Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация со-Полимеризация

    С4-фракции окислительного дегидрирования бутенов отличаются низким содержанием ацетиленовых и алленовых соединений, отрицательно влияющих на полимеризацию бутадиена [26]. Выделение из них бутадиена может осуществляться любым известным методом без предварительной очистки фракции от ацетиленовых соединений. Очистка выделенного бутадиена от ацетиленовых и алленовых примесей, в соответствии с требованиями стереоспецифической полимеризации, может быть легко достигнута как обычной, так и экстрактивной ректификацией. [c.687]


    Реакции полимеризации. Полимеризацией альдегидов называется реакция соединения нескольких молекул альдегида с образованием более крупной молекулы, причем остатки молекул в полимере связываются через атом кислорода (описанная в предыдущем пункте реакция конденсации альдегидов отличается от реакции полимеризации тем, чт,о отдельные молекулы связываются друг с другом путем непосредственного соединения атомов углерода). [c.92]

    К регуляторам М и ММР предъявляются требования высокая эффективность (скорость реакции регулятора с полимерной цепью должна превышать скорость реакции с мономером), небольшой расход, отсутствие отрицательного влияния на скорость полимеризации и свойства полимера. Указанным требованиям отвечают отдельные представители дисульфидов и меркаптанов, Из числа дисульфидов наибольшее распространение в производстве бутадиен-стирольных каучуков при температуре полимеризации 50°С получил диизопропилксантогендисульфид (дипроксид), имеющий высокую константу скорости реакции переноса цепи [4, 5]. Из меркаптанов наиболее известны додецил- или лаурилмеркаптан, трет-додецилмеркаптан, применяемый в производстве бутадиен-стироль-ных каучуков при температуре полимеризации 5°С [6]. [c.246]

    Реакция полимеризации этилена и других олефинов в полиолефины под влиянием катализаторов, содержащих алюминий-алкилы или другие металлоорганические соединения, гидриды металлов и галогениды титана, протекает по цепному ионному механизму. Механизм этой реакции относится к анионной полимеризации, которая инициируется металлоорганическими соединениями или гидридами щелочных металлов — донорами электронов. Необходимость наличия в каталитической системе, помимо А1(Б)з, еще ТЮ14 или Ti lз несколько осложняет представление о механизме реакции. Механизм анионной полимеризации в присутствии алкилов металлов, например триэтилалюминия, описывается следующей схемой  [c.76]

    Полимеризация в растворе происходит в среде, служащей растворителем и для мономера и для образующегося иолимера. Присутствие растворителя способствует быстрому отводу тепла, что облегчает регулирование температурного режима процесса и, следовательно, позволяет повысить скорость полимеризации. Во многих случаях молекулы растворителя принимают участие в реакции передачи цепи, вызывая прекращение роста макромолекул, т. е. снижение среднего молекулярного веса образующегося полимера, "Удаление растворителя из полимера представляет значительные трудности, поэтому полимеризацию в ])астворе проводят преимущественно в тех случаях, когда для последующего использования требуется хороию растворимый полимер. [c.91]


    Простая количественная модель дисперсионной полимеризации была развита на основе представлений о процессе, изложенных ранее (стр. 198). После того как в начально однородной реакционной смеси образуются частицы полимера, они абсорбируют мономер из фазы разбавителя и в последующем полимеризация развивается в объеме частиц в соответствии с закономерностями кинетики полимеризации в массе. Высокая вязкость набухших в мономере частиц сильно тормозит обрыв радикалов и обусловливает, соответственно, возрастание их концентрации, что увеличивает скорость полимеризации вследствие гель-эффекта. Уменьшение скорости обрыва делает также возможным сосуществование многих радикалов в пределах одной частицы полимера. Возникающие в фазе разбавителя радикалы быстро захватываются существующими частицами, прежде чем дорастают до размеров, больших нескольких мономерных единиц. Соответственно, инициирование может рассматриваться так, как если бы весь инициатор был сосредоточен в частицах, даже если известно, что используемые типы инициатора распределяются между частицами полимера и разбавителем. [c.205]

