Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волновой механизм

    Условия, налагаемые на критерий Ро, автоматически выполняются при соответствующем выборе характерного линейного размера процесса Ь. Если при диффузионном механизме переноса в качестве Ь выбрать естественный характерный размер процесса Хд = [оТ, то Ро=1. При волновом механизме переноса естественным характерным размером является Т. [c.299]


    Из принятого волнового механизма разрушения вытекают некоторые следствия  [c.805]

    Первый член правой части уравнения ответственен за диффузионное смешение, второй — за распад по волновому механизму. Физическая сущность увеличения длины струй с ростом межфазного натяжения заключается в том, что большее межфазное поверхностное натяжение свидетельствует о более слабом взаимодействии жидкостей. Наряду с этим более отчетливо проявляется механизм волнового распада. [c.133]

    При наличии волнового процесса разрушение происходит в суженных местах струи аналогично распаду струи в воздухе или в среде несмешивающейся жидкости. Исключение представляет распад струй растворов полимеров при истечении в осадитель. На первом этапе в струе развиваются колебания, но разрыв наблюдается в переходной области — от сужения к пучности. Это явление, вероятно, можно объяснить следующим образом. В местах сужений удельный объем новой (полимерной) фазы выше, чем в пучностях. В результате этого в сужениях возникают усадочные напряжения, являющиеся внешними растягивающими напряжениями по отношению к пучности, что и вызывает разрыв. Таким образом (по крайней мере, при малых возмущениях в струе), распад происходит не только под действием поверхностных сил, но и под влиянием напряжений, возникающих в системе. Волновой механизм обусловливает переход к этому состоянию. При значительных возмущениях в системе возможность подобного механизма распада зависит от соотношения скоростей выделения полимера из раствора и развития волнового процесса. [c.134]

    Для нахождения динамических характеристик колонных аппаратов по гидродинамическим каналам необходимо знать механизмы распространения и взаимодействия волн концентрации дисперсной фазы в двухфазном потоке. Успехи, достигнутые за последние годы в развитии континуальной модели движения дисперсных смесей, позволяют провести исследование волновых процессов в рамках этой модели, используя различные уровни приближения. [c.113]

    То, что краситель и адсорбент составляют единую квантовую систему, видно из многих фактов. Самый наглядный из них состоит в том, что поглощение радиации любой, например самой малой, частоты в пределах полосы поглощения данного фосфора вызывает испускание всего его спектра излучения, в том числе и значительно больших частот, чем частот поглощенного света. Значит, кванты излучения поступают в общее пользование, причем энергия, недостаточная для излучения частот, которые превышают малую частоту поглощенного света, также поступает за счет общих ресурсов твердого тела. Не допускает иных толкований также тот факт, что хотя краситель, несомненно, находится только на поверхности, поглощение света характерных для него длинных волн (для которых кристалл, адсорбирующий данный краситель, практически прозрачен) сопровождается образованием металлического серебра в объеме кристалла бромида серебра. При этом чувствительность бромида серебра тем дальше сдвигается в сторону длинных волн, чем длиннее цепь сопряженных связей в структуре молекулы красителя (рис. 44). Дело в том, что электроны красителя находятся в волновом движении и что молекула красителя, соединяясь с кристаллом валентной связью, составляет с ним единое целое. Кристалл и краситель образуют единую квантовую систему. Не удивительно поэтому, что механизм фотолиза чистых [c.130]


    Уже было упомянуто, что в этих реакциях перенос электронов происходит по туннельному механизму это означает, что электрон не преодолевает энергетического барьера, а просачивается через него. Туннельный эффект объясняется корпускулярно-волновым дуализмом частиц на основе соотношения неопределенности Гейзенберга, если рассматривать электрон как волну де Бройля (подробнее см. в учебниках атомной физики). В данном случае возможность туннельного перехода [c.203]

    Теория абсолютных скоростей реакций позволила установить новые факторы, обусловливающие специфику механизма, а следовательно, и всего хода химического процесса. Наиболее важным из этих факторов является волновая природа электронов связей, определяющая как особенности месторасположения реакционных центров в молекуле реагента, так и характер взаимодействия данного реагента с сореагентом, в том числе конфигурацию активированного комплекса. Вместе с тем нельзя не признать, что теория [c.115]

