Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность металла скорость растворения различных

    Закономерности типичного процесса ЭХП металлов можно проследить на классическом примере полирования меди в фосфорной кислоте. На рис. 12.1. приведена анодная поляризационная кривая, характеризующая этот пример. На участке АБ поляризационной кривой ( активное растворение металла) в результате проявления энергетических неоднородностей различных граней поликристаллического металла происходит травление поверхности анода, поверхность после обработки шероховатая. Прн анодном растворении металлов и сплавов в активном состоянии проявляется неоднородность структуры, фазового состава, различие в скорости растворения компонентов сплава. [c.76]


    Метод обработки внешней среды пригоден для случаев, когда защищаемое изделие эксплуатируется в ограниченном объеме жидкости. Метод состоит в удалении из раствора, в котором эксплуатируется защищаемая деталь, растворенного кислорода (деаэрация) или в добавлении к этому раствору веществ, замедляющих коррозию, — ингибиторов. В зависимости от природы металла и раствора применяются различные ингибиторы нитрит натрия, хромат и дихромат калия, фосфаты натрия, некоторые высокомолекулярные органические соединения и другие. Защитное действие этих веществ обусловлено тем, что их молекулы или ионы адсорбируются на поверхности металла и каталитически снижают скорость коррозии, а некоторые из них (например, хроматы и дихроматы) переводят металл в пассивное состояние. [c.559]

    После небольшого снижения тока (участок БВ) устанавливается независимость анодного тока от потенциала в некоторой области потенциалов (плато на поляризационной кривой, участок ВГ). Растворение металла в области плато происходит в диффузионном режиме подтверждением этого является то, что увеличение скорости перемешивания раствора приводит к соответствующему возрастанию тока в области участка ВГ. При этом металл при потенциалах участка ВГ покрыт слоем продуктов растворения (скорее всего оксидно-солевым слоем). Толщина этого слоя увеличивается с повышением потенциала в области участка ВГ. Поверх слоя твердых продуктов реакции на аноде находится слой раствора с высокой концентрацией растворенных продуктов анодной реакции, так называемый вязкий слой. Растворение металла в диффузионном режиме приводит к преимущественному растворению микровыступов и сглаживанию шероховатости поверхности. Наличие анодной пленки на поверхности металла подавляет проявление структурной неоднородности поверхности и различия в скорости растворения различных микроучастков. Эти два фактора и являются причиной полирования металла. [c.76]

    Важнейшим показателем коррозии является ее скорость. Она выражается различными единицами измерения. Часто скорость коррозии оценивают в изменении (потере) массы на единице поверхности за некоторый период времени, например г/м -год или моль/см2 год. Принято также выражать коррозию уменьшением толщины изучаемого образца или толщиной образовавшегося слоя продукта. Скорость электрохимической коррозии может быть выражена плотностью тока, необходимой для данного изменения массы или толщины образца в единицу времени. При действии на металл кислоты скорость растворения может быть определена объемом выделившегося газа. [c.386]


    Предложите методы обработки результатов эксперимента, которые дали бы Вам наибольшую информацию об изучаемом процессе. Как определить скорость коррозии Можно ли использовать данные о массе и площади поверхности образца Можно ли, используя полученные данные, рассчитать порядок реакции и константу скорости Как сравнивать скорости растворения различных металлов в растворах различных концентраций  [c.389]

    Из теории микроэлементов вытекает, что при отсутствии на поверхности металла участков с различными потенциалами процесс коррозии не возникает. Опыты с чистыми металлами (дистиллированным цинком) показывают, что их скорость коррозии значительно меньше, чем технического металла. Однако имеются весьма гомогенные сплавы (амальгамы), которые в то же время разрушаются очень быстро. Гипотеза невозможности растворения гомогенных металлов оказывается в противоречии с опытом и термодинамикой. Для объяснения электрохимического механизма растворения амальгам А. Н. Фрумкин выдвинул теорию гомогенно-электрохимического растворения металлов, не исключающую, а дополняющую теорию микроэлементов — теорию гетерогенно-электрохимического растворения металлов. [c.70]

