Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теории диффузии образования ионных пар

    Долгое время не удавалось экспериментально подтвердить правильность соотношений (62.12) и (62.16). Это можно объяснить, во-первых, тем, что реальная структура поверхности кристалла оказывается гораздо более сложной, чем предполагалось в теории Фольмера и Эрдей-Груза. Так, на кристаллической поверхности электрода имеются ступени атомной высоты s, выступы, или кинки к, реберные вакансии I и дырки h (рис. 169). Во-вторых, поверхность электрода в ходе электроосаждения непрерывно изменяется, а потому меняется истинная плотность тока, а следовательно, и перенапряжение. В результате обычный метод снятия стационарных поляризационных кривых имеет ограниченные возможности. Наконец, на практике стадия образования зародышей не всегда оказывается наиболее медленной. В зависимости от природы металла и условий опыта процесс электрокристаллизации может лимитироваться диффузией реагирующих частиц к поверхности, химическими реакциями в объеме раствора и на поверхности электрода, стадией разряда, а также поверхностной диффузией разрядившегося иона (адатома) и встраиванием его в кристаллическую решетку. Поэтому количественная проверка изложенной теории оказалась возможной лишь после того, как в 50-х го- [c.331]


    Теория столкновений в растворах. Роль диффузии. Образование активированных комплексов. Влияние природы растворителей на скорость реакции в растворе. Работы Б. Н. Меншуткина. Избирательный характер влияния растворителей. Влияние сольватации метод активированного комплекса для реакций в растворах. Гомогенный катализ. Ионный катализ. Теория промежуточных соединений. [c.217]

    Если оценить Eh, исходя из электростатической энергии ион-диполь-ного взаимодействия, то можно показать, что в некотором интервале расстояний Eh < Ew (несмотря на то, что энергия ион-дипольного взаимодействия при любом расстоянии больше, чем диполь-дипольная энергия на том же расстоянии между частицами). Это неравенство энергий приводит к тг/т < 1 и имеет следствием отрицательную гидратацию, которая, таким образом, рассматривается как результат более быстрого ослабления, диполь-дипольного взаимодействия (пропорционально г 3) по сравнению с ион-дипольным взаимодействием (пропорциональным г 2). Энгель и Герц [267] выделили несколько проблем, которые заложены в этой теории, поскольку не учитываются взаимодействия с другими ближайшими молекулами воды. Они рассмотрели процесс заряжения нейтральной частицы в водном растворе с образованием иона с низкой плотностью заряда, что соответствует переходу от гидрофобной к отрицательной гидратации. Показано, что для этого процесса AS, АН и ДС положительны. Соображения, которые здесь полностью не излагаются, привели этих авторов к выводу, что перечисленные величины имеют положительные значения тогда, когда молекулы воды вблизи иона во всех возможных ориентациях делаются в процессе заряжения частицы, выравнивают по энергиям, т.е. значения их энергий становятся все более близкими между собой. В результате молекул воды в окружении иона, индуцирующего нарушение структуры, принимают весьма разнообразные конфигурации, с равными энергиями и низкими энергетическими барьерами между отдельными конфигурациями, т.е. с низкой энергией активацией диффузии, что и означает отрицательную гидратацию. [c.291]

    В теории диффузии остается не определенным относительный вклад в энергию активации при постоянном давлении энергии скачка иона в дырку и энергии образования дырки. Эту задачу можно было бы решить, если бы имеющиеся данные позволяли определить энергию активации при постоянном объеме, которая совпадает с энергией активации ионных скачков, поскольку число дырок не должно изменяться с температурой при постоянстве объема [76]. Помимо этого, измерения диффузии при постоянном объеме должны дать величину активационного объема, т. е. суммы активационных объемов для образования дырки и скачка. Если эта величина окажется близкой к объему, необходимому для ионного скачка, предложенный механизм диффузии можно будет считать доказанным [77]. [c.32]


