, позволяет получать новые высокоактивные эмульгаторы и детергенты. Полиамидные волокна значительно повышают свои эластические свойства после прививки к ним боковых полиэтиленовых цепей. Тефлон (политетрафторэтилен), обладающий очень плохой адгезией к различным материалам. [c.638]

    Средний молекулярный вес иолимера можно снизить, вводя в тетрафторэтилен при полимеризации регуляторы длины цепи, т. е. посредством реакции передачи. Так, в присутствии четыреххлористого углерода образуется пизкомолекулярный политетрафторэтилен в виде вязкой жидкости, средний молекулярный вес которой достигает 850. Следовательно, цепи такого низкомолекулярного полимера содержат всего до 9 звеньев. Вязкие низкомолекулярные политетрафторэтилены находят применение в качестве термостабильных пластификаторов и смазочных масел. [c.256]

    Благодаря высокой энергии связи углерод—фтор предотвращается возможность возникновения реакций, связанных с отщеплением атома фтора в процессе полимеризации. Маловероятным является и прекращение роста макрорадикалов в результате передачи цепи через макромолекулу. Поэтому макромолекулы политетрафторэтилена имеют преимущественно линейное строение. Отсутствие разнотипных заместителей в звеньях полимера исключает и образование стереоизомеров. Такое строение полимерной цепи политетрафторэтилена определяет возможность образования кристаллитов. По степени кристалличности политетрафторэтилен можно сравнить с полиметиленом, несмотря на то, что образование его происходит по механизму радикальной полимеризации. Степень кристалличности различных образцов политетрафторэтилена (как и полиэтилена) можно характеризовать величиной плотности. Его плотность в аморфном состоянии со- [c.256]


    Наиболее высокая степень кристалличности наблюдается в политетрафторэтилене, у которого благоприятно сочетается малый объем заместителя (атом фтора), полная симметрия звена и сильное притяжение между молекулярными цепями. Нарушение симметрии звена, например замена атома фтора на атом хлора, водорода или сополимеризация тетрафторэтилена с другими фторорганическими соединениями, приводит к нарушению кристалличности. [c.25]

    Полимеры, молекулы которых имеют боковую симметрию, т. е. симметрию заместителей при каждом углеродном атоме основной цепи, характеризуются малой проницаемостью. К таким полимерам относятся политетрафторэтилен, полиизобутилен, поливинилиденхлорид и т. п. Помимо боковой симметрии в этих полимерах существует и продольная симметрия. Наличие боковой и продольной симметрии является благоприятным фактором для плотной упаковки данных полимеров. Лазо- [c.72]

    Полученный политетрафторэтилен с длинной цепью совершенно не растворялся в кипящих органических растворителях даже при экстрагировании его в течение нескольких дней и не сублимировался при 200° (10 мм). [c.282]

    В результате для этих двух полимеров получаются весьма низкие температуры деструкции, которые существенно ниже, чем для полиэтилена. То же самое характерно при замене атомов водорода в полиолефинах на фтор (разумеется, это не относится к политетрафторэтилену, где замена всех атомов водорода на фтор не приводит к появлению полярности), хлор, гидроксил и другие функциональные группы, способные вызывать сильное межмолекулярное взаимодействие. Если те же группы находятся в цепи полимера (например, полифенилен), то такие полимеры обладают наибольшей термической устойчивостью. [c.85]

    По сравнению с поливинилхлоридом фторсодержащие полимеры, например поливинилфторид, сравнительно устойчивы к фотоокислению. Свойства политетрафторэтилена, не содержащего антиоксиданта, не ухудшаются при облучении в течение более 20 лет в Нью-Джерси. Даже при 200 или более высокой температуре политетрафторэтилен устойчив к действию атмосферного кислорода или сильных окислителей, например к действию азотной кислоты. Атомы фтора полностью защищают углеродную цепь от доступа кислорода. [c.472]