    Разработайте количественную методику исследования по всем вопросам, изложенным в предыдущем опыте. Советуем Вам воспользоваться прибором, изображенным на рис., 68 и описанием работы с ним на с. 110. Так, взаимодействие металла с кислотой — гетерогенный процесс, т. е. скорость зависит не только от концентрации кислоты, но и площади поверхности металла. Как следует поступить, чтобы площадь поверхности была постоянной Измерьте скорость растворения (по объему выделяющегося водорода) в растворах соляной кислоты различной концентрации, например 1 М 0,5 М, 0,25 М или др. Приводит ли уменьшение концентрации ионов водорода, скажем, в 2 раза к уменьшению скорости реакции в 2 раза Каков порядок реакции Зависит ли он от площади поверхности и концентрации кислоты Попытайтесь вывести кинетическое уравнение процесса. [c.171]

    Изменение свойств коррозионной среды пригодно для случаев, когда защищаемое изделие эксплуатируется в ограниченном объеме жидкости. Метод состоит в удалении из раствора, в котором эксплуатируется защищаемая деталь, растворенного кислорода (деаэрация) или в добавлении к этому раствору веществ, замедляющих коррозию, — ингибиторов. В зависимости от вида коррозии, природы металла и раствора применяются различные ингибиторы. При атмосферной коррозии применяют хорошо адсорбирующиеся на металле вещества мо-ноэтаноламин, карбонат аммония, уротропин, нитрит натрия. Для нейтральной коррозионной среды и растворов солей в качестве ингибиторов используют неорганические соли хромовых кислот, фосфорной, кремниевой, азотной и азотистой кислот. В кислых средах используют органические ингибиторы, содержащие атомы азота, серы, фосфора, кислорода и группировки атомов с ненасыщенными связями. Защитное действие ингибиторов обусловлено тем, что их молекулы или ионы адсорбируются на поверхности металла и каталитически снижают скорость коррозии, а некоторые из них (например, хроматы и дихроматы) переводят металл в пассивное состояние. [c.693]

    Существенно на скорость выделения водорода влияет природа катодных участков. Некоторые металлы, например платина, кобальт, никель и др., катализируют выделение водорода, и катодный процесс на них протекает с высокими скоростями. Поэтому, если в составе металла или сплава находятся металлы, катализирующие выделение водорода, то коррозия с выделением водорода может ускоряться за счет этих компонентов в сплаве. Другие металлы, например, ртуть, свинец, кадмий, цинк, не катализируют или слабо катализируют катодное выделение водорода, и катодный процесс на них протекает медленно. Поэтому присутствие в составе сплава таких компонентов или не меняет скорости коррозии основного металла, или снижает ее из-за уменьшения площади поверхности, занимаемой основным металлом, на которой происходят и растворение металла и выделение водорода. Влияние природы металла на скорость выделения водорода количественно можно оценить по перенапряжению водорода на различных металлах (см. табл. 22). Чем ниже перенапряжение водорода, тем большей каталитической активностью к реакции выделения водорода обладает металл и тем выше скорость выделения водорода при данном потенциале катодного участка, а следовательно, и больше скорость коррозии. Чем выше перенапряжение, тем меньше и скорость выделения водорода при данном потенциале катодного участка, тем ниже скорость коррозии металла. Таким образом, скорость коррозии с выделением водорода может быть замедлена снижением температуры и уменьшением концентрации ионов Н , очисткой металла от примесей, катализирующих выделение водорода, а также изоляцией поверхности металла. Перемешивание раствора практически не влияет на скорость выделения водорода. [c.216]


    Процесс пропитывания носителя раствором включает перенос растворенного вещества из объема жидкости к внешней поверхности гранул, а затем внутрь пор. В зависимости от механизма адсорбции (прочная или слабая), типа поверхности (однородная или неоднородная) и продолжительности пропитывания можно получить различное распределение растворенного вещества в носителе. Если для приготовления катализатора используют растворы, содержащие два и более металлов, при одновременном нанесении их на поверхность носителя из-за различных скоростей диффузии и адсорбции этих веществ может быть разным состав по глубине катализатора. Например, ионы никеля адсорбируются на оксиде алюминия быстрее, чем ионы хрома, поэтому на поверхности носителя будет больше ионов N1, чем Сг. [c.32]