    В расчете на 1 моль, а AS и ДЯ — характеризуют только перемещение вакансий. Как и в выражении (5.25), в знаменателе показателя экспоненты, соответствующей образованию вакансий в ионном кристалле, появляется множитель два, так как обычно оба типа вакансий образуются одновременно и в равном количестве. Описанный подход можно использовать для построения теории диффузии, протекающей по другим механизмам. [c.113]

    При изучении роста очень тонких пленок необходимо принимать во внимание возможность ограничения скорости роста процессами переноса по поверхности пленки, а не переносом через пленку. Процессы переноса по поверхности в свою очередь зависят от распределения потенциала в пленке вблизи поверхности. Известным примером такого рода эффектов служит окисление алюминия, когда после образования нескольких первых слоев скорость падает до очень низкого значения. То же наблюдается и при окислении некоторых других металлов. Скорость окисления алюминия определяется стадией перехода алюминия в виде ионов через границу раздела металл—окисел в междоузлия решетки окисла. Согласно теории, при переходе иона металла с поверхности металла в междоузлие окисла, связанного с металлом, ион металла должен преодолеть потенциальный барьер. Этот барьер намного больше того, который приходится преодолевать иону при переходе из одного междоузлия в другое, так что скорость диффузии в самом окисле не определяет скорости окисления в целом. Вероятность того, что такой переход произойдет, определяется выражением где V — частота колебаний атома, Е — высота барьера. Скорость переходов повышается под действием электрического поля, возникающего в результате адсорбции на внешней поверхности ионов кислорода (отрицательно заряженных), поскольку они притягивают ионы А1 через слой окисла. Скорость роста пленки дается выражением [c.168]

    Пластификация полимеров приводит к изменению коэффициента диффузии. Строгой теории, объясняющей концентрационную за-виси.мость коэффициента диффузии, пока нет. Однако из наиболее вероятных причин этого явления в первую очередь рассматривают [173] образование прочных связей между молекулами диффундирующего вещества и полимером, набухание полимера в диффундирующем веществе, изменение свободного объема в полимере. При диффузии газов, ионов и низкомолекулярных веществ в пластифицированном ПВХ дело обстоит, по-видимому, еще сложнее. [c.95]

    Иногда вследствие увеличения предельного тока на поляро-граммах появляются максимумы и пики , сильно искажающие форму нормальной кривой. Явление возникновения максимумов состоит в том, что при отсутствии в растворе поверхностно активных веществ на полярограмме получается резкий скачок в силе тока (полярографический максимум) и только при дальнейшем увеличении потенциала катода высота волны падает до нормальной величины. Следует отметить, что Гейровский дал неправильную теорию максимумов. Только после опубликования работы А. Н. Фрумкина (1934 г.), в которой была высказана новая теория максимумов и были проведены чрезвычайно изящные и наглядные опыты, подтверждающие эту теорию, этот раздел полярографии получил прочную теоретическую основу и с тех пор продолжает развиваться силами почти исключительно советских ученых. Было показано, что причиной увеличения предельного тока является движение ртутной капли, вызывающее размешивание раствора и поэтому уменьшающее толщины диффузного слоя. В результате возрастает диффузия разряжающихся ионов к капельному электроду. Как указывает Б. И. Кабанов, движение поверхности ртути может вызываться двумя причинами во-первых, образованием капли при вытекании струи ртути из капилляра, во-вторых, неравномерной поляризацией капли, приводящей к тому, что в разных точках капли получается различное поверхностное натяжение. Изменение поверхностного натяжения связано со взаимным отталкиванием ионов двойного слоя, растущим с увеличением заряда двойного слоя. Максимумы могут подавляться добавкой веществ, адсорбирующихся на поверхности электрода (желатина, агар-агара, метилового красного и др.). [c.293]

    Величина ионного тока ограничена максимальным давлением, которое можно создавать, не вызывая появления разряда в объеме. Таким образом, стадией, определяющей скорость образования ионов, является не десорбция ионов под влиянием сильного поля, а диффузия газа к острию. Последняя на один порядок величины больше, чем можно было бы ожидать на основании кинетической теории газов, так как молекулы газа, находящиеся вблизи острия, поляризуются и поэтому притягиваются к острию. [c.115]


