Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение алкенов

    Необходимая концентрация серной кислоты при гидратации органических соединений зависит от их строения. Так, например, для гидратации этилена применяется 98%-ная серная кислота, для пропена и бутена — 75—85%-ная, для изобутилена — 50— 60%-ная. Такое различие в условиях гидратации алкенов используется для их разделения. [c.158]

    Растворы для разделения алкенов. Для разделения этена, пропена и бутена на фракции при отсутствии окиси углерода используют достаточно удовлетворительно растворы серной кислоты различной крепости в присутствии сернокислого серебра и сернокислого никеля в качестве катализатора. Эти растворы следующие серная кислота плюс 10% воды, серная кислота обычной концентрации (удельный вес 1,84) и серная кислота обычной концентрации, содержащая 10% дымящей серной кислоты (20% избытка ЗОд), Все эти растворы насыщены сернокислым никелем и сернокислым серебром. Первая смесь служит для поглощения бутена, вторая — пропена и третья — этена. Эти растворы частично поглощают высшие ал-каны, пары бензола и некоторое количество окиси углерода. Отсюда следует, что эти смеси не пригодны для употребления в обычных условиях в поглотительной аппаратуре. При наличии окиси углерода удовлетворительные результаты были получены при пропускании газа через серную кислоту удельным весом 1,62 для поглощения бутена, через серную кислоту удельным весом 1,70 — для поглощения пропена и через обычную кислоту, содержащую 10% дымящей серной кислоты, —для поглощения этена. Действие этих кислот несколько замедленно, и разделение бутена и пропена происходит не очень точно. [c.123]


    Для разделения алкенов и алканов применяют экстракционную перегонку, т. е. перегонку с третьим компонентом, которым является вещество, более быстро кипящее, чем разделяемые соединения. В присутствии этого третьего вещества температуры кипения алкенов и алкадиенов поднимаются и отделение их от алканов облегчается. Расположение компонентов бутан-бутеновой фракции в обычных условиях и в присутствии третьего компонента (здесь взят фурфурол, температура кипения 161,7° С) по температурам выкипания показано в табл. 57. [c.347]

    Наибольшее значение для разделения углеводородов и анализа нефтяных фракций имеет комплексообразование с мочевиной и тиомочевиной [32, 145]. Мочевина применялась для выделения ундекана из фракции 177—200°С, нормальных алканов С13 — С17 из деароматизированной фракции 230—300°С, из масляной фракции нефти Понка, для очистки их концентратов Сц, С13 —С18, а также для очистки 1-алкенов С12, С14, С15 линейного строения с целью получения стандартных углеводородов [4]. [c.73]

    Другие исследователи для отделения этена от более тяжелых алкенов рекомендуют 87%)-ную серную кислоту. Эта кислота поглощает пропен и более тяжелые алкены, а этен почти не затрагивает. Для лучшего разделения некоторые авторы рекомендуют добавлять в серную кислоту сульфаты серебра и никеля, являющиеся в этом процессе катализаторами. [c.174]

    Эффективность разделения алкенов С5 на синтетических цеолитах проверяли в динамических условиях (диаметр адсорбера 13 мм, длина слоя сорбента 270 мм). Для каждого опыта на основании данных хроматографического анализа проб рафината строили выходные кривые, по которым рассчитывали длину зоны массопередачи и динамическую актив- [c.276]

    Выше уже отмечалось, что снижение парциального давления углеводородов С4 и С5 при их дегидрировании теоретически должно приводить к существенному повышению выхода целевого диена. Так, термодинамический расчет показывает, что если при атмосферном давлении максимально возможное количество изопрена в продуктах дегидрирования изопрена при 600 °С составляет всего лишь около 10%, то при давлении 0,02 МПа эта величина превышает 30%. Важность этого результата становится еще более очевидной, если учесть сложность и энергоемкость системы разделения алкан-алкен-алкадиеновых смесей. Но несмотря на то, что и с практической точки зрения осложнено как сооружение, так и эксплуатация промышленной установки, работающей при высокой температуре под вакуумом, параллельно с разработкой дегидрирования при атмосферном давлении ЕО многих странах велись исследования в направлении создания технологии дегидрирования при пониженном давлении. Было найдено, что алюмохромовые катализаторы, успешно применяющиеся для дегидрирования алканов и алкенов, весьма эффективны и при работе под вакуумом. Технически приемлемый выход диенов наблюдается при использовании как стационарного, так и псевдоожиженного слоя катализатора. Естественно, что в соответствии с результатами термодинамического расчета, продукты реакции содержат как непревращенный алкан, так и довольно значительное количество олефинов. Однако в этом случае не требуется выделять все эти вещества в чистом виде после выделения диена продукты дегидрирования практически полностью возвращаются в реакторный узел. [c.356]


