Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектры как основания, свойства

    Информацию о строении вещества получают на основании изучения его физических и химических свойств. Особую роль при изучении структуры играют исследования спектров поглощения и испускания, дифракции различных излучений, магнитных и электрических взаимодействий, механических, термических, электрических и других характеристик веществ. [c.140]


    Неослабевающий интерес исследователей к изучению структуры и состава комплексов ароматических соединений с катализаторами Фриделя — Крафтса объясняется тем, что выяснение этого вопроса в значительной степени облегчает познание закономерностей электрофильного замещения. Еще в ранних работах на основании изменения в ультрафиолетовых спектрах поглощения было установлено, что ароматические углеводороды при взаимодействии с СЬ, Вгг и Ь образуют комплексы, проявляя при этом основные свойства. Кроме того, было показано, что при растворении НС1 в ароматических углеводородах получаются комплексы состава 1 1, не вызывающие заметных изменений в спектрах поглощения, а в экспериментах с D I обмена с водородными атомами ароматических ядер не происходило. Ароматические углеводороды при взаимодействии с сильными кислотами Льюиса проявляют себя как основания, образуя двойные (ArR—МХ ) и тройные (ArR— MX —НХ) комплексы. [c.79]

    Но при низких температурах у лития и натрия устойчивы более плотные упаковки. Некоторые свойства щелочных металлов приведены в табл. 11. Из этой таблицы следует, что плавление не сопровождается заметным изменением координационного числа г. Расхождения между величинами г в твердой и жидкой фазах не выходят за пределы ошибок опыта. Проводимость уменьшается на 30—40%. Постоянная Холла почти не меняется [17]. Следовательно, состояние почти свободных электронов при плавлении не претерпевает существенных изменений. Замечательны оптические свойства щелочных металлов. Обладая большим коэффициентом поглощения света в видимой области спектра, они прозрачны для ультрафиолетовых лучей. Показатель преломления Б ультрафиолетовом диапазоне меньше единицы. При увеличении атомного номера щелочного металла область длин волн, для которых металл прозрачен, расширяется в сторону видимого спектра. Эти свойства щелочных металлов полуколичественно объясняются теорией, основанной на представлении о почти свободных валентных электронах в металлах. [c.179]

    На основании спектра льных свойств дельта-функции Дирака б (5) можно записать [c.10]

    Последние величины, которые необходимо определить, — резонансные интегралы остова Их находят, вычисляя некоторое доступное для измерения свойство какого-либо эталонного соединения или соединений и выбирая р так, чтобы рассчитанные величины совпадали с экспериментальными. В большинстве работ в этой области р определяли, подгоняя наблюдаемые положения полос в спектрах к расчетным разностям энергий между основным и возбужденными состояниями. Такая процедура имеет смысл только в том случае, когда нас интересует поглощение света молекулами, но не тогда, когда рассматриваются химические и физические свойства молекул в основном состоянии. Строгое описание ССП для возбужденного состояния молекулы должно было бы включать набор МО, отличных от МО основного состояния (ср. с разд. 3.10). При попытке описать возбужденное состояние молекулы с помощью орбиталей,основного состояния используя параметры, выбранные на основании свойств молекулы в основном состоянии, результаты неизбежно окажутся неудовлетворительными. Можно было бы рассмотреть возбужденные состояния, выбрав параметры так, чтобы наилучшим образом воспроизвести экспериментальный спектр однако параметры, подходящие для этой цели, будут непригодными для описания основного состояния. [c.214]


    О распределении групп во внутренних сферах того и другого центральных ионов судят иа основании методов получения и в результате изучения физико-химических свойств изомеров (спектры поглощения, рентгенографический метод). Сравнительно недавно для изучения строения координационных изомеров и полимеров стали применять ионообменные смолы. [c.73]

    Аналогичными характеристиками инфракрасных спектров служат данные о дихроизме полос поглощения. Как указывалось ранее, дихроизм полос поглощения колебательных спектров выводится на основании свойств симметрии молекул, данные о дихроизме приведены в справочниках вместе с правилами отбора. [c.189]