    Общая теория динамики сорбции была использована для построения теории осадочно-ионной динамики сорбции. Разработана теория динамики сорбции одного компонента [103], а также теория стационарного режима динамики сорбции [104]. Получено, в частности, уравнение профиля стационарного фронта. При осадочно-ионной сорбции с образованием труднорастворимых ионных осадков изотерма осаждения является сильно выпуклой. Это обеспечивает образование очень резких фронтов динамики сорбции. Лурье проведена дальнейшая разработка теории колец Лизеганга [105] и предложен метод количественного анализа ионов на основе явления диффузии определяемого иона в гель с осадите-лем [106]. [c.83]

    Согласно первой теории (Вагнер, Хауффе и др.), малая добавка легирующего элемента должна окисляться с образованием ионов определенной валентности и, растворяясь в окисле основного металла, уменьшать в нем число дефектов решетки. Это приводит к уменьшению скорости окисления, контролируемой диффузией катионов. Скорость диффузии зависит от числа дефектов решетки окисла — междоузельных катионов в-окислах с избытком металла или свободных катионных мест в окислах с недостатком металла. [c.75]

    Рассмотрение механизма диффузии и электропроводности в полупроводниковых кристаллах позволило Вагнеру сформулировать ионно-электронную теорию высокотемпературного параболического окисления металлов с образованием достаточно толстых окисных пленок и дать количественный расчет этого процесса. Ниже приводится в простейшем виде вывод уравнения Вагнера. [c.59]

    Скорость окисления металла определяется не диффузией ионов через образующееся соединение. Так, сульфидирование никеля N1 + 3 = N 5 приводит к образованию пористой, незащитной пленки, скорость роста которой определяется диссоциацией За. Поэтому добавки Сг и Ag к N1 оказывают влияние, обратное предсказываемому теорией Вагнера— Хауффе. [c.88]

    Химическая реакция сплава с кислородом приводит к образованию первого слоя окисла толщиной б порядка мономолекуляр-ного слоя с содержанием в нем Ме и в соотношении с (1 — с). Дальнейший рост окалины происходит в результате проникновения атомов металлов это положение теории не совпадает с общепринятой ионной диффузией) через слой наружу и атомов кислорода внутрь. В ряде случаев диффузия металлов значительно больше диффузии кислорода. Данной теорией рассматривается случай, когда диффузия кислорода через окисел равна нулю, т. е. рост окисной пленки идет только снаружи. [c.89]

    Явление расслаивания зон осадков детально изучено Ф. М. Шемякиным, который показал, что причиной послойных образований является ионообменная реакция между осадком и диффундирующим раствором, и предложил хроматографическую теорию ритмических отложений осадка [151]. Согласно этой теории, исходный раствор при прохождении через зону осадка подвергается хроматографическому разделению. Осадок при этом, выполняя роль носителя, своей поверхностью задерживает один из ионов раствора, другие же ионы уходят вниз (а в чашке Петри направление от центра к периферии), отрываются от зоны осадка и образуют зону отставания . Лишь после насыщения поверхности осадка задержанными ионами последние получают возможность пройти через осадок и в дальнейшем по мере продвижения фронта диффузии, преодолевая зону отставания, образовывать новый слой осадка на некотором расстоянии от первого слоя. Это происходит в зоне, где имеются оба иона, образующие осадок, вследствие чего получается диффузионная хроматограмма, состоящая из ряда различно окрашенных осадочных колец. [c.197]

    Кооперативность процесса переноса заряда ионами в полимерах может учитываться с помощью теории активационных зон [30, с. 25] следующим образом. Энергия, необходимая для перескока частицы, накапливается кинетическими сегментами, окружающими диффундирующую молекулу, и распределяется среди степеней свободы их движения. В случае диффузии частиц, слабо взаимодействующих с полимерной цепью (например, при диффузии молекул инертного газа), энергия активации диффузии равна работе образования молекулярной полости необходимых размеров. В этом случае для коэффициента диффузии О нейтральной частицы получают  [c.48]