    В отличие от попутного нефтяного газа газы крекинга содержат значительное количество (до 40% об.) алкенов от этилена до бутиленов. Разделение крекинг-газа на фракции совмещается с процессом стабилизации крекинг-бензина, то есть процессом извлечения из него растворенных газообразных углеводородов. Подобная переработка крекинг-газа и крекинг-бензи-на осуществляется на газофракционирующих установках (ГФУ) конденсационно-компрессионного или абсорбционного типа. На рис. 9.4 представлена принципиальная схема этого процесса, а на рис. 9.5 приведена технологическая схема ГФУ [c.200]

    Имеется, однако, несколько способов разделения простейших алкенов с помощью брома и серной кислоты определенной концентрации. [c.140]

    Цеолиты уже нашли применение для извлечения алкенов из их смеси с алканами, извлечения нормальных алканов из смесей их с алканами изостроения и цикланами, для очистки от сернистых соединений и осушки различных нефтепродуктов и нефтяных газов, а также для разделения многих других вешеств. [c.409]

    Применяются также камерные (башенные) реакторы. В них катализатор размещают в несколько слоев высотой от 1,5 до 3,0 м. Водяное охлаждение здесь не применяют. Чтобы предотвратить перегрев катализатора, а следовательно, и ухудшение его работы, возвращают в систему для рециркуляции часть углеводородов, прошедших через реакторы. Возвращаемая углеводородная смесь с малым содержанием алкенов разбавляет исходное сырье, понижает в нем концентрацию алкенов и обеспечивает поддержание температуры процесса на заданном уровне. Система работает в этом случае так реактор разделен на отдельные зоны в промежутки между этими зонами впрыскивается жидкий отгон из дебутанизатора. [c.272]

    Особенностью технологии производства сульфонола из алкенов является аппаратурное оформление стадии разделения алкилатов и выделения целевой фракции (рис. 3). [c.52]

    Избирательная реакционная способность. Поскольку скорость взаимодействия энантиомеров с хиральными соединениями различна, иногда удается осуществить частичное разделение, остановив реакцию до ее завершения [93]. Этот метод подобен асимметрическому синтезу, о котором говорилось в разд. 4.10. Наиболее важной областью применения этого метода [94] является разделение рацемических алкенов при обработке оптически активным диизопинокамфилбораном, ибо незамещенные алкены с трудом поддаются превращению в диастереомеры. [c.161]

    Экстрактивная ректификация редко используется при разделении нефтяных фракций для последующего их анализа, но широко применяется в промышленности для выделения и очистки алкенов, алкадиенов (бутадиена, изопрена), а также для выделения аренов (бензола и его гомологов, стирола) из продуктов пиролиза и каталитического риформинга нефтяных фракций. [c.78]

    Алкены несколько лучше растворяются в селективных растворителях, чем алканы с тем же числом углеродных атомов, что создает принципиальную возможность их разделения экстракцией. Однако растворимость углеводородов н полярных растворителях снижается н гомологических рядах с увеличением молекулярной массы. Поэтому н смесях широкого фракционного состава растворимости алкенов и алканов взаимно [c.90]

    Изомеры положения в алкенах достаточно сложного строения обычно значительно различаются по термодинамической устойчивости. В кинетически контролируемых реакциях часто образуются термодинамически неустойчивые изомеры алкенов. Их последующая изомеризация под действием катализаторов на основе переходных металлов во многих случаях является удобным способом получения термодинамически устойчивых изомеров. Внутренние линейные алкены термодинамически более выгодны, чем терминальные, однако различие в термодинамической стабильности невелико и каталитическая изомеризация приводит к смеси изомеров. В принципе можно непрерывно удалять один из изомеров из смесн взаимопревращающихся алкенов, однако различие в физических свойствах изомеров как правило не настолько велико, чтобы их разделение можно было осуществить на практике. Однако в некоторых случаях разделение можно осуществить селективным связыванием одного из изомеров в виде производного , что выводит его из равновесной смеси и сдвигает реакцию в сторону образования производного этого изомера. Так, в промышленном катализируемом кобальтом гидроформилировании внутренних алкенов образуется значительное количество линейных альдегидов [схема (5.1)] [1]. [c.172]