    Было бы ошибочно считать, что лишь размеры заместителей в полимерной цепи влияют на гибкость макромолекулы. Казалось бы, чем больше масса бокового ответвления, тем большую энергию надо сообщить молекуле для ее поворота, тем большим окажется сегмент ее и меньше гибкость всей молекулы. Однако часто определяющим является не размер, а природа, точнее, полярность заместителей и их расположение в цепи. Если полярные заместители расположены симметрично относительно основной цепи, то их полярности как бы взаимно компенсируются, суммарный динольный момент уменьшается и полимер сохраняет достаточную гибкость, что наглядно проявляется в поливинилиденхлориде и политетрафторэтилене. [c.58]

    Теперь стало аксиомой, что кристаллическая упаковка может быть получена лишь в случае молекулярных цепей, которые состоят из регулярно повторяющихся похожих и одинаково ориентированных групп. Типичные, полукристаллические полимеры являются поэтому неразветвленными гомополимерами, к которым относятся, например, полиэтилен, поливинилиденхлорид, политетрафторэтилен, а также полиамиды и полиэфиры, приготовленные из промежуточных продуктов с прямой цепью [101. Умеренное количество разветвленных молекул в этих полимерах не препятствует их кристаллизации, но понижает степень их кристалличности. Места разветвлений могут в какой-то степени описываться как аморфные области или, при благоприятных обстоятельствах, включаться в кристаллическую фазу, повышая степень ее дефектности. [c.409]

    Атом фтора имеет больший вандерваальсов радиус по сравнению с атомом водорода, поэтому замена последнего на фтор в углерод-углеродной цепи приводит к постепенному закручиванию цепи плоская, полностью вытянутая зигзагообразная конформация (полиэтилен) превращается в спиральную (политетрафторэтилен). Цепь, в которой один атом водорода замещен на фтор (как в ПВФ), еще можно согласовать с плоской зигзагообразной конформацией [3, 4]. Цепь поливинилиденфторида, в котором два атома фтора находятся у одного и того же атома углерода, при растяжении полимера в интервале температур от комнатной [41 до 50 °С [51 имеет плоскую зигзагообразную конформацию, известную как р-форма. Однако в других условиях [4, 5] этот полимер, по-видимому, имеет другую конформацию — менее резко выраженную форму скрученной цепи, или спирали, известную как а-форма. При комнатной температуре а-форма, вероятно, термодинамически наиболее стабильна [6]. Две указанные кристаллические модификации ПВФ можно разделить, если выращивать кристаллы из растворов ПВФд в различных растворителях, так как форма растущего кристалла зависит от используемого [c.409]

    Линейные полимеры образуют саь ую большую группу полимерных материалов Так ак связь меяду молекулярными цепями обусловлена силами Ван-дер-Ваальса, которые невелики, прч повышении температуры полимеры этого вида легко размягчаются и превращаются в жидкость. Линейные полимеры являются основой термопластических материалов (термопластов). Типичными представителями линейных полимеров являются полиэтилен, полипропилен, политетрафторэтилен и др. Воледствие цепной стрз ктуры полимеры можно легко вытянуть в высокопрочные волокна. [c.18]


    Исследование диэлектрических свойств полимеров — один из наиболее эффективных способов установления особенностей их строения. Диэлектрический метод оказывается пригодным как для полярных, так и неполярных полимеров (полиэтилен, полистирол, политетрафторэтилен и т. д.), поскольку полимеров, абсолютно лишенных полярных групп, практически не существует. В соответствии с корреляциями, рассмотренными в гл. I и И, для всех полимеров установлено два типа диэлектрических потерь ди-польно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше температуры стеклования кооперативно, так как подвижности сегментов данной цепи и сегментов соседних макромолекул взаимосвязаны. По этой причине в процесс ориентации вовлекаются области довольно больших размеров, чем и объясняются высокие значения кажущейся энергии активации сегментального движения. Ниже температуры стеклования Тс переход сегмента из одного равновесного положения в другое требует практически беС конечно большого времени, превышающего доступную продолжительность наблюдения. [c.243]

    Как видно из приведенных данных, среди полимерных соединений выделяется группа полимеров, нагревостойкость которых при длительной эксплуатации очень высока и находится в пределах 180—250° С. Входящие в эту группу полимеры политетрафторэтилен и его сополимеры, полисилоксаны (кремнийоргани1 е-ские полимеры) и полиимиды — называют обычно термостойкими, или нагревостойкими, полимерами. Группу с более низкой нагревостойкостью (130—140° С) образуют поди-этилентерефталат, поликарбонат и полифениленоксид. Полиамиды, полистирол, поливинилхлорид и большинство термопластов, содержащих С—С-связи в цепи, имеют нагревостойкость ниже 100° С. [c.80]