    Теория количественного полярографического анализа. Рассмотрим процессы, происходящие на поверхности капли и в слое около поверхности. На поверхности капли при достижении необходимого потенциала происходит разряд ионов. Образовавшийся металл растворяется в ртути, образуя амальгаму. Если в растворе были, например, ионы цинка, то при достижении потенциала —0,97 в начинается выделение атомов цинка на поверхности капли и образование амальгамы. Теперь ионы цинка из раствора вследствие диффузии начнут поступать в приэлектродный слой. Этот процесс диффузии обусловливает, как упоминалось выше, возникновение предельного диффузионного тока, дающего полярографическую волну на вольт-амперной кривой. Рассматривая процесс диффузии ионов к непрерывно растущей ртутной капле, Илькович вывел уравнение для величины диффузионного тока. Вывод этого уравнения ввиду его сложности не приводится. [c.444]

    Гиббс, Кюри, а впоследствии русский ученый Г. В. Вульф при интерпретации явлений, связанных с ростом кристаллов, исходили из связи между формой кристалла и поверхностной энергией всех, его граней. Согласно диффузиониым теориям процесс образования кристаллической грани протекает с бесконечно большой скоростью и поэтому зависит только от скорости подвода вещества к кристаллу из раствора, т. е. от скорости диффузии. В двадцатых годах нынешнего столетия для объяснения роста кристаллов Фоль-м ер предложил адсорбционную теорию, согласно которой частицы кристаллизующегося вещества при достижении поверхности образуют своеобразный адсорбционный слой — двумерное кристаллическое образование, присоединяющееся затем к грани кристалла. Странский считает вероятным возможность образования на растущем кристалле ионных рядов или слоев, сходных с двумерными кристаллическими образованиями Фольмера. [c.226]

    Молодовым [131] было выведено также количественное соотношение между эффективной валентностью и временем с начала пропускания через электрод анодного тока для случая двухстадийной двухэлектронной реакции с замедленной второй и обратимой первой стадиями. Им было, в частности, теоретически показано, что в нестационарном режиме эффективная валентность может отличаться от обычной (п=2) и в том случае, если промежуточные частицы окисляются до состояния конечной степени окисления не в химической, а в электродной реакции. Такой эффект связан с ускоренной диффузией промежуточных частиц от электрода в начальном периоде электролиза из-за повышенной концентрации этих частиц в начальный момент у поверхности металла по сравнению с концентрацией в глубине раствора. На примере растворения меди из амальгамы удалось экспериментально показать [131, 132], что, как этого и требует теория, в начальный момент после включения тока Пэф. максимально отличается от двух и зависит от условий перемешивания раствора. С течением времени Пэф. стремится к двум. К близким выводам пришел также Вагнер [132а]. Гарро [133] использовал данные о начальных значениях эффективной валентности для заключения о промежуточном образовании ионов Ве+ при анодном [c.33]

    Механизм радиационного образования ионных дефектов в кристаллической решетке щелочно-галоидных кристаллов заведомо сложен. Не будем останавливаться на изложении существующих теорий, ограничась указанием на то, что механизмы, предложенные для объяснения процессов возникновения структурных дефектов под действием радиации, можно разделить на электронные (примером может служить многократная ионизация аниона с последующим электростатическим выталкиванием многократно заряженного иона в междоузлие) и происходящие под действием упругих соударений, в частности, сфокусированных самой кристаллической решеткой. Естественно, что передача кинетической энергии и импульса от налетевшей частицы происходит предпочтительно вдоль направлений плотной упаковки атомов в решетке. Подробное, хотя и вполне элементарное рассмотрение, показывает, что если угол между направлением скорости налетающей частицы и кристаллографическим направлением с плотной упаковкой ионов достаточно мал, скажем, лежит в пределах О—30°, то процесс распространения импульса вдоль цепочки ионов приобретает линейный характер происходит фокулировка импульса вдоль определенной прямой. По аналогии с фононами говорят о формировании и распространении фокусона — квазичастиц с весьма малым временем жизни порядка 10 —10 ° с. Фокусоны могут проявляться в кинетических явлениях — диффузии и пластической деформации под действием облучения, при распылении и растворении твердых тел, при внутреннем трении и т. д. Фокусировка столкновений эффективна только при относительно небольших энергиях смещенных атомов порядка 200 эВ, при больших же энергиях удары мгновенно расфокусируются. [c.164]