    Реакцию полимеризации можно представить как результат раскрытия двойных связей в множестве молекул непредельного соединения (в данном случае этилена) и последующего соединения этнх молекул друг с другом в одну гигантскую макромолекулу. Величина п выражает степень полимеризации — указывает число мономерных звеньев, образующих макромолекулу. Начало полимеризации этилена вызывается введением небольшого количества (0,05—0,1%) кислорода. [c.500]

    Механизм реакций, в которых образуются макромолекулярные полимеры, отличается от описанного выше это обусловлено некоторыми характерными особенностями этих реакций. Так, при самопроизвольной полимеризации стирола (без инициатора) при 100° полимер, полученный после нагревания в течение 1 часа (после превращения 2% мономера), и полимер, выделенный почти в конце реакции (после превращения 80% мономера), обладают практически одинаковой степенью полимеризации (около 1900). Таким образом, мономер превращается непосредственно в окончательный полимер. При этом не наблюдается образования полимеров с промежуточными степенями полимеризации в течение всей полимеризации непрореагировавший стирол является чистым мономером. Такие реакции полимеризации можно инициировать облучением ультрафиолетовым светом или добавлением инициаторов и приостанавливать нри помощи ингибиторов. Отсюда следует, что такие реакции являются цепными, протекающими по свободнорадикальному механизму. [c.268]

    Полимеризация этилена при высоком давлении (100—350 МПа,, или 1000—3500 кгс/см ) протекает при 200—300°С в расплаве в присутствии инициаторов (кислорода, органических перекисей). Полиэтилен низкого давления получают полимеризацией этилена под давлением 0,2—0,5 МПа (2—5 кгс/см ) и температуре 50— 80 °С в присутствии комплексных металлоорганических катализаторов (триэтилалюминия, диэтилалюминийхлорида и триизобутил-алюминия). Полиэтилен среднего давления получают полимеризацией этилена в растворителе при давлении 3,5—4,0 МПа (35— 40 кгс/см ) и температуре 130—170 °С в присутствии окислов металлов переменной валентности, являющихся катализаторами (окислы хрома, молибдена, ванадия). В качестве растворителей применяют бензин, ксилол, циклогексан и др. [c.104]

    При низкой степени полимеризации сырья полимеры состояли почти из чистой димерной фракции, при полимеризации на 50% две трети полимера составляла димерная фракция, а лри почти полной полимеризации сырья она составляла от 35 до 40 % от суммарного количества полимера. Из сказанного видно, что летучесть полимеров из нормальных олефинов можио контролировать путем изменения глубины полимеризации сырья, т. о. в непрерывном процессе, изменением коэффициента рециркуляции. Эти результаты находятся в резком противоречии с данными [24, 22 Ь]. которые были получены при применении 100 %-ной фосфорной кислоты как катализатора при полимеризации пропилена из пропилена нри этом образовалось сравнительно небольшое количество димера, а полимер состоял главным образом из тримеров. [c.195]

    В присутствии в качестве инициаторов перекисей при нагреве 1 давлении этилен подвергается экстенсивной полимеризации. Полимеризация олефинов такого типа, проходящая по механизму Свободных радикалов, обычно дает продукты с высоким молекулярным весом, такпе как полиэтилен. [c.110]

    Специфические сшитые структуры образуются в условиях, когда критическая плотность разветвлений достигается в объеме, по тем или иным причинам ограниченном коллоидными размерами. Например, при эмульсионной полимеризации образуются структуры, сшитые в пределах одной латексной частицы — микрогель. Такие образования могут иметь молекулярные массы порядка 10 —10 и значительную плотность сшивки (р 10 ). Микрогель особого строения образуется в некоторых случаях при полимеризации в растворах под действием гетерогенных катализаторов. Образование такого микрогеля связано, по-видимому, с сорбцией растущих или мертвых полимерных цепей на поверхности частиц катализатора с последующим химическим связыванием цепей вследствие катионной активности каталитической системы [18, 19]. [c.26]