    Как видно, полиэтилен, построенный из однородных атомов, более нагревостоек, чем полимонофторэтилен, у которого атом фтора, хотя и связанный более прочно с цепью, нарушает электронную симметрию. Если сравнить политетрафторэтилен с поли-трифторэтиленом, то легко заметить, что замена атома фтора атомом водорода также нарушает электронную симметрию, появляются напряженные слабые места. В результате углерод-углерод-ные связи подвергаются более сильному тепловому воздействию. В большой мере плотность упаковки уменьшается, если заменить атом фтора атомом хлора. Этим, а также меньшей прочностью связи С—С1, чем связи С—Р, следует объяснить пониженную нагревостойкость политрифторхлорэтилена в сравнении с политетрафторэтиленом. [c.82]

    Кристаллическая структура полимера. Кристаллические полимеры растворяются значительно хуже, чем аморфные. Это объясняется наличием большого межмолекулярного взаимодействия глава VI). В этом с,пучае для отрыва цепей друг от друга необходимо одновременно нарушить большое число связей, что требует значительной затраты энергии, Поэтому при комнатных температурах кристаллические полимеры, как правило, не растворяются даже в жидкостях, сходных по полярпости. Папример, при 20 С полиэтилен ограниченно набухает в к-гексаяе и растворяется в нем только при нагревании изотактический кристаллический полистирол не растворяется при комнатной температуре в растворителях, пригодных Для атактического полистирола—-для растворения его также необходимо нагреть, Политетрафторэтилен не растворяется ни в одном иэ известных растворителей пи при каких температурах. [c.324]

    Потребность в полимерах, обладающих стойкостью к растворителям при высоких температурах, стимулировала исследовательские работы в области фтористых каучуков, примером которых может служить витон (фирма Дюпон ) [17, 32, 33, 112, 122, 129, 176, 209] и флуорел (фирма Миннесота майнинг энд менюфекчуринг ) [229]. Эти материалы представляют собой сополимеры фторвинплидена и гексафторпропилена, содержащие около 65% фтора. По строению они близки к политетрафторэтилену (тефлон, фирма Дюпон ), но их модифицируют введением метиленовых групп для повышения гибкости полимерной цепи и трифторметильных групп — для придания неоднородности. [c.211]

    В зависимости от состава основной (главной) цепи макромолекулы все B. . делят на два больших класса гомо-цеп ные, основные цепи к-рых построены из одинаковых атомов, и гетеро цепные, в основной цепи к-рых содержатся атомы разных элементов, чаще всего С, N, Si, Р. Среди гомоцепных B. . наиб, распространены карбоцепные (главные цепи состоят только из атомов углерода), напр, полиэтилен, полиметилметакрилат, политетрафторэтилен (см. Фторопласты), гуттаперча. Примеры гетероцепных В. с.-полиэфиры (напр., полиэтиленоксид, полиэтилентереф- [c.441]

    ПОЛИТЕТРАФТОРЭТИЛЕН, см Фторопласты. ПОЛИТИОНАТЫ, соли малоустойчивых политионовых к-т общей ф-лы HO3S—S —SO3H, где и>1. Содержат в структуре зигзагообразные цепи из атомов S. Известны П. аммония, щелочных, щел.-зем. и нек-рых др. металлов. При нагр. разлагаются, многие раств. в воде, образуют кристаллогидраты. Лучше других изучены П. калия и натрия-бесцв кристаллы (см. табл). Устойчивость П. падает от соед. с и = 1 к соед. си = 4 П. си>4 малоустойчивы. [c.27]

    Карбоцепные полимеры, главные цепи которых построены из атомов углерода, делятся на алифатические (насыщенные и ненасыщенные) - полиэтилен, полипропилен, полибутадиен ароматические - полифенилен жирноароматические - полимети-ленфенилен галогенопроизводные - поливинилхлорид, политетрафторэтилен полимеры спиртов, кислот, эфиров и других производных - поливиниловый спирт, поливинилацетат, полиакриловая кислота, полиметилметакрилат, полиакриламид, полиакри-лонитрил. [c.13]