    Причина возникновения микроэлементов на поверхности металла, погруженного в электролит,— это разность потенциалов между отдельными участками его поверхности. Эта разность потенциалов возникает в результате как структурной неоднородности металлов, так и различного состояния их поверхности (например, из-за различной степени пассивности). Различие в составе электролита, соприкасающегося с металлом, например разная концентрация растворенных солей и газов, также может вызвать возникновение разности потенциалов. Многие другие факторы (различная скорость движения электролита по поверхности металла, разный доступ кислорода воздуха) в некоторых случаях служат причиной образования гальванических микроэлементов. [c.75]

    Для того чтобы учесть влияние ингибитора на скорость растворения окалины, Ключников [ИЗ] предложил эффективность ингибиторов оценивать по отношению коэффициентов замедления скорости растворения металла и окалины мет/ток. Чем выше это отношение, тем лучшим считается ингибитор. Значения этих коэффициентов для различных ингибиторов приведены в табл. 6,6. Как видно, все они положительны и по мере увеличения концентрации соляной кислоты увеличиваются. Следует, однако, иметь в виду, что этот критерий не учитывает изменения скорости растворения окислов при их контакте с металлом, а это может изменить квалификационную оценку отдельных ингибиторов. Последнее хорошо иллюстрируется результатами, полученными Афанасьевым с сотр. [112] на сталях, несущих на своей поверхности реальную окалину, которая по своему составу намного сложнее индивидуального окисла (табл. 6,7). Как видно, разница в защитных эффектах на стали, покрытой окалиной, и чистой стали не так велика. Более того, в реальных условиях защитный [c.201]

    Исследованию коррозии титана в серной кислоте посвящен ряд работ [1—5]. Получена зависимость скорости коррозии титана от концентрации серной кислоты (О—95%). Показано, что с повышением температуры скорость коррозии титана сильно возрастает. Под атмосферой азота титан корродирует в серной кислоте с меньшей скоростью, чем под атмосферой воздуха. В настоящей работе исследовалась коррозия титана и некоторых его сплавов в серной кислоте (включая олеум) под различными газовыми атмосферами водород, кислород, азот и воздух, а также влияние насыщения поверхности титана азотом, кислородом и водородом на скорость растворения металла в сернокислотных растворах. [c.151]

    Исходя из термодинамических и электрохимических соображений вовсе не обязательно возможность коррозии того или иного сплава связывать с наличием на поверхности микроэлементов. Если потенциал металла достаточен для того, чтобы протекала анодная реакция ионизации, растворение металла будет наблюдаться вне зависимости от того, имеются на поверхности микроэлементы или нет. Поэтому теоретически следует признать возможность растворения и самых чистейших металлов. Наблюдения, однако, показывают, что когда мы имеем дело с реальными сплавами, положение резко меняется в силу ряда причин, связанных со структурой металла и неоднородностью электролита, условиями диффузии и конвекции электролитов к поверхности металла, последняя относительно быстро дифференцируется на участки, где электрохимические реакции протекают с различной скоростью. В предельном случае, как это, например, наблюдается при локальной коррозии, анодная реакция перестает протекать на значительной части поверхности и сосредоточивается на отдельных участках, а катодные реакции сосредоточиваются на остальной части поверхности. [c.11]

    Одной из причин растворения отдельных участков металлической поверхности с различными скоростями могут быть неодинаковые значения начальных потенциалов. В хорошо проводящих средах благодаря поляризации потенциалы в процессе коррозии выравниваются (маловероятно, чтобы в таких условиях на поверхности металла были участки с различным значением потенциала). Это должно было бы способствовать выравниванию и скоростей растворения, поскольку скорость анодного процесса находится в прямой зависимости от потенциала. Однако этого не происходит. Объясняется это тем, что в силу структурной неоднородности сплавов скорость анодного растворения отдельных структурных составляющих, а иногда и объемных элементов сплава, имеющих одинаковый химический состав, становится неодинаковой даже при одном и том же значении потенциала. К тому же, как будет показано при рассмотрении отдельных локальных коррозионных процессов, имеется много причин, относящихся не к сплаву, а к условиям обтекания металлических поверхностей электролитом, отвода продуктов анодной реакции и т. п., которые также способствуют растворению отдельных участков сплава с различными скоростями. [c.12]