    Скорость полимеризации постепенно возрастает даже при неизменных условиях проведения реакции, но после превращения 30—40% мономера в полимер ста1ювится примерно постоянной. В конце процесса (при степени превращения 75—80%) начинается заметное уменьщение скорости полимеризации. Это явление, носящее название гель-эффекта, наблюдается во всех случаях, когда образующийся полимер нерастворим в исходном мономере. Оно объясняется тем, что осаждающиеся мельчайшие частицы полимера погло цают часть мономера и дальнейшая полимеризация протекает в набухших частицах полимера. В такой системе, отличающейся большой вязкостью, скорость обрыва цепей в результате взаимодействия двух макрорадикалов снижается. [c.262]

    Так как при полимеризации на металлическом литии в неполярной среде скорость инициирования чрезвычайно мала, а скорость реакции обмена достаточно велика, в системе содержится очень мало свободных литийорганических соединений и в области низких молекулярных масс степень полимеризации Р определяется формулой  [c.415]

    Полимеризацию циклосилоксанов основаниями сильно ускоряют небольшие добавки многих электронодонорных соединений, в особенности содержащих атомы кислорода или азота, связанные с другими атомами кратной связью, или способных образовывать хелатные комплексы [11, 12, 29]. При полимеризации Д4 силанолятом калия наиболее эффективные промоторы, содержащие группу Р = О, располагаются в следующий ряд по относительной активности [11]  [c.479]

    И др. [54, 55], касающиеся различных систем хлористый алюминий—галогенилалкил. Они представляют существенный интерес благодаря обнаружению необычной зависимости степени полимеризации от условий реакции — концентрации мономера, температуры и природы растворителя. Результаты этих исследований сводятся к следующему. При полимеризации изобутилена в полярных средах с диэлектрической проницаемостью 13—17 характер зависимости степени полимеризации от концентрации мономера непосредственно связан с температурой процесса. Ниже —50° с увеличением концентрации мономера степень полимеризации уменьшается, выше —40° она растет. В промежуточной области найдена температура, при которой Р не зависит от [М]. Эта температура, названная температурой инверсии, лежит для рассмотренных случаев около —45° (рис. 89). Увеличение степени полимеризации с уменьшением концентрации мономера, когда процесс проводится ниже температуры инверсии, отмечается вплоть до концентрации мономера порядка 15 мол.%. Только дальнейшее уменьшение концентрации мономера приводит к нарушению этой зависимости (рис. 90). При полимеризации в неполярных средах зависимость степени полимеризации от концентрации мономера имеет в области низких температур тот же характер, что и в полярных растворителях. С повышением температуры наблюдается тенденция к значительному уменьшению этой зависимости, но явление инверсии отсутствует. Для объяснения обнаруженных особенностей авторы этих исследований делают следующие допущения 1) растущие цепи представляют собой слабо диссоциированные ионные пары (У-ЗО) 2) реакция роста протекает только с диссоциированной формой, причем каждый акт роста приводит к недиссоциированпой ионной [c.329]