    Характер продуктов термической деструкции определяется главным образом двумя факторами реакционной способностью деполиме-ризующегося радикала и подвижностью водорода, участвующего в реакции передачи цепи. Все полимеры, содержащие подвижный а-водород (полиакрилаты, полиакрилонитрил, разветвленный полиэтилен и др.), дают незначительное количество мономера исключением является полистирол, у которого радикал стабилизуется сопряжением с бензольным кольцом (с. 244). Большой выход мономера при деструкции полиметилметакрилата и поли-а-метилстирола объясняется тем, что а-водород замещен на метильную группу. Высокая прочность связи С—F в политетрафторэтилене также обусловливает малую скорость передачи цепи и высокий выход мономера. [c.635]

    Наибольшие коэффициенты упаковки характерны, как правило, для макромолекул, повторяющиеся звенья которых имеют правильную форму. Такие полимеры, как полиметиленоксид, политетрафторэтилен, ряд сложных полиэфиров и т. д., имеют наибольшие коэффициенты упаковки. Введение боковых объемистых заместителей разрыхляет упако вку полимерных цепей, которые в кристалле не могут уложиться столь плотно. К таким полимерам относятся поливинилциклогексан, иоливинилцикло-пентан, поли-4-метилпентен-1 и др. Рыхлая упаковка характерна также для ряда полиэфиров и полиамидов, коэффициент упаковки которых, как и плотность, существенно зависит от числа СНг-груип в каждом из компонентов. Число СНг-групп влияет на возможность образования межмолекулярных связей (водородные связи, диполь-дипольное взаимодействие за счет [c.137]

    Несколько слов о параметре я. Необходимость учета адсорбции паров при измерении поверхностной энергии твердого тела не подлежит сомнению. В табл. П.З приведены значения я для различных сочетаний жидкость — твердое тело [149, 150]. Как видно из этих данных, иногда эта величина оказывается соизмери-мой с адгезией. Однако для субстратов полимерной природы величиной я часто пренебрегают. Возможно, что я действительно составляет для этих материалов всего несколько эрг/см . Но такое пренебрежение может привести, как и пренебрежение величиной к существенным ошибкам в оценке поверхностной энергии твердого тела, поэтому формально нет оснований без соответствующих данных полагать я = О [961. Но имеются и убедительные доказательства того, что величина я иногда действительно пренебрежимо мала [162 . Так, при изучении зависимости адсорбции на политетрафторэтилене от длины цепи было найдено [163], что я линейно уменьшается с ростом цепи и становится, например для гексадекана, близкой к нулю. Некоторые авторы считают [158], что несовпадение значений у и у , найденных экстраполяцией температурной зависимости поверхностного натяжения расн.лава, также является аргументом против метода Цисмана. [c.69]

    Адгезия к политетрафторэтилену без соответствующей обработки его поверхности вообще невозможна. Обработка поверхности политетрафторэтилена в большинстве случаев основана на способности щелочных и щелочноземельных металлов химически взаимодействовать с ним. Например, широко применяют обработку раствором металлического натрия в жидком аммиаке [45 — 49]. Натрий взаимодействует с полимером, выделяется фторид натрия, и в цепи полимера возникают двойные связр1. В ИК-спектрах модифицированного политетрафторэтилена обнаружены полосы, характерные для двойных связей, сопряженных двойных связей, а также для групп СН2 и СНд [50]. [c.374]