    Поведение гетерогенных сплавов определяется дифференциальными анодными кривыми, характеризующими отдельные структурные составляющие. В этом случае при заданном анодном потенциале различные участки металла будут растворяться с различ-1ЮЙ скоростью. Регулирование такого процесса для гетерогенных сплавов весьма затруднительно. С целью получения гладкой поверхности необходимо подобрать такой раствор и задать такой потенциал, чтобы скорость растворения гетерогенного сплава контролировалась скоростью диффузии ионов металла или продуктов анодной реакции в раствор. [c.75]

    Несколько упрощая вопрос, можно так объяснить наблюдаемые явления. Адсорбция ионов всякого вида стимулирует растворение, но в различной степени. Подмена одного адсорбированного иона другим, например вследствие изменения концентрации, может либо замедлить, либо ускорить растворение. Вместе с тем, нельзя забывать, что адсорбция ионов из раствора должна менять строение двойного электрического слоя, что, в свою очередь, может оказывать решающее влияние на скорость электродной реакции. Наконец, адсорбция может приводить к образованию весьма малорастворимых сочетаний атомов, что должно тормозить процесс, блокируя поверхность металла. [c.120]

    Рассмотрение всей совокупности имекущихся результатов по химической (коррозионной) стойкости карбидов переходных металлов показывает, что выполнена только первая стадия исследования выявлена, в основном качественно, химическая стойкость карбидов в различных агрессивных средах, позволившая сделать их примерную разбраковку по коррозионным свойствам. Попытки количественной оценки стойкости порошкообразных карбидов [25—27, 29] также следует рассматривать как предварительные. Обусловлено это тем, что полученные результаты не дают надежных сведений о скорости коррозии карбида, так как получены без учета истинной поверхности испытуемого порошка. Кроме того, совершенно необходимы исследования по кинетике растворения, так как они позволяют получить не усредненную и потому далеко не всегда достоверную величину, а истинную стационарную скорость растворения. В то же время, кинетические измерения [29], проведенные на порошкообразных карбидах по общепринятой методике их коррозионного испыта- [c.18]

    Скорость растворения платины при электролизе морской воды существенно возрастает при питании электролизера пульсирующим постоянным током [96]. В определенных условиях может возникать местная коррозия титановой основы анода — пробой защитной пленки. Наиболее часто пробой наблюдается на границе трех фаз жидкость—металл — газ, в узких щелях, в местах образования осадка в электролизере [97, 98]. Если активный слой закрывает лишь часть общей поверхности анодов, необходимо учитывать специфику распределения скачка потенциала между поверхностью анода и прилегающим к ней электролитом для электродов различной геометрической формы [99]. [c.22]

    Значительно больший интерес представляет возможность перехода к пассивному состоянию благодаря блокировке активных центров или благодаря электрохимическому торможению реакции растворения. Вследствие энергетической неоднородности поверхности растворяющегося металла переход его ионов в раствор с различных участков совершается с неодинаковой легкостью. Если какое-то число атомов или молекул кислорода (недостаточное для того, чтобы полностью закрыть поверхность) окажется адсорбированным на участках, где растворение может совершаться наиболее легко, то это приведет к резкому падению общей скорости растворения, неэквивалентному доли занятой поверхности. Торможение процесса растворения повысит перенапряжение, т. е. сместит потенциал анода в положительную сторону. Это будет благоприятствовать дальнейшей посадке кислорода и наступлению пассивного состояния. Следующая такая же порция кислорода вызовет дальнейшее, но уже не столь резкое замедление растворения металла, поскольку блокируются менее активные центры и т. п. При значительной энергетической неравноценности различных участков поверхности такой механизм избирательной адсорбции обеспечивает снижение скорости растворения до обычно наблюдаемой в области пассивности. [c.456]