    Полиалломеры получаются при последовательной сополимеризации двух мономеров. В этом случае в реактор, содержащий растворитель и катализатор, состоящий из триэтилалюминия с треххлористым титаном в Соотношении А1(С2Н5)з ТЮ1з = 1,5 1, при 70—80° С и давлении 30— 32 ат подается пропилен, в результате чего начинается его полимеризация. Полимеризация проводится до желаемой степени конверсии пропилена, а затем добавляется второй более реакционноспособный мономер, аапример, этилен , в требуемом количестве и тогда завершают полимеризацию. Если второй мономер менее реакционноспособен, чем первый (например, бутен-1), то проводится дегазация реакционной массы для удаления первого мономера, для чего спускается давление. Потом следует продувка азотом, после чего вводится второй мономер. По этому методу был получен полиалломер пропилена с этиленом, пропилена с буте-иом-1, пропилена с бутадиеном, пропилена со стиролом, пропилена с ви-нилхлоридом и пропилена с изопреном. Полиалломеры представляют собой блоксополимеры с кристаллическими участками, состоящими из соответствующих мономеров. Если проводить полимеризацию заранее приготовленной смеси пропилена с этиленом, то блоксоиолимера не ползгчает-ся и остатки мономеров распределены равномерно по всей длине макромолекулы. В этом случае иолучается не кристаллический, а каучукообразный полимер. Инфракрасные спектры сополимера и полиалломера этилена с пропиленом значительно различаются, что говорит о различной их структуре. Интересно отметить, что из методики получения полиалломеров следует, что макроионы, образующиеся при полимеризации, сохраняют свою активность даже при перерыве в полимеризации, что имеет место при дегазации реакционной массы реакция начинается вновь при добавлении нового мономера в реакционную массу, из которой удален первый мономер. [c.100]

    Анализируя полученные экспериментальные данные, можно отметить пропорциональность скорости полимеризации корню квадратному из концентрации инициаторов для всех изученных соединений и закономерное уменьшение молекулярного веса образующихся полимеров при увеличении концентрации инициатора. Однако прн сравнении скорости полимеризации для различных инициаторов не наблюдается закономерного уменьшения молекулярных весов полимеров при увеличении скорости процесса. Так, несмотря на то что скорость полимеризации для перекиси пропионила при 73,5° С выше, чем для перекиси изобутирила при 40° С примерно в два раза, средняя длина полимерной цепи в четыре раза больше при использовании первого соединения. Скорости полимеризации в присутствии перекисей III (85° С) и IV (73,5° С) близки, однако молекулярный вес полимера, образующегося с первой перекисью, примерно в три раза выше. Аналогичная зависимость наблюдается для полимеров, полученных при инициировании перекисями III и V. Эти данные указывают на особенности протекания элементарных реакций, в частности реакции обрыва для перекисей различного строения. По-видимому, при переходе от перекисей с карбокснгруппой, связанной с первичным атомом углерода, к соединениям, в которых эта группа связана с вторичным или третичным углеродом, первичные радикалы вследствие уменьшения активности оказываются способными принимать участие в реакции обрыва (обрыв на первичных радикалах), что приводит к значительному снижению средней длины полимерных цепей. Помимо значений константы скорости инициирования к, полученных из данных по ингибированию, нами были рассчитаны константы скорости инициирования из данных скорости полимеризации и средней степени полимеризации исходя из предположения, что обрыв цепи происходит путем рекомбинации двух растущих радикалов k = vlO,5P , а также при участии первичных радикалов k" = vlP (здесь Р — средняя длина цепи полимера, — концентрация перекисного соединения). Значения этих констант также приведены в табл. 2. Из данных табл. 2 видно, что для перекиси пропионила значения кик совпадают, что говорит об отсутствии обрыва на первичных радикалах. Для перекиси II (и частично для III) значение константы инициирования, полученное из данных ингибирования, лежит между значениями к и к", что указывает на то, что в данном случае [c.475]

    В работах Робертса [926] и Рестайно с сотр. [927] исследована полимеризация акриламида, инициированная радиационным излучением. Полимеризация осуществляется как в твердом состоянии, так и в водном растворе, причем надо отметить, что вообще полимеризация в твердом состоянии под влиянием жесткого излучения впервые была исследована именно на примере полимеризации акриламида. Полимеризацию в твердом состоянии проводят при температурах от —179 до -Ь65 . Кислород не оказывает влияния на скорость полимеризации. Полимеризация в твердой фазе обычно приводит к получению значительно менее разветвленных продуктов, чем при других методах синтеза. Коллинсон, Дейнтон и Мак-Нотон [928] установили, что при полимеризации в водном растворе средняя степень полимеризации пропорциональна (где / — интенсивность поглощенного излучения) и концентрации мономера в первой степени. В присутствии Ре , Си " и Ре " скорость полимеризации уменьшается. Зависимость характеристической вязкости водных рас- [c.586]