    ИК-спектроскопией адсорбированного аммиака и пиридина установлено усиление апротонной кислотности и образование центров протонной кислотности в результате хлорирования т -оксида алюминия четыреххлористым углеродом. Исследования масс-спектров продуктов десорбции с поверхности образцов -у- и tj-оксидов алюминия до и после хлорирования и электронная оптическая спектроскопия адсорбированных состояний некоторых оснований позволили установить, что причиной принципиальной разницы в каталитической активности хлорированных tj- и 7-оксидов алюминия в низкотемпературной изомеризации парафиновых углеводородов являются различия в свойствах поверхности прокаленных при 500 °С оксидов алюминия, в том числе в количестве и расположении гидроксильных групп, обусловленных особенностями кристаллической структуры 7 - и 7-оксидов алюминия [90]. Хлорирование поверхности оксида алюминия, сопровождающееся выделением хлороводорода и диоксида углерода, усиливает кислотность апротонного и протонного типа. Бренстедовская кислотность обусловлена хемосорбированнымНС . [c.72]

    Выведем теперь несколько общих теорем о спектрах, основанных на свойствах преобразования Фурье. Эти теоремы сходны с теоремами операционного исчисления и выводятся аналогичным путем ведь преобразование Фурье и преобразование Лапласа, составляющее основу операционного исчисления, находятся в близком родстве между собой. [c.20]

    Для выяснения тонкой структуры спектров флуоресценции их исследуют при низких температурах (например, при температуре жидкого азота 77 К), при этом подбирают растворители, в которых наиболее отчетливо проявляется структура спектров. Этот метод измерения квазилинейчатых спектров в твердой матрице при низких температурах был предложен Э. В. Шпольским. Особенно успешно он был применен к исследованию полициклических ароматических углеводородов. Получаемые квазилинейчатые спектры флуоресценции ароматических углеводородов в растворах алифатических углеводородов являются очень характерными и позволяют получать информацию о колебательной структуре основного электронного состояния ароматических углеводородов. Квазилинейчатые спектры флуоресценции обладают рядом важнейших свойств. Прежде всего квазилинейчатые спектры в каждом случае носят ярко выраженный индивидуальный характер (специфичность). В отличие от обычных размытых спектров поглощения и флуоресценции они существенно различаются даже у близких по строению молекул. Это отличие оказывается значительным и для изомерных молекул. Другая важная особенность квазилинейчатых спектров заключается в очень высокой селективности таких измерений. Благодаря малой ширине и высокой интенсивности линий квазилинейчатые спектры позволяют определять индивидуальные соединения в сложной смеси даже тогда, когда они входят в многокомпонентную смесь в ничтожно малых концентрациях. Третьей характерной особенностью квазилинейчатых спектров флуоресценции является чрезвычайно высокая чувствительность методов, основанных на их применении. Измерение квазилинейчатых спектров позволяет при прочих равных условиях увеличить чувствительность люминесцентных измерений примерно в 100 раз. [c.72]

    Одним из кардинальных вопросов теории экстракции является априорное предсказание экстракционной способности экстрагента на основании его физико-химических свойств. Большинство исследователей считает, что экстракционная способность для неэлектролитов должна быть связана с параметрами растворимости, для электролитов — с фундаментальными свойствами экстрагентов, например спектральными характеристиками (ИК-спектры), электроотрицательностью и реакционной способностью отдельных групп, входящих в состав молекулы экстрагента, дипольными моментами, зарядом и размером ионов, диэлектрической проницаемостью сред и т. д. [59-62]. [c.16]


    Существуют и другие методы анализа, например биологические. К последним можно отнести метод определения содержания сероводорода в воздухе по изменению интенсивности свечения некоторых бактерий, а также метод анализа некоторых веществ, основанный на наблюдении за движением мелких червей, гибнущих после добавления известной дозы этих веществ. Физико-химические и физические методы, главк-Ум образом в зарубежной литературе, называют инструментальными, так как они обычно требуют применения приборов, измерительных инструментов. На первый взгляд, разные методы химического анализа не имеют между собой ничего общего, настолько различны их приемы, аппаратура и применение. На самом же деле принцип определения химического состава любыми методами один и тот же состав вещества определяется по его свойствам. Дело в том, что каждое вещество, отличающееся от других веществ своим составом и строением, обладает некоторыми индивидуальными, только ему одному присущими свойствами. Например, спектры испускания, поглощения и отражения веществом излучений имеют характерный для каждого вещества вид. По растворимости и форме кристаллов также можно узнать данное вещество. [c.9]