    Наибольшее значение для разделения углеводородов и анализа нефтяных фракций имеет комплексообразование с мочевиной и тиомочевиной. Мочевина применяется для выделения нормальных алканов С 13-С 17 из деароматизированной фракции 230-300 °С, из масляной фракции нефти для очистки их концентратов Сц, 13- 18, а также для очистки 1-алкенов Сп, Си, С]5 линейного строения с целью получения стандартных углеводородов. [c.39]


    Для разделения полярных молекул меньших размеров (газов) часто применяют катионированные цеолиты, например цеолит NaX. Так, разделение углеводородов С4 на капиллярных колоннах, заполненных цеолитом NaX и BaS04, значительно лучше, чем на капиллярных колоннах с ГТС, однако последовательность выхода алкенов из колонн с NaX и BaS04 различна. Разделение на непористой соли происходит более четко. В случае микропористого цеолита с сильно искривленной внутренней поверхностью энергия межмолекулярного взаимодействия с адсорбентом зависит как от электрических моментов молекулы, так и от геометрии молекулы и размера соответствующего ребра большой полости цеолита [53]. Адсорбционные свойства таких микропористых солей, как цеолиты, рассмотрены во множестве работ, сборников и монографий [1, 3, 5]. Ионный обмен и декатионирование позволяют регулировать селективность цеолита. Размеры окон, соединяющих полости цеолитов типа А, в зависимости от вида катиона, изменяются от 0,4 до 0,5 нм, поэтому цеолиты этого типа часто применяют в хроматографии для поглощения и разделения молекул самых малых размеров [54], для молекулярно-ситовой хроматографии, а также для осушки газов-носителей и жидких элюентов. Цеолиты типа X используют для разделения низших углеводородов. Однако разделение алкенов С4 требует повышения температуры колонны до 200 °С, тогда как на BaS04 они полностью разделяются за 3 мин уже при 50 °С [50]. [c.26]

    При нанесении монослоев на ГТС сильно снижается энергия неспецифических взаимодействий, поскольку поверхностная концентрация силовых центров в среднем уменьшается (межмолекулярные расстояния значительно больше длин химических связей). Вместе с тем адсорбционное модифицирование плотными монослоями органических веществ (от углеводородов до соединений, способных к комнлексообразованию) позволяет в очень широких пределах изменять химический состав поверхности, соответственно изменяя ее селективность. Так, модифицируя поверхность молекулами, содержащими электроноакцеп-торные группы (например, нитрогруппы тетранитрофлуоренана), можно получить высокую селективность разделения алкенов и ароматических углеводородов. По существу адсорбционное мо- [c.30]

    В гомологическом ряду цис- и гракс-изомеров алкенов наблюдаются линейные зависимости log i и —Ai7i от числа углеродных атомов в молекуле п [36, 37]. Соответствующие данные приведены в книге [1]. грснс-Изомеры алкенов более выгодно располагаются на поверхности ГТС по сравнению с г ис-изомерами. Исследовалось также [19, 36] удерживание на ГТС цис- и гранс-изомеров разных алкадиенов и алкенов благодаря различию в расположении звеньев их молекул на плоской поверхности все они разделяются на ГТС, причем первыми выходят г ыс-изомеры. На рис. 3.5 представлена хроматограмма разделения алкенов и алкадиенов состава С5. Как видно из хроматограммы, первым выходит из колонны с ГТС пентадиен-1,4, имеющий две двойные несопряженные связи, затем пентен-1 и, наконец, цис- и гранс-пентадиены-1,3 с сопряженными двойными связями [36]. [c.35]

    В. С. Виноградова, Л. С, Кофман [11] резделили изомер-иыс алканы п н-алканы состава С4—С5 при по.мощи синтенп-ческого цеолита СаА. Авторы предполагают, что возможно пра.чтически выделить 100% изопентана из смеси с и-пента-ном или 100% изобутана из смеси с н-бутаном. Они отделили изобутилен от цис- и транс-бутен-2. По данным авторов [11], синтетический цеолит СаА может быть применен также для разделения стереоизомерных алкенов состава С4—Сд. [c.192]