    Цепная полимеризация и ее особенности. Соединения, содержащие двойные связи, весьма активны и легко вступают в различные реакции. Но если реакция этилена с хлором протекает самопроизвольно, без посторонних побуждений, с образованием дихлорэтана (С2Н4С12), то при полимеризации их собственной химической активности оказывается недостаточно, необходимо участие особых возбудителей. Активирование молекул этилена можно осуществить повышением температуры, светом, электрическим разрядом, радиоактивным разрядом и т. д. Но наиболее эффективным средством возбуждения реакции полимеризации являются инициаторы и катализаторы. [c.283]

    Внутримолекулярное взаимодействие концевой аминной группы и полипептидного цикла представляет собой интересный процесс обрыва [44, 45]. В результате такой реакции должны образовываться циклические полипептиды, и из продуктов полимеризации NKA в присутствии некоторых апротонных оснований действительно удалось выделить гексамерные циклические полипептиды. Скорость такого обрыва должна зависеть от молекулярного веса полимера, так как вероятность замыкания кольца больше при относительно низкой степени полимеризации DP 4—8), и понижается с увеличением длины полимерной цепи [72,73]. Следовательно, некоторая часть полимерных цепей должна обрьшаться в результате циклизации еще при низких степенях превращения, а молекулы, имеющие длину цепи выше критической, способны расти до достаточной длины, пока не произойдет одна из возможных реакций обрыва. Возможно, такой характер обрыва цепей ответствен за широкое молекулярновесовое распределение (высокое отношение Мщ/Мп) полипептидов, полученных полимеризацией в присутствии апротонных оснований ), а также объясняет постоянную степень полимеризации в последовательных реакциях пост-полимеризации (разд. 7). [c.587]

    Методики проведения свободно радикальной полимеризации. Полимеризацию в лабораторных условиях проводят путем слабого нагревания небольших количеств мономера (самого мономера или его раствора в подходящем растворителе), обычно в присутствии добавленного инициатора, до тех пор, пока реакция не закончится или не пройдет до желаемой сте пени. Имеются детальные описания методики [36, 127] главное внимание должно быть обращено на то, чтобы для реакции брались достаточно малые количества образцов и чтобы поддерживалась достаточно низкая степень полимеризации, чтобы было возможно контролировать температуру реакции. Желательно также по возможности исключить из системы жислород, так как он часто ингибитирует полимеризацию и дюжот вызвать обесцвечивание или другие нежелательные изменения свойств продуктов реакции. [c.119]

    Очень большая константа скорости обрыва цепи ( 10 л моль сек) свидетельствует о том, что фактическая скорость, с которой реагируют два полимерных радикала, приближается к скоростям диффузии молекул в растворе. При полимеризации, проводящейся в неразбавленной массе мономера, это часто ведет к очень интересным последствиям, а именно к тому, что по мере увеличения вязкости системы и повышения запутанности полимерных цепей скорость, с которой растущие цепи могут сближаться, снижается до меньшего значения, чем скорость, при которой они могли бы нормально реагировать снижается и скорость процесса обрыва цепей, который в конце концов начинает контролироваться диффузией. В результате этого кривая скорости для таких реакций полимеризации может быстро расти с увеличением степени превращения. Типичный пример показан на рис. 3. Это явление легко может привести к неуправляемым и почти взрывообразным реакциям, особенно потому, что в вязкой, быстро полимеризующейся системе тепло не может рассеиваться с такой же скоростью, с какой оно выделяется. Правильность этого объяснения, впервые предложенного Норришем и Смитом [116], подтверждается тем, что молекулярные веса полимеров увеличиваются в стадии ускорения полимеризации [ 144], а также путем прямых измерений ki и кр как функции глубины реакции методом вращающегося сектора. Так, например, при полимеризации в массе мономера метилметакрилата к1 может снизиться менее чем до 1% от начального его значения при 35%-ном превра- [c.128]