    Под названием спектральный анализ мы понимаем физический метод анализа химического состава вещества, основанный на исследовании спектров испускания и поглощения атомов или молекул. Эти спектры определяются свойствами электронных оболочек атомов и молекул, колебаниями атомных ядер в молекулах и вращением молекул, а также воздействием массы и структуры атомных ядер на положение энергетических уровней кроме того они зависят от взаимодействия атомов и молекул с окружающей средой. В соответствии с этим спектральный анализ использует широкий интервал длин волн — от рентгеновых до микрорадиоволн. В спектральный анализ не входят масс-спектроскопические методы анализа, как не относящиеся к области использования электромагнитных колебаний. [c.6]

    Одним из наиболее замечательных свойств атомных спектров является их дискретность (линейчатая структура) и сугубо индивидуальный характер, что делает такие спектры опознавательным признаком атомов данного элемента. На этом основан качественный анализ. Определение концентрации интересующего элемента производят путем измерения интенсивности отдельных спектральных линий, называемых аналитическими. [c.53]

    Информацию о структуре вещества получают на основании изучения его физических и химических свойств. Особую роль при изучении структуры играют исследования спектров поглощения и испускания, дифракции различных излучений (рентгеновских, электронных, нейтронных лучей), магнитных и электрических взаимодействий (магнитной восприимчивости и проницаемости, дипольных моментов и поляризации), механических, тепловых, электрических и других характеристик (плотности, вязкости, теплот фазовых переходов, теплот растворения, электропроводности и др.). [c.169]

    Некоторые авторы измеряли молекулярные веса гетерополисоединений, изучали спектры комбинационного рассеяния, магнитные свойства и т. д. Однако на основании имеющегося материала пока не удается полностью представить строение полисоединений в растворе. [c.228]

    Кислота и сопряженное с ней основание могут очень существенно различаться по своим физическим и химическим свойствам. Например, они сильно отличаются своими электронными спектрами. Если [c.238]

    Нерастворимая в хлороформе часть продукта озонолиза — порошок красно-бурого цвета, дающий сигнал ЭПР. В ИК-спектрах наблюдается характерное для систем полисопряжения фоновое поглощение, понижена интенсивность алкильных групп, резко возросла интенсивность полосы карбонильных групп при 1710 см . На основании результатов элементного анализа и исследований физическими методами продуктов окисления озоном первичных нефтяных асфальтенов удалось установить, что при этом процессе происходит отщепление углеводородного обрамления полисо-пряженного ядра в структуре асфальтена. Полидисперсность алифатической части незначительна, так как в основном присутствуют радикалы с длиной углеводородной цепи Сг— s. Полученные данные свидетельствуют о том, что асфальтены построены из полисопряженных фрагментов, представляющих собой устойчивые к окислению поликонденсированные ароматические структуры, обеспечивающие специфику свойств асфальтенов, характерных для полисопрянсенных систем. Азот в основном содержится в конденсированных структурах (увеличение отношения N/ в 5 раз) сера в основном находится в мостиковых связях (уменьшение отношения S/ в 7 раз), соединяющих структурные элементы в молекуле асфальтенов. Увеличение отношения О/С почти в 40 раз в нерастворимом продукте озонолиза свидетельствует о том, что значительная часть его подверглась окислению. [c.141]

    Кислота и сопряженное с ней основание могут очень существенно различаться по физическим и химическим свойствами. Например, сильно отличаются их электронные спектры. Если хотя бы один из компонентов сопряженной пары имеет полосу поглощения в видимой области спектра, т. е, окрашен, то формы этой пары отличаются своей окраской. Например, нитрофенол бесцветен, а образующийся из него анион окрашен в желтый цвет  [c.276]

    В. я-Ц иклопентадиенильные соединен и я в настоящее время получены для многих металлов. При взаимодействии циклопентадиена с солями двухвалентного железа в присутствии аминов образуется ферроцен, строение которого длительное время не было установлено. Для металлоорганического соединения он необычно устойчив и проявляет свойства ароматичности не присоединяет малеинового ангидрида, ацетилируется по Фриделю — Крафтсу, легко сублимируется, вступает во многие реакции замещения. Вместе с тем это соединение диамагнитно, железо не проявляет в нем своих парамагнитных свойств. На основании химических исследований установлена полная равноценность всех углеродных атомов ферроцена, спектры ЯМР выявили однотипность всех протонов. Ферроцену пришлось приписать необычную сэндвичевую структуру л-комплекса [c.43]