    Исследуя скорость растворения различных сортов цинка в серной кислоте, швейцарский ученый Де-ля-Рив установил их различную скорость и связал это с наличием в них примесей других мета.)1лов, образующих на поверхности цинка короткозамкнутые, микрогальванические элементы. В зависимости от природы примеси скорость коррозии цинка меняется (табл. 8). В соответствии с современными представлениями, процесс коррозии металла есть результат работы гальванических коррозионных элементов. [c.29]

    Значительно больший интерес представляет возможность перехода к пассивному состоянию за счет пли блокировки активных центров, или электрохимического торможения реакции растворения. Вследствие энергетической неоднородности поверхности растворяющегося металла переход его иочов в раствор с различных участков совершается с неодинаковой легкостью. Если какое-то число атомов или молекул кислорода (недостаточное для того, чтобы полностью закрыть поверхность) окажется адсорбированным на участках, где растворение может совершаться наиболее легко, то это приведет к резкому падению общей скорости растворения, неэквивалентному доле занятой поверхности. Торможение процесса растворения повысит поляризацию, т. е, сместит потенциал анода в положительную сторону. Такое смещение потенциала будет спо- [c.483]

    Автофоретическое осаждение — новый способ нанесения дисперсионных лакокрасочных материалов без применения электрического тока. Способ основан на пристенной коагуляции водных дисперсий (латексов) пленкообразующих веществ, стабилизированных ионогенными ПАВ, путем создания градиента концентрации электролита на границе поверхность — среда. Для получения покрытий этим способом используют латексы различных пленкообразователей. Электролитами служат неорганические и органические кислоты — фтористоводородная, фосфорная, винная и др. Скорость растворения металла и стабильность дисперсий регулируют введением окислителей, ПАВ, [c.219]

    Растворение металла, идущее одновременно с образованием Нг из ионов Н в растворе, представляет собой случай, в котором анодный и катодный процессы протекают на одном и том же электроде. (Эти процессы называются полиэлектродными.) При этом как диффузия, так и химические процессы могут стать лимитирующими. Ранние работы по растворению амальгам натрия [7-6] в кислотах и основаниях указывают на то, что скорость реакции имеет первый порядок по Н" и приблизительно порядок /2 по концентрации натрия. Для кислых растворов эти факты объяснялись тем, что процесс лимитируется диффузией. Однако, как показали более поздние исследования [77—80], скорость растворения металлов в различных кислотах и растворителях пропорциональна концентрации недиссоциированной формы кислоты и относительные константы скорости в различных кислотах хорошо ложатся на прямую Бренстеда. По-видимому, в этом случае лимитирующей стадией является перенос протона от молекулы недиссоциированной кислоты к поверхности металла , причем реакция подвергается специфическому катализу кислотами. При растворении солей, таких, как Na l, в системах с перемешивающим устройством предполагается, что скорость реакции лимитируется диффузией, причем диффузия происходит через пограничный слой насыщенного раствора соли на поверхности кристаллов соли. Хотя подобная картина, по-видимому, является правильной для простых солей, таких, как галогеииды щелочных металлов, в случае солей металлов переменной валентности картина может быть другой. Так, например, безводный СгС1з очень медленно растворяется в воде, при этом скорость реакции не зависит от перемешивания. Было обнаружено, что небольшое количество Сг " в растворе оказывает огромное влияние на скорость реакции. Вероятно, в этом случае осуществляется перенос заряда между частицами Сг - в растворе и Сг в твердой фазе. Эти системы, по-видимому, заслуживают дальнейшего изучения. [c.557]

    При соприкосновении их с электролитами (кислотами, щелочами, солями) одни участки поверхности играют роль анода (отдают электроны), а другие (различного рода включения)— катода. На поверхности металла возникает множество микрогальва-нических пар и чем больше неоднородность металла, тем больше скорость его разрушения в электролитах. Сущность электрохимической коррозии нетрудно уяснить из следующего опыта (рис. 69), В U-образную трубку с раствором Na l помещают в левое колено железный, а в правое — медный стержни, соединенные медным проводником друг с другом через гальванометр. Стрелка гальванометра отклоняется в сторону медного стержня. Следовательно, по медному проводнику движется поток электронов от железа к меди Fe — 2e->Fe +. Ионы Fe + можно обнаружить в левом колене, добавив красную кровяную соль (реактив на Fe +)—синее окрашивание. При добавлении раствора фенолфталеина в правое колено можно наблюдать малиновое окрашивание, а это свидетельствует о появлении нонов ОН в правом колене по реакции О2 +, И- 2Н2О + 4е —> 40Н-. Следовательно, медный стержень-поставщик электронов — катод, а железный стержень — анод. Анионы 0Н появляются в растворе вследствие восстановления кислорода, растворенного в воде, с помощью электронов, поступающих на медный стержень. Катионы Fe + взаимодействуют в растворе f анионами [c.401]