    Во многих случаях желательно проводить реакции свободно-радикальной полимеризации при комнатной или даже при еще более низких температурах. Ярким примером такого типа является производство синтетического каучука, где наиболее желательными физическими свойствами обладают полимеры, получаемые нри температурах ниже 0°. Обычным методом ипициирования полимеризации при подобных условиях является применение в качестве инициатора такой комбинации реагентов, которая реагирует с образованием свободных радикалов в результате какой-либо окислительно-восстановительной реакции. Исследовано большое количество таких восстановительно-окислительных систем особенно для эмульсионной полимеризации [8, 76]. Одна из таких систем, по-видимому, типичная и довольно подробно изученная, является комбинацией иона двухвалентного железа и перекиси водорода [18]. В разбавленном водном растворе кислоты они реагируют нормально, давая гидроксилы и ионы трехвалентного железа в двухстадипном процессе  [c.135]

    Карбанионная полимеризация. Полимеризация некоторых мономоров, например стирола и диопов с сопряженной системой двойных связей, в присутствии металлического натрия известна давно и фактически была основой для более ранних процессов производства синтетического каучука. Хотя впоследствии этот метод был заменен методом эмульсионной полимеризации, продукты такой натриевой полимеризации продолжают цениться, так как их свойства несколько отличаются от каучука ОВ-З (75]. [c.160]

    Из многих направлений в изучении топографии полимеризации в эмульсиях наиболее признанными являются теория Смита — Эварта и теория Медведева, которые дополняют друг друга. Теория Смита — Эварта в большей степени отражает кинетические особенности изменения дисперсности системы теория Медведева объясняет топографические особенности полимеризации, протекающей в адсорбционных слоях полимер-мономерных частиц. [c.148]

    Начало исследований по синтезу 4-полиизопрена в СССР относится к 1938—1940 гг. В это время Ставнцкий и Ракитянский (ВНИИСК) опубликовали результаты своих работ по полимеризации изопрена в присутствии лития, натрия и их органических соединений. Полученные полимеры характеризовались более высокой эластичностью и прочностью по сравнению с полибутадиеном, хотя свойства НК воспроизвести не удалось. Во время Великой отечественной войны исследования были прекращены и возобновлены в 1948 г. Коротковым. Следует подчеркнуть, что в этот период значительное развитие получили методы свободнорадикальной полимеризации. Полимеризация диеновых углеводородов в присутствии металлорганических соединений за рубежом рассматривалась как малоперспективное направление. [c.200]

    При одном и том же количестве катализатора (10,5-10 моль/л А1С1з) с повышением содержания мономеров в смеси конверсия понижается, а количество бутилкаучука, приходящееся на 1 моль А1С1з, повышается (рис. 3). Зависимость молекулярной массы полимера от содержания мономеров в шихте приведена на рис. 4. Молекулярная масса полимера с изменением концентрации мономеров от 15 до 45% (об.) практически не изменяется или имеет тенденцию к повышению. Такое незначительное изменение молекулярной массы полимера (степени полимеризации) с изменением содержания мономеров в шихте свидетельствует о том, что в этом процессе ограничение растущих цепей молекул полимера происходит главным образом через мономер. Полимер с более низкой молекулярной массой получается при полимеризации шихты, содержащей мономеров 10% (об.) и ниже. Это объясняется, вероятно, тем, что при низком содержании мономеров заметнее проявляется действие примесей в системе, ограничивающих рост полимерной цепи. С повышением конверсии мономеров молекулярная масса бутилкаучука несколько понижается вследствие [c.343]