    Со времен Ньютона и до появления квантовых представлений корпускулярная теория света уступала позиции волновой теории. Такие явления, как дифракция и в особенности интерференция, получали объяснение лишь в рамках волновой теории. Однако истинная природа световых волн и механизм [c.27]

    Для понимания процессов, происходящих в начальный период инициирования волн горения и детонации разработана теория устойчивости процессов возникновения и распространения физико-химических волн в аэрированных, в том числе содержащих высокоэнергетические материалы средах. С помощью разработанных компьютерных программ осуществлено моделирование волн тепловой и гидродинамической природы и проведено исследование влияния их параметров на инициирование и устойчивость распространения волновых процессов в экзотермических системах. Подробно рассмотрено инициирование химической реакции с помощью мощного потока лазерного излучения. Изучено влияние характеристик ЭМ и условий воздействия внешнего теплового импульса на возможность воспламенения, охвата горением значительного объема взрывоопасного вещества и развития процесса до взрыва. Осуществлено моделирование процесса воспламенения и горения ЭМ под действием потока теплового излучения, генерируемого с помощью современных лазерных установок. Рассмотрены аномалии воспламенения и гашения горящего ЭМ при действии импульса лазерного излучения. Разработан механизм воспламенения и горения ЭМ, содержащих высокополимерные энергоемкие компоненты. Ис- [c.84]

    Что касается потенциальных поверхностей, то для изучения изменений знака волновых функций возле конических пересечений двух потенциальных поверхностей использовались более общие топологические методы [106]. Отмечалась важность топологических соотношений между критическими точками энергетических гиперповерхностей при определении числа возможных реакционных механизмов [55], и пересечения потенциальных поверхностей трехатомных систем изучались с использованием топологических концепций [94]. [c.95]

    Корпускулярно-волновой дуализм утвердился вначале в учении о природе электромагнитного излучения, механизм которого связан с перескоком электронов с более удаленных от ядра атома стационарных орбит на более близкие. При этом происходит излучение, а при перескоке в обратном направлении — поглощение фотонов, энергия которых Е определяется уравнением Планка  [c.46]

    Обзор экспериментальных данных и анализ результатов расчетов позволяют сделать одинаковые выводы. Как и в случае естественной конвекции около вертикальной поверхности, при небольших углах отклонения от вертикали возникают возмущения в виде волн. При более высоких значениях 0 неустойчивость течения вызывается, как и для горизонтального течения, возмущениями в виде продольных вихрей. Однако пока результаты измерений и расчетов существенно различаются между собой. Это касается зависимости характеристик устойчивости от угла отклонения 0, отдельных деталей механизмов неустойчивости, проблемы возникновения и повышения роли различных эффектов ниже по потоку. Использованные методы расчета все же недостаточно строги. В частности, как указано в разд. 11.11.1, в усовершенствованной теории устойчивости необходимо учитывать изменение амплитудной функции и волнового числа с расстоянием по течению. Чтобы решить вопрос о причине многих сохраняющихся расхождений между результатами измерений и расчетов, необходимы дополнительные экспериментальные и теоретические исследования. [c.145]

    Естественно ожидать, что аналогичные механизмы работают и в канале AN - NN, и что физика, лежащая в их основе, аналогачна физике тензорных NN-сил. Действительно, модели с изовекторным 2л -обменом и обрезанием на малых расстояниях в потенциале AN - NN имеют более слабое короткодействующее тензорное взаимодействие и дают необходимое уменьшение сечения (т(л (1-> рр). Типичный результат, объединяющий механизм А-пе-рерассеяния с s-волновым перерассеянием и импульсным приближением, представлен на рис. 4.11. Он демонстрирует еще раз, что для понимания глобальных особенностей процесса - рр оказываются достаточными основные s- и р-волновые механизмы. [c.141]