    Известно, что влияние природы и концентрации солей в водном растворе может быть различным. Влияние гидролизующихся солей зависит от того, повышают или понижают они pH среды при гидролизе. С увеличением концентрации таких солей растет кислотность или щелочность раствора и соответственно меняется скорость коррозии. Если растворенные в воде соли способствуют образованию труднорастворимой защитной пленки, то скорость коррозии металла уменьшается по сравнению с коррозией в воде. С увеличением концентрации соли этот эффект растет, но обычно до определенного предела. В этом плане равновесие между карбонатом, бикарбонатом и двуокисью углерода имеет определенное значение. Двууглекислые соли кальция или магния при разложении по реакции Са(НСОз i2 СаСОз + С02 + Н2О образуют осадок углекислых солей в виде защитного слоя на поверхности металла. В присутствии значительного количества СО2 в воде приведенная реакция идет в обратном направлении, осадок не выпадает, и даже ранее выпавший осадок может раствориться, и защитный слой разрушается. [c.27]

    Предложенная схема, подытоживая основные исследования по гидратации силикатов кальция, помогает уяснить как действуют различные добавки в раствор, в том числе и щелочных силикатов, на процесс гидратации. Так, введение в раствор анионов, закрепляющих двойной электрический слой, т. е. образующих с Са прочные связи, плохо разрушаемые водой, замедлит процесс гидратации. Это ионы ОН, Р , Р04 и т. п. Анионы карбонатов, сульфатов, оксалатов, склонные к образованию хелатов, большей частью не блокируют поверхность растворяющейся фазы, несмотря на малую растворимость соответствующих соед1нений кальция, а образуют осадки непосредственно в растворе что приводит к увеличению скорости растворения. Интересно отметить, что ионы НСО замедляют процесс растворения и гидратации силикатов кальций, несмотря на менее щелочную реакцио среды. Анионы, образующие с кальцием хорошо растворимые соли, внедряясь в плотную часть двойного электрического слоя, будут способствовать переходу кальция в раствор. Особую роль играет С1 , который и в электрохимических процессах является деполяризатором, замещая ОН на границе раздела фаз, причем концентрация СГ на несколько порядков выше, чем ОН . Но введение в раствор хлоридов щелочных металлов не так эффективна, как добавление хлоридов кальция и, возможно, магния. Магний выведет из состава раствора практически все ОН -ионы, осаждаясь в виде Mg 10H, а кальций более мягко свяжет гидроксильные ноны, сам дольше оставаясь в растворе, понижая его pH и разрушая двойной электрический слой. [c.120]

    Наряду с применением HHrHOHTqpoB коррозии в практике противокоррозионной защиты металлов широко используются различные пассиваторы. Действие последних заключается в изменении свойств поверхности корродирующего металла, в результате которого процесс ионизации подвергается резкому торможению. Причиной такого торможения служит переход металла в пассивное состояние. При обсуждении полной кривой анодного растворения металла (см. рис. 29) было показано, что скорость анодного растворения вследствие пассивации может уменьшиться на несколько лорядков. [c.158]