    Сущность экстракционной перегонки заключается в том, что весьма близкая к единице величина коэффициента относительной летучести компонентов системы, характеризующая в данном случае особую трудность их разделения, претерпевает, в присутствии надлежащим образом подобранного растворителя, серьезное изменение, заметным образом отклоняясь от единицы и тем самым, создавая сравнительно более благоприятные условия для разделения исходной системы на ее практически чистые составляющие. Так, например, на установках каталитической дегидрогенизации н-бутана с целью получения бутенов, фракция продуктов реакции в основном состоит из неразложившегося н-бутана, бутена-1 и высоко- и низкокипящего изомеров бутена-2. При этом отделение бутенов-2, особенно же низкокипящего их изомера, от н-бутана методами обычной ректификации практически неосуществимо. Если же в колонну ввести специальный высококипящий растворитель, например, фурфурол, фенол или ацетон, то разделение этих же компонентов оказывается вполне возможным. Объясняется это тем, что в обычных условиях летучесть н-бутана (4ип = — 0,5° С), отнесенная к летучести низкокипящего изомера бутена-2 (4ип = 0,9° С) составляет К = 1,0125. Если же рассмотреть коэффициент относительной летучести этих же веществ в присутствии растворителя—фурфурола, то оказывается, что он доходит до АГ= 1,7, т. е. значительно возрастает и тем самым значительно облегчается разделение этих веществ в ректификационной колонне. Разница в летучестях н-бутана и бутенов в условиях экстракционной перегонки объясняется различной растворимостью алканоз и алкенов в растворителях типа фурфурола, фенола или ацетона. [c.154]

    Карбонаты алкенов 338 Керилбензол 397 Кетоны 309, 757 Кислотно-щелочная очистка 129 Кислоты карбоновые 361 Клатратные процессы разделения 20, [c.710]

    Выделение фракций С2, Сз, С4 и юлучение концентрированных алкенов. Разделение газов пиролиза на узкие углеводородные фракции и выделение из них концентрированных алкенов проводится ректификацией. Примерные условия газоразделения и средние коэффициенты относительной летучести ср ключевых пар компонентов приведены в табл. 9.4. [c.171]

    Для каждой области температур кипения анализируемых. веществ существует оптимальная пористость адсорбента для разделения низкокипящих, наиболее слабо сорбирующихся газов нужно использовать силикагели с высокой удельной поверхностью и средним диаметром пор не более 2 нм, для анализа углеводородных газов с температурой кипения не выше 10 °С — силикагели с диаметром пор 5—20 нм и для разделения более высококипящих углеводородов — соответственно более крупнопористые силикагели [36]. Модифицирование неоднородных крупнопористых силикагелей гидроксидом калия, поташом или силикатом калия приводит к уменьшению асимметрии пиков и повышению селективности разделения углеводородов j-С4 [37]. В качестве адсорбентов с полярной поверхностью, селективных по отношению к алкенам, используются также оксид алюминия [38] и цеолиты [39—40]. Полное разделение неуглеводородных компонентов газов нефтепереработки проведено на цеолите в режиме программирования температур 50—300°С [4.3]. [c.115]

    По той же причине наблюдаются различия в величинах удерживания для определенного спирта при применении диоктилсебацината, динонилфта-лата, дибутилфталата и трикрезилфосфата. Неподвижные фазы типа сложных эфиров обладают средней растворяющей способностью по отношению к алканам, простым и сложным эфирам, кетонам, меркаптанам и тиоэфирам. Благодаря их электроне акцепторным свойствам наблюдается также сильное взаимодействие с донорами электронов, например с олефинами, ароматическими углеводородами и гетероциклическими соединениями, но селективность отделения алкенов от алканов незначительна она немного возрастает в последовательности диоктилсебацинат — динонилфталат — дибутилфталат — трикрезилфосфат (см. табл. 1). Вообще можно установить, что селективность не особенно сильно выражена и для других гомологических рядов вследствие одновременного присутствия арильных и алкильных групп (которые обусловливают растворяющую способность по отношению к углеводородам) и карбоксильных или фосфатных групп (которые способствуют растворению кислородных соединений). Исключение составляет лишь разделение галогенопроизводных углеводородов, протекающее, впрочем, в случае сложных эфиров не хуже, чем на многих других неподвижных фазах, например нитрил-силиконовых маслах (Ротцше, 1963). При температурах выше 120° при исследовании спиртов и аминов следует быть осторожным вследствие возможности химических реакций с неподвижной фазой. [c.202]