    При том же значении дозы, при котором равновесный модуль впервые начинает отличаться от нуля, в полимере впервые возникает нерастворимая фракция (гель), количество которой продолжает расти с дозой. В точке гелеобразования и после нее полимер при нагревании и размягчении не переходит в вязкотекучее состояние он становится неплавким. Так, полиэтилен обычно теряет кристалличность и размягчается при 110—115° при этом он теряет способность поддерживать напряжение и теряет форму уже под действием собственного веса. Прессованная полиэтиленовая бутыль, например, деформируется и расплывается в бесформенную массу при температурах выще 110—115°. Изделия из полиэтилена, облученные - -лучами или быстрыми электронами, при дозах более 10 мегафэр становятся неплавкими и переходят при температурах ПО—-115° не в вязкотекучее, а в резиноподобное состояние. Они сохраняют свою форму даже при 300°, хотя потеря кристалличности у них происходит примерно при тех же температурах, что и у необлученных материалов. На рис. 17 демонстрируется вид полиэтиленовых бутылей, получивших дозы О, 5, 10 и 20 лгегафзр от электронов с энергией 800 кв, а затем прогретых 15 мин. при 135°. Доза 5 мегафэр дает заметный эффект. Однако требуется по крайней мере 10 (желательно даже 20) мегафэр для получения хорошей термостабильности в данных конкретных условиях. Все эти изменения являются результатом образования сплошной пространственной сетки. Условия создания такой сетки мы рассмотрим более подробно в следующей главе. Если разрывы цепей превалируют над сшиванием, так что сплошная пространственная сетка не образуется, то действие излучений на физические свойства вначале менее заметно, чем при образовании пространственной сетки, но затем проявляется в уменьшении прочности и появлении хрупкости полимера. Политетрафторэтилен теряет свою прочность при облучении - -лучами или электронами. При дозе 10 мегафэр это становится заметно даже при поверхностном осмотре. При дозе 100 мегафэр и выше политетрафторэтилен теряет всю свою прочность и легко крошится. Деструкция растворимых полимеров, например полиметилметакрилата, сопровождается непрерывным уменьшением вязкости растворов, но это не является однозначным критерием деструкции, так как [c.77]

    Из этого класса поли.меров наибольшее значение имеют политетрафторэтилен (тефлон) и политрифторхлорэтилен (кел-F). Считается, что оба этих полимера имеют простые неразветвлен-ные цепи, так как оба обладают высокой степенью кристалличности. Политрифторхлорэтилен имеет несколько меньшую склонность к кристаллизации, чем политетрафторэтилен, и может быть получен в прозрачной, почти аморфной форме при быстром охлаждении нагретого до 200° материала (температура 200° несколько превышает температуру фазового перехода первого рода). Политетрафторэтилен претерпевает фазовый переход первого рода при температуре 327° и другие переходы при более низких температурах. Он всегда получается в форме, соответствующей высокой степени кристалличности. [c.166]

    Вопросам номенклатуры стереорегулярных полимеров посвящено несколько работ, суммированных в [11] и обзоре Коррадини (12]. Были выработаны определенные правила не только для обозначения порядка в расположении атомов отдельной полимерной цепи, но и для характеристики упаковки соседних цепей. Мы пока остановимся на виниловых полимерах, т. е. полимерах типа СНг—) , (—СНг—СНК—) и (—СНН—СНК—) . Полимеры первого типа — это карбоцеп-ные полимеры с одинаковыми привесками такие, как полиэтилен (К= Н) или политетрафторэтилен (Я = Р). Более массивные заместители обычно приводят к серьезным пространственным затруднениям. По-видимому, такие полимеры, как политетраметилэтилен (К = СНз) или политетрафенилэтилен (Н=СбН5), синтезировать невозможно. Широко известны полимеры типа (—СНг—СНК—) . Они могут иметь две различные конфигурации — изотактические и синдиотактические, приведенные на рис. 1а и 16. Если полимерную цепь условно представить в виде плоской траяс-цепи, то изотактическим полимерам будет соответствовать параллельный перенос соседних мономерных звеньев, а синдиотактическим — кроме параллельного переноса, еще и зеркальное отражение. Полимеры типа (—СНН—СНР—)п называются диизотактическими, причем — в зависимости от расположения заместителей — трео- и эритро- (рис. 1в, 1г). [c.7]