    Одноэлектронные свойства зависят от состояния отдельного электрона в молекуле, как, например, потенциал ионизации молекулы или энергия возбуждения электрона. Именно измерение этих свойств различными методами, в первую очередь методом фотоэлектронной спектроскопии, доказывает справедливость представления о делокализованных молекулярных орбиталях. По тому строгое рассмотрение таких важных одноэлектронных свойств молекул, как их спектры и потенциалы ионизации, возможно только на основании представлений о делокализованных МО [к-18]. [c.200]

    Спектроскопия объединяет несколько методов спектрального анализа, основанных на исследовании спектров испускания и абсорбции атомов и молекул. Если не говорить о жАсс-спектрометрии, построенной на иных основах, и масс-спектрах, возникающих в особых условиях, все остальные спектры определяются свойствами электронных оболочек атомов и молекул, колебаниями атомных ядер в молекулах и вращением молекул, воздействием массы и структуры атомных ядер на положение энергетических уровней, взаимодействием атомов и молекул с окружающей средой [26, стр. 6—8]. [c.24]

    На основании исследования спектров и свойств тионилимида [1—3] был сделан вывод о том, что мономерная молекула тионилимида нелинейна были оценены ее геометрические параметры. Для полимерного тионилимида изучение ИК-спектров указывает на цепочечную структуру [4]. [c.310]

    Хотя эта схема приемлема и обоснована, она до сих пор еще не исследована экспериментально достаточно тщательно. Даже различные экспериментальные характеристики, в которых проявляются эти равновесия, — видимые и ультрафиолетовые спектры реагентов и продуктов, концентрация неспаренных электронов на разделенных ион-радикалах и свойства ионной пары В — А , находящейся в равновесии с ион-радикалами,— не были исследованы ни для одной системы в каком-либо одном растворителе. Совершенно ясно лишь то, что комплексы В, А и — А различимы и обладают в общем разными спектральными свойствами и что обе эти частицы могут одновременно существовать в растворе. Таким образом, ХП нельзя считать просточасти-цей В, А (XI), в которой коэффициент Ь для формы с переносом заряда В " — А велик. Ваишо всегда помнить о различии между резонансными структурами и фактическими электронными состояниями комплексов комплекс В, А является единой частицей или состоянием, которое можно рассматривать как построенное из вкладов резонансных структур В, А и В — А , причем вклад первой из них имеет большее значение. Наоборот, В+ — А" представляет собой другую единую частицу, в которой резонансная структура В — А вносит больший вклад. Последний комплекс подробно экспериментально не исследован, но некоторые его свойства можно предсказать на основании свойств других димеризованных радикалов в растворе [29]. При сближении двух сравнительно устойчивых радикалов будет возникать тенденция к образованию (слабой) связи между ними, т. е. спаривание электронов и переход системы в сииглетное состояние это значит, что комплекс не должен обладать интенсивным сигналом ЭПР. Может быть обнаружена новая полоса поглощения, возникшая в результате взаимодействия обоих компонентов таким же образом, как возникает полоса поглощения переноса заряда в комплексе В, А. [c.344]

    Из выделенных нами продуктов наибольший интерес представляет неизвестный ранее этил р-бензоилвинилкарбамат, который нам удалось разделить на устойчивые цис- и тракс-изомеры. Отнесение конфигурации для этих изомеров было сделано с помощью ПМР- и ИК-спектров и на основании свойств этих соединений. 1 г с-Изомер (т. пл. 52—54° С) в отличие от тракс-изомера (т. пл. 137° С) хорошо растворим в углеводородах. Это обстоятельство позволило легко отделить изомеры друг от друга. [c.308]

    Миллер и Виллис [102] и Тобин [163] интерпретировали инфракрасный спектр этого вещества (табл. 5) па основании свойств симметрии повторяющейся единицы [c.517]