    В результате проведенных исследований в СССР в качестве эмульгатора была принята натриевая соль сульфопроизводных газойлевой фракции бакинской нефти, подвергавшейся очистке от нефтяных масел и примесей железа. Этот эмульгатор вошел в практику эмульсионной полимеризации хлоропрена для получения каучуков и латексов под маркой СТЭК, обеспечивая достаточную стабильность эмульсии и латексов. СТЭК применялся в эмульсии в сочетании с канифольным мылом, которое способствует повышению стабильности эмульсии в процессе полимеризации. В процессе выделения каучука из латекса, при подкислении, кислоты канифоли выделяются в свободном виде и смешиваются с каучуком, что способствует повышению пластичности и стабильности поли-хлоронрепа и улучшению его обрабатываемости. Вследствие того, что СТЭК не подвергается биологическому разложению, он в настоящее время заменяется, например, на алкилсульфонат натрия — волгонат (очищенные сульфопроизводные низкомолекулярных парафинов), а также на другие более эффективные алкилсульфонаты (например, марка Е-30), которые подвергаются биологическому разложению и позволяют очистить сточные воды. [c.371]

    Полимеризация. Товарные латексы обычно стремятся получить с высокой концентрацией полимера. Это обусловлено как экономическими соображениями, так и качеством получаемых на основе латексов изделий. Обычно продукты эмульсионной низкотемпературной полимеризации после отгонки незаполимеризовавшихся мономеров содержат менее 30% сухих веществ. Средний размер частиц в них составляет 50—150 нм. При концентрировании таких латексов вязкость системы резко возрастает, и при содержании сухих веществ около 50% латекс становится непригодным для переработки. Для получения текучих латексов с высокой концентрацией в процессе полимеризации -необходимо обеспечить образование крупных частиц. Этого можно достигнуть уменьшением концентрации эмульгатора [40], но заметное увеличение размеров частиц (рис, 2) обеспечивается лишь при очень низких концентрациях эмульгатора и соответственно резко пониженной скорости полимеризации (рис. 3) [40]. Для обеспечения стабильности такой системы в промышленности эмульгатор добавляют в процессе полимеризации (например, таким образом получаются латексы низкотемпературной полимеризации типа 2100 или 2105), При этом для достижения конверсии 60% требуется почти 60 ч. В общем получать латексы с большим размером частиц и широким их распределением по величине непосредственно в процессе полимеризации считается непрактичным, хотя имеются сообщения о получении [c.590]

    Наконец, процесс полимеризации олефинов (в рас( матриваемых условиях) без сопутствующей ему деполимеризации или д( струкции также мало пригоден для объяснения механизма снижения содержания олефинов после очистки. Если бы в составе олефинов находились только амилены, а полимеризация прекращалась после образования димеров, то и тогда димеры не вошли в состав фракции с концом кипения 142—143 °С. По этим же сообра-5кениям можно исключить из рассмотрения и процесс алкилирования парафинов олефинами, тем более что протекание такого нроцесса в присутствии алюмосиликатных катализаторов еще не доказано. [c.108]

    Расчеты показали, что для сырья с соотношением изобутан олефин, равным 4, реакция полимеризации почти не протекает вплоть до температуры 100°С и расход на нее олефтана не превышает 1—2%. Инертные компоненты, по крайней мере при содержании их до 30%, не влияют заметно на реакцию полимеризации. [c.39]


Смотреть страницы где упоминается термин Полимеризация со-Полимеризация: [c.57]    [c.42]    [c.649]    [c.68]    [c.162]    [c.150]    [c.147]    [c.857]    [c.326]    [c.129]    [c.131]    [c.133]    [c.105]    [c.370]    [c.475]    [c.95]    [c.51]    [c.177]   
Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.683 ]




ПОИСК







© 2025 chem21.info Реклама на сайте