    Главными конформационными параметрами, несомненно,, являются углы вращения. При обсуждении потенциальных функций многоатомных молекул мы увидим, что углы вращения являются существенными параметрами [32], т. е. переменными, от которых потенциальная функция зависит слабо, ни-то и определяют форму молекулы, т. е. по крайней мере симметрию спирали. Таким образом, конформацию макромолекулы с неплохим приближением можно характеризовать носледовательностью углов внутреннего вращения ф для одноатомных цепей типа (—М—) (полиэтилен, политетрафторэтилен), ф1 и ф2 для двухатомных цепей (—М1—Мг—)п (виниловые полимеры, полиальдегиды), фь фг и фз для трехатомных цепей (—М1—Мг—Мз—) (полипептиды), фь фг, фз и ф4 для четырехатомных цепей (—М1—Мг—Мз—М4—) (диеновые полимеры) и т. д. Отметим, что благодаря плоскому строению амидной группы [c.14]

    Иоливинилиденфторид лишь сле1ка более перегружен, чем полиэтилен, следовательно, из общих соображений для него следует ожидать спирали, закрученной несколько слабее, чем в политетрафторэтилене. Поскольку конформационная свобода в этом полимере весьма велика, межмолекулярные взаимодействия в большей степени влияют на структуру полимерной цепи. И действительно, в зависимости от условий обработки, поливинилиденфторид имеет две кристаллические модификации [110—112], в одной из которых (р) полимер имеет форму плоского зигзага, а в другой (а) —форму слегка закрученной спирали. По оценке работы [110] углы отклонения от плоского зигзага близки к 10°, однако авторы работы [111] отметили, что такие углы несовместимы с найденной пространственной группой. Таким образом, структура р-фор-мы поливинилиденфторида нуждается в дальнейшем уточнении. [c.40]

    Если политетрафторэтилен перед кристаллизацией нагревали до более высокой температуры, то на микрофотографиях реплик наблюдалась структура, приближающаяся к сферо-литной. Авторами описан еще ряд наблюдений, которые, однако, не находят себе надежного объяснения. Ступенчатый спиральный рост, вызванный винтовыми. дислокациями, был обнаружен на так называемом воске политетрафторэтилена, полученном в результате частичного разрушения полимера под воздействием сильного нагревания или ионизирующего облучения. И здесь авторы, как и в ранее рассмотренных работах, были удивлень постоянством высоты ступенек роста, составлявшей около 200 А. Объяснение этому факту авторы ищут в предположении, что при разрушении полимера образуются молекулы приблизительно одинаковой длины, хотя ряд данных свидетельствует об обратном. Вероятно, авторы не были знакомы с работой Келлера, так как предположение о складчатой конфигурации молекулярных цепей позволяет дать более естественное объяснение наблюдавшемуся явлению. [c.265]

    Политетрафторэтилен также образует упорядоченную структуру. Полностью упорядоченная конформация представляет собой слабо закрученную спираль с 13 СРг-группами в периоде [19]. Каждая связь цепи повернута на 20° от точного транс-ио-ложения. Причина этой деформации заключается в том, что при структуре плоского зигзага несвязанные атомы фтора отно сптельно мало удалены друг от друга. Вращение вокруг каждой связи цепи опять уменьшает перекрывание. [c.23]

    Бресслер и сотр. [26] исследовали механизм механокрекинга полимеров (полиметилметакрилат, полистирол, политетрафторэтилен, полиизопрен, нолиизобутилен и поликапролактам) прн срезе при температуре —196°. Появление свободных радикалов при разрыве макромолекулярных цепей доказывалось методом ЭПР. Самые устойчивые радикалы с концентрацией 10 частиц на 1 г полимера были получены в случае полиметилметакрилата и полинзобутилена. [c.216]