    В апреле 1914 г. Мозли опубликовал результаты исследования 39 элементов, от 1зА1 до 7,Ли. (Напомним, что порядковый номер элемента указывается индексом слева внизу от символа элемента.) Часть полученных им данных воспроизводится на рис. 7-2. Мозли писал Спектры элементов представляют собой равноотстоящие друг от друга горизонтальные линии. Выбранная последовательность расположения элементов соответствует возрастанию их атомных весов (масс), за исключением случаев Аг, Со и Те, когда она не согласовывалась с последовательностью изменения их химических свойств. Между элементами Мо и Ки, а также между Nd и 8т и между XV и Оз остаются вакантные места для спектральных линий, но элементы, которым могли бы соответствовать линии в этих местах, неизвестны... Все это эквивалентно тому, как если бы мы приписали последовательным элементам ряд характеризующих их последовательных целых чисел... Тогда, если бы какой-либо элемент не удавалось охарактеризовать такими числами или произошла ошибка в составлении последовательности элементов либо в нумерации мест, оставленных для еще неизвестных элементов, установленная закономерность (прямолинейная зависимость) оказалась бы сразу же нарушенной. Это позволяет на основании одних лишь рентгеновских спектров заключить, не пользуясь никакой теорией строения атома, что указанные выше целые числа действительно могут характеризовать элементы... Недавно Резерфорд показал, что наиболее важной составной частью атома является расположенное в его центре положительно заряженное ядро, а Ван-ден-Броек выдвинул предположение, что заряд этого ядра во всех случаях представляет собой целочисленное кратное от заряда ядра водорода. Есть все основания предполагать, что целое число, определяющее вид рентгеновского спектра [элемента], совпадает с числом единиц электрического заряда в ядре [его атомов], и, следовательно, данные эксперименты самым серьезным образом подтверждают гипотезу Ван-ден-Броека . [c.312]

    Появление большого числа различных фрагментов часто помогает установить структуру молекулы. Однако даже в этом случае необходимо соблюдать осторожность. Ион, образующийся в ионизационной камере, подвергается многим колебательным процессам эти процессы могут сопровождаться перегруппировками с образованием связей, которых нет в исходном соедиР1снии [см., например, уравнение (16.14)]. Образование новых ионов затрудняет установление химических процессов. которые приводят к появлению в масс-спектре различных пиков. Это в свою очередь создает трудности для выяснения влияния прочности связи или других свойств молекулы на относительные количества образующихся ионных фрагментов. Была предпринята попытка количественно рассмотреть масс-спектрометрическую фрагментацию на основании так называемой квазиравновесной теории [10]. Внутреннюю энергию распределяют по всем возможным осцилляторам и ротаторам молекулы и рассчитывают скорости распада по различным направлениям. Каждому колебательному уровню приписывается весовой фактор или частотный фактор (т.е. энтропийный член). Для молекулы реального размера полный анализ сложен. Вводятся приближения, приводящие [c.322]

    Пуриновые и пиримидиновые основания сильно поглощают в ультрафиолетовой области спектра благодаря наличию я-электронов, Ятах 260 нм (6260 нм 10 ) ДЛЯ ббЛКОБ 1тах 280 НМ. Положение максимума поглощения зависит от структуры основания (отсюда следует, что и от pH раствора, поскольку с изменением pH преобладают различные таутомерные формы), от введения в гетероциклическое ядро заместителей, но незначительно— от структуры сахарного остатка. Такие свойства полезно знать при синтезе пуриновых и пиримидиновых производных, так как их можно характеризовать соответствующими максимумами поглощения в ультрафиолетовых спектрах, а при хроматографическом определении также идентифицировать по поглощению в ультрафиолетовой области, например для Ы-бензоилгуано-зина (синтезируемого бензоилированием основания и сахарного остатка нуклеозида бензоилхлоридом в пиридине с последующим удалением бензоильных групп с сахарного остатка гидроксидом натрия)  [c.113]

    Изучена каталитическая активность кремнецинковых катализаторов [56]. Чистые окиси кремния и цинка не проявляют ни кислотных, ни основных свойств и каталитически не активны в изомеризации бутена-1. При исследовании смешанных цинксиликатных катализаторов различного состава, приготовленных соосаждением, оказалось, что максимальная кислотность отвечает составу ZnO Si02=3 7, а максимальная основность — составу ZnO Si02=7 3. ИК-Спектры адсорбированных на катализаторе оснований (пиридин, аммиак) показали, что кислотные центры являются льюисовскими. Именно они ответственны за изомеризацию бутена-1, так как адсорбция кислотного окисла (СОг), уменьшающая число основных центров, на каталитическую активность не влияла. Подтверждением этого является и то, что изомеризация протекала через внутримолекулярный перенос водорода это показали опыты со смесью недейтерированного и дейтерированного 1 с-бутена-2. [c.165]