    В пользу электрохимической гипотезы коррозионно-механического разрушения говорит большая локальная скорость растворения металла, которая выражается в высокой локальной плотности тока коррозии. По существующим в литературе оценкам ток коррозии ювенильной поверхности составляет 1 — 10 А/см , при наличии на поверхности того же металла оксидных пленок ток снижается до 10" — 10" А/см , т.е. до 9 порядков. Исследование з. ектродных потенциалов различных металлов в процессе образования ювенильных поверхностей непосредственно в электролите показало, что степень разблагораживания потенциала определяется свойствами защитных пленок. Чем выше защитные свойства, тем выше степень разблагораживания. Наибольшее смещение в отрицательную сторону потенциала по отношению к нормальному каломельному электроду отмечено у алюминия в 3 %-ном растворе МаС1( до — 1,46 В), у магния — в растворе щелочи (1,19 В — 1,74 В). У железа, никеля и меди в 3 %-ном растворе ЫаС1 потенциал смещался соответственно от —0,47 до —0,6 В от — 0,17 до —0,51 В и от — 0,21 ДО —0,44 В. У ряда титановых сплавов нами получено смещение потенциала при зачистке поверхности, непосредственно в коррозионной среде от (—0,75) (— 0,90) В до (—1,24) -ь (-1,27) В. [c.14]

    По Я. М. Колотыркину [64], важную роль в процессах анодного растворения и ингибирования играет степень гетерогенности поверхности растворяющегося металла. В соответствии с этими представлениями, скорость растворения распределяется по поверхности неравномерно и ...в каждый момент основной вклад вносит растворение относительно небольшого количества очень активных центров... которыми могут быть различного рода выступы, выходы дислокаций и другие места... Представляется, что в блокировке таких центров адсобрироваи-ными молекулами ингибитора и заключается объяснение многократного торможения анодного процесса при малых заполнениях поверхности ингибитором . [c.32]

    В результате разностороннего исследования действия различных ингибиторов коррозии, проводившегося в течение ряда лет С. А. Балезиным и др., выяснены многие важные стороны этого явления. Наряду с другими способами защиты металлов ингибиторы коррозии широко используются при химических методах очистки черных металлов от окалины и ржавчины при химической очистке паровых котлов от накипи. Так как замедлители коррозии уменьшают скорость растворения в кислоте самого металла, но не уменьшают скорости растворения ржавчины или накипи, то применение их в этих случаях сильно ослабляет коррозию. Действие ингибиторов коррозии в этих случаях объясняется тем, что они хорошо адсорбируются на поверхности самого металла, но не его солей или окислов. [c.455]

    Электрохимическое и коррозионное поведение металлов в присутствии ванадатов различно и зависит от состава последних. Поведение ортованадата натрия NaзV04 ничем не отличается от поведения рассмотренных выше ингибиторов с обшим анионом типа М02 (рис. 5,16а), а поведение метаванадата натрия ЫаУОз, наоборот, существенно отличается. Метаванадат по мере увелц-чения его концентрации в растворе непрерывно уменьшает скорость коррозии, не приводя к увеличению ее интенсивности. При концентрации 0,25 моль/л коррозия стали в 0,1 н. N32804 полностью приостанавливается (рис. 5,166). Такое удивительное поведение ингибитора связано с тем, что он не выводит из сферы анодной реакции часть поверхности электрода, пока металл не переходит полностью в пассивное состояние. Растворение происходит по всей поверхности. Этот ингибитор не косвенно, а непосредственно влияет на кинетику анодной реакции эффективность катодного процесса при этом не изменяется, что сказывается на характере изменения потенциала (см. рис. 5,16 6). В широкой области концентраций метаванадат натрия не оказывает влияния на электродный потенциал последний остается таким же, как и в фоновом электролите. При этом различным скоростям растворения соответствуют одинаковые значения потенциала. [c.171]

    Для воздействия на поляризационные свойства используют различные добавки в раствор — ингибиторы коррозии, которые адсорбируются на поверхности металла и уменьшают скорость катодной и (или) анодной реакции. Ингибиторы применяют, главным образом, для кислых растворов электролитов, иногда и для нейтральных. Ингибиторами служат разные органические соединен я, содержащие функциональные группы -ОН, —5Н. —МНа, —СООН и др. Пример влияния органического ингибитора тетрадецнлгидропиридинбромида на поляризационные кривые выделег ия водорода и растворения металла показан на рис. 18.8. Этот ингибитор заметно снижает скорости как анодного, так и катодного процессов. Поскольку воздействие на анодный процесс выражено несколько сильнее, бестоковый потенциал металла сдвигается в оложительную сторону. Ток саморастворения в присутствии ингибитора снижается пример- 0 на один порядок. [c.346]