    За остающиеся 20% разницы между теоретической и эмпирической величинами ( о)эфф, возможно, отвечает малый дисперсный вклад с Re Во - /2 Im Во. Теоретические оценки этих величин основаны, в основном, на s-волновом двухчастичном механизме поглощения, возникающем в процессе jrd- NN (см. раздел 4.6.2). Вычисления, проделанные на основе модели ферми-газа, дают величину Im Ва, которая обычно на 20—30% меньше эмпирической. Улучшенные результаты получаются для конечных ядер в модели гармонического осциллятора. Это значит, что главную часть абсорбтивного s-волнового оптического потенциала можно понять на языке s-волнового механизма перерассеяния вместе с результатом jrd-поглощения. Вещественная часть Вс менее понятна. Вычисления в ферми-газе дают возможность предположить, что Re Во/ т Во мало и даже сравнимо с нулем. Эта малость совместима с эмпирическим наблюдением (Berts h and Riska, 1978). [c.226]

    Мы получили формулу, в точности совпадающую с формулой, найденной Бриджменом [5] из некоторых весьма элементарных соображении о передаче тепловой энергии волнами, распространяющимися со скоростью звука. Бриджмен прилагал соотношение (18) к теплопроводности ряда жидкостей при 30° С и нашел, что оно прекрасно воспроизводит экспериментальные данные. Отсюда можно сделать вывод, что теплопроводность жидкостей по своему механизму схожа с теплопроводностью твердых тел и что несомненно в жидкостях существенную роль играет молекулярная передача тепла яри посредстве беспорядочных волн, распространяющихся со звуковой скоростью, средний пробег которых сравним со средним расстоянием между молекулами. Все это в совокупности дает веские аргументы в пользу того волнового механизма вязкости яшдкостей, которйй описан в 3. [c.40]

    Само по себе то, что внутригодовая изменчивость в динамических полях по энергиям становится преобладающей, говорит, с одной стороны, о сложности выделения средних полей и средних квазистациоиарных движений, а с другой, заставляет задуматься о смысле относительно слабых средних переносов на фоне интенсивных вихревых и волновых механизмов транспорта. [c.201]

    Основная проблема голографической модели мозга заключается в отсутствии подходящего для нее конкретного волнового механизма. Электромагнитные волны ка эту роль непосредст- [c.100]

    В этой работе предлагается гипотеза, согласно которой очень быстро распространяющаяся клеточно-автоматная активность диффузионного типа и представляет собой тот искомый волновой механизм, с помощью которого голографическая модель активности головного мозга реально обретает свой высокий объяснительный потенциал. Вы1иеуказанная диффузионная активность ие вл яет на световой предел распространения ма- [c.105]

    Кроме того, полученные выше результаты, касающиеся механизма распространения и взаимодействия волн и переходных процессов в аппаратах с дисперсным потоком, применимы лишь в том случае, когда величина возмущающего сигйаЛа достаточно мала. Только в этом случае скорость распространения волны можно считать независящей от величины возмущающего сигнала. При значительной величине возмущающего сигнала либо при больших высотах аппарата указанное условие не вьшолняется. Первоначальное возмущение заметно деформируется, что приводит в результате к образованию, с одной стороны, скачков уплотнения, а с другой, сильно растянутых волновых фронтов. Так в противоточном аппарате фронт концентрационной волны при значительном уменьшении подачи дисперсной фазы резко очерчен и представляет собой скачок уплотнения. В то же время фронт волны концентрации при значительном увеличении подачи дисперсной фазы размыт. Скачком уплотнения является также граница раздела двух режимов (обычного осаждения и взвешенного слоя) в том случае, когда оба режима существуют в аппарате одновременно. Образование скачка уплотнения происходит в данном случае вследствие взаимодействия малых возмущений, распространяющихся навстречу друг другу. Анализ переходных процессов в таких случаях является задачей будущих исследований. [c.146]