    Биссульфиды из нефтяных меркаптанов, как из индивидуальных меркаптанов [4], можно получать через реакцию с дигалоид-алканами. В настоящем сообщении рассматриваются результаты, изучения состава и строения биссульфидов нз природных меркаптанов. Свойства биссульфидов, полученных из узких фракций концентрата меркаптанов, сопоставляются с биссульфидами, полученными из индивидуальных меркаптанов. Строение всех биссульфидов доказывается на основании ПМР-, Масс-, УФ- и ИК-спектров. Сообщаются результаты исследования по окислению биссульфидов различного строения и биссульфидов из нефтяных меркаптанов. [c.54]

    Биссульфиды типа К8—(СНз),—8К1, полученные из узких, фракций концентратов меркаптанов сопоставлялись по физикохимическим свойствам с биссульфидами, полученными из меркаптанов известного строения такого же молекулярного веса. На основании подобного сравнения и сопоставления ПМР-, Масс- ИК-спектров установлено строение V биссульфидов (XXIV— —XXX). [c.55]

    Возможность применения спектрального анализа сигналов ВТП определяется тем, что в процессе воздействия монохроматического электромагнитного поля на объект в сигналах ВТП появляются состанляющие частот, отличающиеся от частоты первой гармоники генератора. Это может происходить за счет проявления нелинейных свойств материала изделия или за счет изменения во времени каких-либо факторов кошроля. В первом случае возникают кратные гармоники основной частоты, которые несут дополнительную информацию о свойствах объекта. Метод, основанный на анализе параметров кратных гармонических составляющих, называется методом высших гармоник. Он получил применение при контроле ферромагнитных материалов. Во втором случае возникает модуляция выходного напряжения ВТП изменяющимися параметрами объекта, возникает спектр частот сигнала. Метод, основанный на обработке спектра модуляционных колебаний, называют модуляционным. [c.172]

    Действенным методом повышения эффективности воздействия акустических полей на процесс диспергирования является совместное действие полей двух частот. На рис. 3.9. представлена амплитудно-частотная характеристика акустического гомогенизатора, используемого в аппарате для смачивания и диспергирования пигментных материалов. На вибрационном спектре, косвенным образом характеризующем диспергирующие свойства гомогенизатора, представлены колебания полей двух частот (800 Гц и 2000 Гц). Один из возможных механизмов взаимодействия полей двух частот строится [43] на предположении, что кавитационная эффективность определяется захлопыванием полостей в поле низкой частоты, а действие высокочастотного поля создает дополнительную осцилляцию полостей. Оценку такого механизма взаимодействия можно провести на основании уравнения движения полости в форме Нолтинга - Неппарайса  [c.65]

    Первоначально идентичность УФ-спектров а- и -гидрокси-пйридинов со спектрами Л -метилпиридинов, которым отвечает единственная структура, позволила предположить, что в отличие от а- и у-аминопиридинов а- и у-гидроксипиридинам отвечают формулы (110) и (111). Однако впоследствии было показано, что реальным а- и у-гидроксипиридинам несвойственны реакции, характерные для карбонильной группы (они не реагируют с фенилгидразином и не присоединяют реактивов Гриньяра), а также для вторичной аминогруппы (они с трудом реагируют с СНз1 и не образуют солей четвертичных аммониевых оснований). На этом основании соединение (НО) следует скорее относить к амидам кислот, а соединение (Ш)—к ви-нилогам амидов кислот. В обоих соединениях взаимное влияние функциональных групп настолько велико, что обе они утрачивают характерные для каждой из них свойства. [c.549]

    Глобула химотрипсина содержит лишь один комплексующий центр, способный быстро и обратимо сорбировать углеводородные молекулы, — это активный центр фермента [73]. Гипотеза о существовании гидрофобной области в активном центре химотрипсина была выдвинута в начале 60-х годов на основании исследования ингибирующих свойств большого числа производных бензола, нафталина и других ароматических соединений [74—76]. Эта гипотеза находит подтверждение в том, что связывание с активным центром некоторых конкурентных ингибиторов, содержащих хромофорные группы, приводит к сдвигу их спектра в длиннойолновую область [77—79]. Анализируя величину спектрального сдвига, Кэллос и Эвейтис [80] пришли к выводу, что активный центр фермента по величине диэлектрической постоян- [c.138]