    Наряду с пассивными пленками, регулирующими скорость растворения впадин и выступов, регулировать процесс полирования в ряде случаев можно путем создания приэлектродного вязкого слоя, обеспечивающего различное падение напряжения во виадинах и на выступах металла, за счет различного омического сопротивления. Как правило, на выступах падение напряження меньше, чем во впадинах, что создает более высокую скорость растворения выступов в сравнении с впадинами. Вместе с тем наличие вязкого слоя меняет условия диффузии нонов металла, которые более облегчены на выступах. Таким образом, создается определенная структура нриан одного слоя с неравномерным о м и ч е с к им и поляризационным сопротивлением на выступах и впадинах. По мере растворения выступов достигается равномерное растворение всей поверхности металла. [c.77]

    При ограниченной растворимости солей на поверхности металла образуется экранирующий осадок продуктов коррозии, вызывающий солевую пассивность и тормозящий коррозию [4]. Например, в растворах НР, НС в 2-фтор-З-хлорпропаноле (кислый растворитель) солевая пассивность наблюдалась на стали 15Х25Т, железе, титане в растворах оксалатов — на железе. Отличие в скорости растворения железа, никеля, меди в каждом из рсстворителей (этаноле, 1дл метаноле, ацетоне) объясняют различным механизмом образования экранирующих осадков (рис. 11.4). [c.339]

    Исследуя растворение различных сортов цинка в серной кислоте, Де-ля-Рив обнаружил, что они разрушаются с различной скоростью и связал это с наличием в них примесей других металлов, образующих на поверхности цинка короткозамкнутые, ми-крогальванические элементы. В зависимости от вида примеси скорость коррозии меняется (табл. 1-6). [c.23]

    Изучение электрохимического поведения (скорости коррозии, поляризационных характеристик) различных граней монокристалла затруднено несколькими обстоятельствами. Во-первых, нет уверенности в том, что исследуется совершенная грань, лишенная микрорельефа. Во-вторых, необходимо учитывать влияние природы раствора, взаимодействующего с поверхностью металла, пока теоретически не осмысленное. По этому поводу можно только заметить, что переход ионов металла в раствор сопровождается адсорбцией компонентов среды (ионов, молекул растворителя), влияющей на скорость электродного процесса (гл. 1П). В-третьих, при текущем процессе взаимодействия со средой исходная, даже совершенная, грань кристалла должна испортиться — на ней должен появиться рельеф, хотя бы отвечающий положению у полукристалла, которое определяет растворение металла посредством повторяющегося шага . Последнее обстоятельство имеет весьма большое значение. [c.54]

    Для проверки предположения, что именно фазовая пленка РвзОд ответственна за поддержание пассивного состояния, было исследовано в таких же условиях поведение порошка прокаленной РезОд. В 100% азотной кислоте при 20 °С раствор пе окрашивался, при 30 °С появлялся слабо-желтый оттенок, становившийся отчетливо желтым при 68 °С. При 75 °С раствор быстро окрашивался в темножелтый цвет, а при 75—77 °С осадок РвдОз, приставший в виде тонкой пыли к стенкам сосуда, растворялся целиком. Нагрев до 90 °С уже пе вызывал никаких изменений, кроме потемнения раствора. Общее количество растворившейся РвзОд было невелико. Э. Хедже [18] делает вывод, что температура активации пассивного железа совпадает с температурой заметного растворения РеаОд в азотной кислоте. Вывод этот подкупает своей простотой и кажущейся логичностью. Однако температуры 68 и 75 °С заметно различны. Кроме того, пет достаточных оснований считать, что скорости растворения порошка РвзОд и окисла на поверхности металла должны совпадать. Следует подчеркнуть, что здесь речь идет именно [c.211]


Смотреть страницы где упоминается термин Поверхность металла скорость растворения различных: [c.484]    [c.60]    [c.269]    [c.291]    [c.77]    [c.291]    [c.515]   
Теоретические основы коррозии металлов (1973) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы растворение

Поверхность металла



© 2025 chem21.info Реклама на сайте