    Некоторые из первых попыток интерпретации СТВ были связаны с ароматическими радикалами, в которых неспаренный спин находится в гг-системе, как, например, в СбН5Н02 . Расчет осуществлялся по методу Хюкке.гтя, и для определения величины плотности неспаренного электрона у различных атомов углерода использовались квадраты р -коэффициентов углерода в МО, на которой находится неспаренный электрон. Экспфиментально наблюдаемое сверхтонкое расщепление обусловлено протонами цикла, которые ортогональны я-системе. Непосредственно на них плотность неспаренного электрона находиться не могла, но плотность неспаренного спина тем не менее на них ощущалась из-за так называемой спин-пол.чризации, или косвенного механизма. Мы попытаемся дать предельно простое представление этого эффекта, используя метод валентных схем. Рассмотрим две резонансные формы, представленные на рис. 9.15 для связи С — Н в такой систе.ме, в которой неспаренный электрон находится на р -орбитали углерода. В отсутствие взаимодействия между л- и а-системой (так называе.мое приближение идеального спаривания) мы можем записать волновые функции связывающей и разрыхляющей а-орбиталей, используя метод валентных схем  [c.24]

    В заключение, чгобы показать, насколько важны приближенные волновые функции при интерпретации контактных сдвигов, мы рассмотрим сдвиги в спектрах некоторых комплексов N-окиси 4-метилпиридина [27]. Картина наблюдаемых протонных контактных сдвигов напоминает механизм тг-делокализации со спином, направленным в тс-сис-теме вдоль поля. Исходя из этих сдвигов, можно сделать вывод, что при координации N-окись 4-метилпиридина должна вращаться таким образом, чтобы я-молекулярная орбиталь, которая представляет собой главным образом р -орбиталь кислорода (ось г перпендикулярна плоскости цикла), смещталась с ст-связывающей -совокупностью нике-ля(П), Это приводит к возможности прямой делокализации неспаренного спина по орбитали цикла . Такой тип координации с вращением донора обнаружен в твердом аддукте этого донора. Расчет по методу МО указывает, что некоторые из высокоэнергетических молекулярных орбиталей донора представляют собой главным образом АО кислорода с очень небольщими коэффициентами АО водорода. Таким образом, если даже эти молекулярные орбитали участвуют в связывании с пике-лем(П), они должны давать по крайней мере небольшой непосредственный вклад в протонные контактные сдвиги. [c.185]

    Опытные данные многих исследователей однако не подтверждают вытекающей из аналитического решения Нуссельта однозначной зависимости отношения Кш/ин от безразмерного комплекса Пю. Расхождение между теоретическими и опытными данными обусловлено ошибочностью принятой при аналитическом решении предпосылки, что механическое взаимодействие между движущимся паром и пленкой конденсата приводит лишь к изменению средней скорости и толщины пленки, но не влияет на режим ее течения. В действительности же, как показывают исследования Бермана [26, 30], Фукса [139, 140] и других авторов, паровой поток вызывает благодаря действию силы трения на поверхности раздела фаз изменение профиля скоростей в поперечном сечении пленки и соответственно изменение средней скорости и толщины пленки при сохранении ламинарного режима ее течения и с другой стороны является источником возмущений, вызывающих существенную перестройку режима течения пленки, ускоряющему переход от ламинарного течения к волновому и турбулентному. Соответственно изменяется и механизм переноса тепла через пленку конденсата, когда чисто молекулярный перенос дополняется даже при малых значениях Кепл более интенсивным конвективным переносом. [c.134]

    Лекция э. Гибридизация волновых функций. Донорно-акцепторный и дативный механизм образования ковалентной связи. Образование кратких связей. Сигма-и пи-связи, их особенности. Делокализвванные пи-связи. Лекция 6. Полярная и неполярная ковалентная связь. Э(М)вктивные заряды атомов в молекулах. Ионная связь как крайний случай поляризации ковалентной связи. Свойства ионной связи. Поляризуемость ионов и их взаимное поляризующее действие. Влияние системы поляризации ионов на свойства веществ. [c.179]

    Годдарт [297] предложил другой механизм гидроксилирования фенольных соединений при этом он попытался показать, каким образом флавиновые коферменты осуществляют такое окисление. Построение выполнено теоретически и основано па применении волновых функций, квантовой механики и обобщенной теории валентных связей к биологическим проблемам. [c.425]

    Рассмотрены применения волновых воздействий в различных о фаслях нефтехимической промышленности. Большое внимание уделено механизму волновых воздействий на нефтяные системы. Подробно рассмотрены конструкции и характеристики различных типов волнового оборудования. [c.2]