    Никелли (1962) объединил эти преимущества с достоинствами метода программирования температуры и показал эффективность такой комбинации на весьма убедительном примере. Он разделил менее чем за 40 мин смесь спиртов, алканов и алкенов, содержащую более 30 компонентов, в интервале температур кипения 50—400°. Вое компоненты без исключения хорошо разделялись между собой и давали острые пики, поддающиеся точному количественному расчету. Для разделения применялась колонка длиной 1,5 ж, заполненная стеклянными микрошариками с 0,5% карбовакса 20 ООО в качестве неподвижной фазы. Диаметр микрошариков составлял 0,2 мм. Эмпирически были определены оптимальная скорость газа-носителя (50 мл гелия в 1 мин) и скорость нагрева (9 град мин). Начальная температура равнялась 55° применяемая аппаратура не позволяла ее понизить. [c.412]

    Полузаводские испытания убедительно доказали широкую применимость процесса и для других целей, помимо производства алкенов и диенов 04. Так, дегидрированием пропана можно получать пропилен, а изобутапа — изобутилен. Типичные показатели для такого использования процесса приведены в табл. 8 и 9. Здесь указаны расчетные выходы продуктов для промышленной установки, вычисленные на основании полузаводских испытаний. Дегидрирование пропана и изобутапа проводили в условиях, близких к условиям дегидрирования к-бутана. Поэтому можно считать, что существующие установки дегидрирования легко можно использовать для производства других алкенов при условии соответствующей реконструкции секции разделения и очистки продуктов. Из табл. 8 и 9 видно, что пропилен и изобутилен можно получать из соответствующего парафипистого сырья с чрезвычайно высокой избирательностью. Это достигается главным образом вследствие того, что нри обычных условиях проведения процесса оба эти алкена в весьма малой степени вступают в побочные реакции. [c.293]

    Мы сохранили основное построение первого издания по классам с разделением на алифатические и ароматические соединения. Такое построение представляется рациональным, поскольку оно дает возможность студенту познакомиться поочередно с каждым типом структур. Кроме того, оно логично, поскольку зависимость свойств вещества от его строения, а следовательно, от принадлежности к определенному классу, является основой органической химии. Так, при изучении алканов студент естественно знакомится с реакциями свободнорадикалького замещения, при изучении алкенов — с реакциями электрофильного и свободнорадикального присоединения, при изучении ареиоБ — с реакциями электрофильного замещения в ароматическом ряду. [c.7]

    Показано, что константа общей скорости реакции присоединения брома к пентену-1 в зависимости от полярности растворителя может изменяться в 0 ° раз ( ) [81J. Такой колоссальный эффект растворителя (а также некоторые другие экспериментальные факты) считался убедительным свидетельством в пользу того, что данная реакция протекает по так называемому механизму АднС1, который включает существенное разделение зарядов на стадии образования активированного комплекса. Показано также, что протонные растворители ускоряют эту реакцию присоединения за счет специфической сольватации анионного центра активированного комплекса [81]. Кроме того, оказалось, что в стадии, определяющей скорость бромирования алкенов, небольшую специфическую роль играет нуклеофильность растворителя [513]. Следует отмётить также, что растворитель сильно влияет не только на скорость, но и на стереоспецифичность реакций присоединения галогенов к алкенам (см. разд. 5.5.7) [79, 81]. [c.222]

    На схеме 2.1 представлен механизм действия комплексного катализатора - три-хлорида титана с тризтилалюминием при полимеризации алкенов в среде инертного углеводорода в отсутствии кислорода (кислород отравляет катализатор и снижает его активность). Трихлорид титана и триэтилапюминий образуют комплекс (а). При добавлении катализатора в полимеризационную систему молекула мономера СНз=СНХ координируется у атома титана с образованием Л-комплекса и соответственно поляризуется. После разделения зарядов одна из связей в комплексе разрушается, в структуру каталитического комплекса входит молекула мономера и образуется шестичленный цикл (6). Последний регенерируется в четырехчленный цикл (в), в котором атом углерода мономера соединен с атомами титана и алюминия, а исходная этильная группа удаляется из цикла вместе с другим атомам углерода алкена. При добавлении следующих молекул мономера процесс идет аналогично и происходит вытеснение образую-щ йся полимерной матрицы вместе с этильной группой катализатора, находящейся на конце полимерной цепи. Таким образом, при координационной полимеризации обеспечивается строгий стереоспецифический катализ и соответственно регулярное строение полимера. [c.36]