    Политетрафторэтилен из всех виниловых полимеров наиболее устойчив в отношении термодеструкции, однако, как было отмечено Флорином и Уоллом с сотр. [115], его термостойкость лишь примерно на 100° превышает термостойкость полиэтилена. Этот факт до некоторой степени неожидан, так как известно, что энергии диссоциации связей С — С и С — F в молекуле политетрафторэтилена значительно больше, чем энергии диссоциации связей С — С и С — Н в молекуле полиэтилена. Поэтому на основании данных о структуре, а также результатов кинетических исследований термодеструкции политетрафторэтилена указанные авторы предложили несколько методов повышения термостойкости этого полимера. Пытаясь исключить присутствие на концах цепей лабильных центров, у которых может происходить инициирование, они осуществляли синтез препаратов политетрафторэтилена при использовании в качестве инициаторов наряду с обычно применяющимися для этой цели агентами таких веществ, как нерфтордиметилртуть, нерфторметилиодид и газообразный фтор. Эти авторы предположили также, что реакция, обратная росту цени и приводящая к образованию мономера, может быть блокирована введением в молекулы полимера агентов передачи цепи или просто путем смешивания таких веществ с политетрафторэтиленом. Для этой цели они использовали серу, селен, а также ряд соединений, содержащих углеводородные и фторуглеводородные группы, в основном ароматического характера, которые вводили обычно в виде соответствующих дибромидов в полимеризующуюся реакционную смесь. Однако ни одним из этих способов не было получено полимера, отличающегося по скорости термодеструкции от обычного политетрафторэтилена. В связи с этим [c.57]

    Совокупность данных, полученных в результате исследования таких полимеров, как полиметилметакрилат, полиизобутилеп и политетрафторэтилен, позволила выдвинуть ряд предположений о механизме рассматриваемых реакций. Ни одно из этих предположений нельзя считать полностью доказанным, хотя некоторые из них достаточно хорошо объясняют почти все экспериментально наблюдаемые превращения — деструкцию макромолекул полимеров, образование непредельных связей и выделение газообразных продуктов. Подтверждение высказанных гипотез или разработка новых более правильных представлений о механизмах реакции зависят главным образом от успехов исследований в трех основных направлениях. Во-первых, необходимо более полное и количественное исследование реакции разрыва макромолекул и определение конечных продуктов реакции. Во-вторых, требуется продолжить исследование природы образующихся промежуточных продуктов и характера их превращений в конечные продукты. В-третьих, очень важно исследовать первичные реакции взаимодействия излучений с органическими молекулами. До выяснения характера первичных процессов, инициирующих развитие реакционных цепей, любая, гипотеза о механизме деструкции не будет вполне достоверна. [c.120]

    Озонирование представляет собой более эффективный метод образования активных центров на полимерных цепях, чем метод окисления кислородом метод озонирования был применен к самым разнообразным системам полимер — мономер, используемым для синтеза привитых сополимеров. Впервые по этому методу [159, 160] полиакрилонитрил был привит к озонированным политетрафторэтилену и полистиролу. В последнем случае озонирование происходит в ароматическом кольце полистирола с образованием из одной озонидной группы двух активных центров, инициирующих прививку [c.294]

    Кристаллизующиеся полимеры метод полимеризащ1и. Обычно немногие полимеры являются высококристаллическими. Полистирол и полиметилметакрилат, полученные нри свободно-ра-дикальной полимеризации, совершенно аморфные материалы, которые не проявляют какой-либо тенденции к кристаллизации. Наряду с этим политетрафторэтилен легко кристаллизуется и, как правило, находится в кристаллическом состоянии. Натуральный каучук, однако, обычно существует в аморфном состоянии, по кристаллизуется нри растяжении или при низкой темнературе. Часто для достижения кристалличности полимеров требуются весьма жесткие условия даже если существует полная структурная упорядоченность, могут быть необходимы особая обработка и экстремальные давление и температура. Упорядоченная макроскопическая структура (кристаллический материал) в общем является результатом высокой степени однородности молекулярной структуры. Из-за больших размеров молекул полимеров имеется большая возможность образования, в полимерных цепях структурных дефектов и нарушений. Часто встречаются два структурных дефекта, нарушающие однородность строения цени 1) беспорядочное разветвление и 2) беспорядочность асимметрии атомов углерода в цени. Эти дефекты являются результатом способа полимеризации гомогенная свободнорадикальная полимеризация при достаточно высоких температурах благоприятствует возникновению обоих дефектов. [c.273]


Смотреть страницы где упоминается термин Политетрафторэтилен цепей: [c.201]    [c.363]    [c.108]    [c.16]    [c.113]    [c.169]    [c.19]    [c.124]    [c.302]    [c.275]   
Физика макромолекул Том 2 (1979) -- [ c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Политетрафторэтилен



© 2025 chem21.info Реклама на сайте