    Второй способ разделения данной системы на быструю и медленную подсистемы объединяет протоны и электроны в быструю и одновременно квантовую подсистему. В медленной подсистеме остаются молекулы растворителя, удовлетворяющие классическому характеру поведения. В этих условиях вводится понятие протонно-электронного терма, включающего потенциальную энергию растворителя, полную (квантованную) энергию электронов и полную (квантованную) энергию протонов. Зависимость протонно-электронных термов от обобщенной координаты растворителя имеет форму параболических кривых, представленных на рис. 157. Механизм элементарного акта разряда здесь также связан с реорганизацией растворителя. Так, если в результате флуктуации растворителя полные энергии электронов и протонов в начальном и конечном состояниях системы оказываются равны (точки пересечения протонно-электронных термов), то появляется возможность для одновременного туннельного перехода электрона и протона с образованием адсорбированного атома водорода. Вероятность этого перехода будет определяться не только перекрыванием волновых [c.289]

    Электронное возбужде1ше может изменить внутреннюю реакционную способность частиц за счет механизма, связанного с волновым (т. е. не классическим) поведением электронов. Более подробно этот аспект исследуется в следующем разделе. Однако имеется несколько основных соображений, объясняющих различия в поведении возбужденных и невозбужденных состояний. Это факторы, включающие изменения в 1) геометрии, 2) дипольном моменте, 3) способности к отдаче и присоединению электрона и 4) соответствующих кислотно-основных свойствах. [c.149]

    Попав в область с другой скоростью осевого переноса, вещество остается там некоторое время / >. Это время можно трактовать как время релаксации осевого диффузионного потока, в течение которого этот поток определяется не локальным осевым градиентом концентрации, а молярным адвективным переносом [8]. Связь между потоком и градиентом концентрации в этом случае не локальна и не мгновенна система обладает некоторой памятью [8,9]. Это свойство эредитарности (наследственности) становится существенным, когда время релаксации оказывается не малым в сравнении с другими характерными временами, в течение которых в системе происходят существенные изменения (химические превращения, пребывание в реакторе и т.п.). В этом слз чае можно говорить о новом (дисперсионном) механизме продольною перемешивания как о процессе слу чайного блуждания вдоль оси аппарата, и в этом слу тае возможен переход к дисперсионной (волновой) модели массопереноса [8]. [c.10]

    Результаты. Получена непосредственная количественная информация о скорости разложения прессованных ВВ при ступенчатых импульсах давления с различным размытием (во времени) переднего фронта и при многоступенчатом изменении давления на стадии разложения. Результаты экспериментов обнаруживают влияние на кинетику разложения поврежденности микроструктуры заряда и нетривиальное влияние изменений внешнего давления на скорость разложения структурно-неоднородною ВВ. Показано, что структура и скорость очагового разложения определяется не только исходным распределением зерен и их поврежденностью при прессовании, но и эффектом неоднородаюсти конгломерации зерен. Разработана сисгема УФК, адекватная значительной части выявленных особенностей проявления разложения прессованных ВВ. Сопоставление результатов компьютерного моделирования и экспериментов приводит к необходимости уточнения представлений о процессах, определяющих скорость разложения ВВ в слабьк ударных волнах. В частности, вводится в рассмотрение представление о "деформационно-каталитических" механизмах изменения скорости разложения на ударно-волновой и пост-ударно-волновой стадиях поведения ВВ. Разработаны основы прогнозирования ударно-волтювой чувствительности и опасности ВВ на основании физического и математического моделирования процессов в малых навесках ВВ (по методу КТС). [c.126]

    Хорошо известно, что однодетерминантное представление волновой функции принципиально не применимо для моделирования гомолитического расщепления химической связи [62]. Корректное описание радикальной пары на расстояниях от ковалентного связывания (молекулы) до изолированных радикалов возможно с помощью методов интенсивного учета электронной корреляции, что сильно ограничивает размеры исследуемых соединений. Поэтому построение даже фрагментов поверхности потенциальной энергии (ППЭ) распада пероксида требует больших временных и компьютерных ресурсов и к настоящему моменту времени проведено только для пероксида и триоксида водорода [63—68]. Другим подходом к исследованию механизма гомолиза является кванто-во-химическое определение энергий активации и тепловых эффектов различных направлений распада пероксида, позволяющее ограничиться расчетом стационарных точек (равновесные структуры и переходные состояния) на ППЭ. С помощью этого подхода изучены механизмы распада диоксиранов [69] и азотсодержащих пероксидов на примере HOONO [70], HOONO2 и Me (0)00N02 [71-73]. [c.182]