    В то же время ХНФ на основе комплексов металлов пригодны для разделения соединений со значительно меньшей полярностью, а следовательно, и большей летучестью. Поскольку способность к координации с атомом металла обнаружена даже у простых алке-нов, не говоря уже о других соединениях с электронодонорными орбиталями (простые и сложные эфиры, тиоэфиры, и т. д.), многие соединения можно разделять, не переводя их в какие-либо производные. Это означает, что такие колонки часто могут успешно эксплуатироваться при относительно низких температурах. Как будет показано в дальнейшем, капиллярные колонки с ХНФ такого типа наиболее пригодны для анализа газовой фазы (например, при изучении синтеза хиральных алкенов). Кроме того, они весьма полезны при исследовании различных хиральных ферромонов. [c.98]

    Разделение нефтяных фракций на группы компонентов по химическому строению, выделение из продуктов нефтепереработки- аренов, алкенов, алкадиенов и алкинов ректификацией как правило, малоэффектинно и часто практически невозможно из-за близких температур кипения компонентов и образования азеотропов. Например, бензол образует азеотропы с циклогек-саном, циклогексепом, метилциклопентаном, алканами С изо- [c.74]

    В промышленных процессах нефтепереработки алкены получаются в смеси с алканами. Их свойства заметно различаются, что используется при разделении смесей и выделении индивидуальных соединений. 1-Алкены нормального строения имеют более низкую температуру кипения и плавления, чем со-ответствуюш,ие алканы, но более высокую плотность и показатель преломления, как это видно на примере пентана и 1-пен-тена (табл. 10.3). Разветвленные алкены имеют значительно более высокие температуры кипения и плавления, а также более высокую плотность, чем остальные изомеры. цис-Изомеры алкенов характеризуются более высокой температурой кипения, чем гранс-изомеры. [c.262]

    Углеводородный газ содержит 75—90 % фракции Сз—С4. Его используют после разделения в процессах алкилирования, полимеризации, для производства этилена, пропилена, бутадиена, изопрена, полиизобутилена, ПАВ и других нефтехимических продуктов. Бензиновую фракцию (к. к. 195 °С) применяют как базовый компонент автомобильного бензина. Она содержит аренов 25—40, алкенов 15—30, циклоалканов 2—10 и алканов., преимущественно изостроения, 35—60 % (масс.). Октановое число фракции составляет 78—85 (по моторному методу). [c.344]

    Хотя резонансные эффекты непросто отделить от индукционных э<М>ектов и эф(йктов гибридизации, они также влияют на химические сдвиги. Так, относительные химические сдвиги протонов соединений 4.6 и 4.7 можно объяснить, обратившись к классическим формулам с разделенными зарядами. О влиянии резонансных эф< ктов свидетельствуют также данные, приведенные в приложении 4.16.1, особенно в таблицах расчета химических сдвигов протонов в алкенах и ароматических соединениях, которые содержат заместители, об- [c.84]

    Поскольку первые члены гомологического ряда алкенов до бутилена газообразны, а следующие легколетучи, их подвергают хроматографическому разделению в форме нелетучих ртутных соединений. Наиболее стабильными являются продукты присоединения ацетата ртути. [c.189]

    Иную картину разделения к-моноолефинов С —С з получают [167 ] (см. приложение 1) при хроматографировании в стальной капиллярной колонке дллной 80 м и внутренним диаметром 0,25 мм с нанесенным динамическим методом полиэтиленгликолем 4000 (в виде 10%-ного раствора в хлороформе) детектор — пламенноионизационный, газ-носитель — азот, объем пробы — до 1 мкл при делении потока 1 200 эффективность колонки по н-нонану составляет 134 400 теоретических тарелок. При 80 и 100 °С происходит полное разделение изомеров к-моноолефинов С,— С гг за исключением групп транс-4+транс-5-алкенов, цис-5-+транс-3-алкенов, цис-4- + транс-3-ундеценов, транс-4—[-транс-6-додеценов, не отделяются к-алкены-1 от других изомеров.,  [c.67]


Смотреть страницы где упоминается термин Разделение алкенов: [c.82]    [c.213]    [c.4]    [c.183]    [c.386]    [c.502]    [c.502]    [c.446]    [c.110]    [c.255]    [c.79]   
Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Алкены



© 2024 chem21.info Реклама на сайте