    Деформируемость электронной оболочки сказывается и на оптических свойствах веществ. Поглощение лучей связано с возбуждением внешних электронов. Электронные переходы характеризуются тем меньшими, энергиями, чем более поляризуема частица. Если частица малополяризуема, возбуждение тр ует больших энергий, им отвечают ультрафиолетовые лучи. Если атом (ион) легко поляризуется, то возбуждение требует квантов небольшой энергии им отвечает видимая часть спектра. В этом случае вещество оказывается окрашенным. Таким образом, наряду с веществами, цвет которых обусловлен окраской содержащихся в них ионов, существуют окрашенные соединения, образованные бесцветными ионами, окраска таких соединений является результатом межионногх) взаимодействия. Чем больше поляризация и поляризующее действие ионов, тем больше оснований ждать появления окраски. Очевидно также, что с усилением этих эффектов окраска должна углублят1ч я. [c.122]

    Введение относительной интенсивности не меняет вида связи, выражаемой этими формулами, так как интенсивность линии сравнения остается постоянной. Коэффициент самопоглощения имеет примерно тот же физический смысл, что и формулы (12) и (13), его величина остается постоянной только в некотором интервале концентраций, меняясь от единицы при малых концентрациях (отсутствие самопоглощения) почти до нуля для интенсивных линий при высоких концентрациях. Величина и физический смысл коэффициента а в формулах (46)—(47) и (12), (13) различны, так как теперь он определяется не только свойствами аналитической линии и источника света, но и интенсивностью линиисравнения и неизвестной зависимостью между концентрацией определяемого элемента в образце ив источнике света. Поэтому зависимость между 1 7 и концентрацией в образце приходится устанавливать заново каждый раз, в каждой лаборатории, для каждого прибора. Только в отдельных случаях приближенные количественные оценки можно делать на основании данных, полученных в других лабораториях по разработанной там методике и по найденной там зависимости между концентрацией вещества и интенсивностью линий в спектре. [c.258]

    Еще в XIX столетии было признано, что ароматические соединения [34] сильно отличаются от ненасыщенных алифатических соединений [35], но в течение многих лет химикам не удавалось прийти к взаимно приемлемому удовлетворительному определению ароматического характера [36]. В качественном отношении серьезных разногласий никогда не существовало, и определение сводилось к следующей форме ароматические соединения характеризуются особой устойчивостью и легче вступают в реакции замещения, а не в реакции присоединения. Трудность состояла в том, что такое определение было не слишком ясным и не подходило для пограничных случаев [37]. В 1925 г. Армит и Робинсон [38] установили, что ароматические свойства бензольного ядра связаны с наличием замкнутого кольца электронов, ароматического секстета (ароматические соединения, таким образом, являются своеобразными примерами делокализованной связи), но в то время еще нельзя было определить, обладают ли другие циклы, отличные от бензола, таким электронным кольцом. С развитием магнитных методов исследования, главным образом ядерного магнитного резонанса, появилась возможность экспериментально определять наличие или отсутствие в молекуле замкнутого электронного кольца, и теперь ароматичность можно охарактеризовать как способность удерживать индуцированный кольцевой ток. Соединения, обладающие такой способностью, называют д агро/г-ными. Сегодня это определение является общепринятым, хотя оно не лишено недостатков [39]. Существует несколько методов, позволяющих установить, способно ли соединение удерживать кольцевой ток, но наиболее важный из этих методов основан на химических сдвигах в спектрах ЯМР [40]. Чтобы это понять, необходимо вспомнить следующее как правило, величина химического сдвига протона в ЯМР-спектре зависит от электронной плотности его связи, и чем выше плотность электронного облака, окружающего или частично окружающего протон, тем в более сильное поле смещается его химический сдвиг (т. е. тем меньше величина б). Однако из этого правила имеется несколько исключений, и одно из них касается протонов, расположенных вблизи ароматического цикла. При наложении внешнего магнитного поля (как в спектрометре ЯМР) в ароматических молекулах возникают кольцевые токи л-электронов, которые (при расположении плоскости ароматического [c.63]


Смотреть страницы где упоминается термин спектры как основания, свойства: [c.171]    [c.174]    [c.97]    [c.32]    [c.350]    [c.152]    [c.115]    [c.78]    [c.71]    [c.211]    [c.163]   
Водородная связь (1964) -- [ c.28 , c.30 , c.86 , c.120 , c.120 , c.175 , c.175 , c.298 , c.298 ]




ПОИСК





Смотрите так же термины и статьи:

Определение термодинамических свойств N на основании вращательно-колебательно-электронного спектра излучения

Основания свойства



© 2025 chem21.info Реклама на сайте