    На основании вышеизложенного может быть предложен следующий двухэтапный механизм развития КР (рис.2.8). На 1-м этапе (время отключения поляризации менее суток) протекает образование не проводящих электрический ток частиц карбоната железа, которые под действием осциллирующего вибрационного поля дрейфуют к точкам минимумов волновой функции, выстраиваясь по линиям вдоль образующей трубы. При перемещении этих непроводящих частиц не происходит разряда электрохимической системы по всей поверхности металла. На 2-м этапе (время отключения поляризации более суток), одновременно с образованием и дрейфом таких частиц, происходит превращение карбоната железа в магнетит. Этот процесс протекает на образовавшихся на -м этапе скоплениях карбоната железа в виде линий, расположенных вдоль образующей трубы. При этом происходит локальный пробой электрохимической системы по указанным линиям, являющимся очагами зарождения коррозионных трещин. [c.87]

    На совр. этапе в К. х. наряду с традиц. расчетами эле -троиных волновых ф-ций разрабатываются новые проблемы и методы. Развивается квантовая теория движения ядер в хим. системах (см. Динамика элементарного акта. Электронно-колебательное взаимодействие). При переходе от статнч. систем к системам, меняющимся во времени, в частности в результате хим. р-ций, фото возбуждения и распа,гц1, потребовались новые теоретич. методы, разработанные в квантовой механике и статистич. физике, так что К, х.. можно с полным основанием рассматривать как ветвь теор. физики. Становятся все более разнообразными объекты приложения К. х. от элементарных процессов в хим. лазерах и электрической проводимости мол. кристаллов до-сложных механизмов функционирования биологических систем. [c.251]

    До того как были получены изложенные выше экспериментальные данные и результаты расчетов, существовало несколько точек зрения на роль, которую играют трехмерные возмущения в процессе перехода естественноконвективного течения высказывались различные предположения о форме трехмерных возмущений и возникающих нелинейных механизмах. В работе [26] с помощью хорошо отражающих свет частиц алюминия проводилась визуализация течения воды в области перехода. При этом удалось обнаружить два продольных вихря, аналогичные тем, что описаны выше. Однако Шевчик [149], вводя краску в воду, наблюдал вихри, оси которых расположены перпендикулярно направлению течения. Было сделано предположение, что увеличение завихренности вызывается петлеобразной деформацией оси вихря. Однако осталось не выясненным, не связан ли рост завихренности со способом ввода краски в жидкость. Такое же расхождение возможных механизмов процесса перехода было отмечено и при исследовании вынужденных течений. Клебанов [85] установил по результатам тщательных измерений, что при введении в поток контролируемых трехмерных возмущений возникает вторичное осредненное течение в виде продольных вихрей в результате взаимодействия нелинейных и трехмерных механизмов. Были указаны также другие возможные механизмы, связанные, например, с генерацией гармоник высокого порядка или вогнутостью линий тока волнового движения. Однако, по-видимому, разумно предположить, что для естественной конвекции такие механизмы не играют определяющей роли и переход к турбулентному режиму течения вызван образованием областей с высоким сдвигом потока и других особенностей течения под действием системы продольных вихрей. Это подтверждается приведенными ниже данными. [c.36]

    Явления переноса частиц и элементарных возбуждений. Данная совокупность явлений включает нестационарные процессы, описывающие переходы между дискретными состояниями и распад квазистационарных состояний. Переходы между дискретными состояниями с волновыми ф-циями, локализованными в разл. минимумах одного адиабатич, потенциала, соответствуют разнообразным хим, р-циям. Т. э. всегда вносит нек-рый вклад в скорость р-ции, однако этот вклад существен только при низких т-рах, когда надбарьер-ный переход из исходного состояния в конечное маловероятен из-за низкой заселенности соответствующих уровней энергии. Т. э. проявляется в неаррениусовском поведении скорости р-ции характерный пример - рост цепи при радиационно-инициированной полимеризации твердого формащ.-дегида. Скорость этого процесса при т-ре ок. 140 К удовлетворительно описывается законом Аррениуса с энергией активации 0,1 эВ. Однако при т-рах 12 К достигается скорость р-ции, к-рая не зависит от т-ры, определяется Т, э, и оказывается на много порядков выше скорости, к-рую можно было бы ожидать при той же т-ре в предположении справедливости надбарьерного механизма р-ции (см. Криохимия). [c.18]

    В третьей главе рассмотрены вопросы, касающиеся описания процесса удара с точки зрения классической механики, описаны типичные черты удара. Указывается, что процесс удара может быть описан как с точки зрения волнового подхода, предложенного Сен-Венаном, так и локального , предложенного Герцем, а все современные подходы являются либо развитием этих подходов, либо их комбинацией. Подчеркивается, что применимость к процессам измельчения и механической активации локального подхода ограничивается скоростями соударений порядка 1-5 м/с, а использование волнового подхода к описанию последствий удара в частицах малых размеров затруднительно. Рассмотрены процесс измельчения и механической активации, различные механизмы возникновения напряжений при механическом воздействии на частицы твердого тела, особенности ударных воздействий и характер искажений структуры при обработке веществ в современных измельчительных устройствах различного типа. Анализ современных работ показал, что особенности механической активации веществ в таких энергонапряженных измельчительных устройствах. [c.11]

    Спиновое взаимодействие между протонами обусловливает магнитную поляризацию промежуточного электронного облака, как это указывалось на стр. 289. Взаимодействие между протонами и электронами может происходить по различным механизмам (Рамзей [52]) с участием магнитных моментов, связанных как с орбитальным движением электронов, так и с электронным спином, но, по-видимому, только один из этих факторов является достаточно существенным для объяснения наблюдаемой величины взаимодействия. Речь идет о влиянии электронного спина, известного под названием фермиевского или контактного взаимодействия, поскольку оно зависит от плотностей электронных спинов у про.тонов. Величина константы связи может быть вычислена методом возмущений второго порядка [52], согласно которому возбужденные триплетные состояния вводятся в волновую функцию молекулярных электронов, или путем дальнейщего приближения, для чего средняя величина энергии возбуждения берется непосредственно из волновой функции основного состояния. Именно так сделал Рамзей в случае молекулярного водорода, использовав функцию Джемса — Кулиджа. Было использовано произведение атомных орбит по Гейтлер-Лондону [33] Карплус и сотр. [61, 62, 119] рассчитали приближенным методом величины ряда валентных связей. Эти данные позволили получить теоретическое значение константы связи в метане, равное 10,4 1,0 гц константа связи, определенная по расщеплению спектра H3D, составляет 12,4 1,6 гц. Кроме того, предсказано, что константа связи J между протонами внутри метиленовой группировки [61]является чувствительной функцией угла связи Н—С—Н зависимость такова, что J уменьшается от величины примерно 20 гц при валентном угле 105° до нуля с расщирением угла примерно до 125° при более щироких углах можно ожидать появления небольших отрицательных значений J. Число молекул, для которых точно известен валентный угол Н—С—Н, весьма ограниченно в тех случаях, когда эти углы известны, экспериментальные данные согласуются с вычисленной кривой. В частности, в отнощении двух геминальных водородов в винилиденовой груп--пе>С = СН2 можно предсказать, что они взаимодействуют очень слабо (7 S1 гц), так как центральный атом углерода является- хр -гибридизованным, а угол Н—С—Н велик константы связи поэтому малы, что согласуется с экспериментальными данными. [c.307]


Смотреть страницы где упоминается термин Волновой механизм: [c.300]    [c.139]    [c.36]    [c.87]    [c.49]    [c.309]    [c.397]    [c.87]    [c.364]   
Общая химия (1974) -- [ c.107 , c.111 , c.123 , c.139 , c.275 , c.276 , c.277 , c.278 , c.279 , c.280 , c.281 , c.282 , c.284 , c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм s-волнового перерассеяния



© 2025 chem21.info Реклама на сайте