    Из теории диффузии следует, что с учетом сделанных допущений наклон линий, показанных на рис. 8.8, не должен зависеть от парциального давления кислорода при большой скорости образования ионов по реакции В. Мур и Ли [66] высказали предположение, что это может быть не так, если только поверхностная концентрация адсорбированного кислорода не достаточно, высока, что, очевидно, наблюдается при его повышенных давлениях. Вагнер и Грюневальд [103] по-иному объяснили то же явление, допустив, что скорость лимитируется диффузией (прохождением) электронов и ионизованного кислорода через слой оксида. [c.361]

    Наличие пленки как причины пассивности не выс-ывает сомнений, Однако существуют различные взгляды на строение и действие этой пленки. Наиболее распространенным является. представление о сплошной пленке, полностью экранирующей поверхность и тем самым изолирующей металл от внешней среды. Ионы металла и электроны медленно диффун .ируют через пленку, а потому скорость взаимодействия делается очень малой и лимитируется скоростью диффузии. В ряде случаев образование таких сплошных пленок доказано (АЬОз), и для этих случаев механическая теория пассивирующего дейсгвия правильна. [c.637]

    Однако действительная картина диффузионного процесса при реакции в твердых смесях не всегда соответствует теории Вагнера. Например, при образовании цинковой шпинели по реакции ZnO-f +А120з 2пА1204 качественные опыты показали, что перенос вещества через слой шпинели должен преимущественно осуществляться в результате перемещения иопов Zn + и 0 , т. е. возможно перемещение не только катионов, но и анионов, или ионов Zn + и эквивалентного количества электронов. Встречной диффузии катионов цинка и алюминия при этом не установлено. [c.212]

    Рост кристаллов происходит в результате диффузии образующих кристаллическую рещетку частиц (ионов, молекул) и их ассоциатов из раствора к поверхности растущего кристалла через примыкающий к ней диффузионный слой жидкости. Через этот же слой в обратном направлении движутся молекулы воды, освободившейся после разрушения гидратиых оболочек частиц у границы с твердой поверхностью. Затем происходит ориентированное сращивание достигших поверхности частиц в кристаллическую решетку, механизм которого окончательно не установлен. Предложено несколько теорий кристаллизации, базирующихся на разном механизме образования кристаллической решетки. По-видимому, не следует отдавать предпочтения какой-либо одной из этих теорий, так как каждая из них может быть справедливой для некоторых определенных систем и условий. Обобщающая же теория — дело будущего. [c.244]

    Для объяснения наблюдаемых в практике кинетических закономерностей рост тонких окисных пленок на металлах предложен ряд теорий, основанных на развитии идей Вагнера. Суть этих идей состоит в том, что перенос вещества через окисную пленку может осуществляться благодаря градиенту концентрации вещества по толщине окисла и градиенту электрического потенциала. Наиболее универсальной для тонких пленок является теория Кабрера и Мотта, которая распространяется на область низких температур, когда диффузия ионов сквозь окисную пленку весьма затруднена. Основная физическая идея теории состоит в том, что при образовании на поверхности окисной пленки хемисорбирован-ного кислорода в окисле возникает электрическое поле, появление которого значительно облегчает миграцию катионов к границе окисел - газ. [c.11]

    Дальнейшее развитие эта теория получила в модели автора работ [231, 232], который изучал продукты реакции на межфазной поверхности, состоящие, согласно его данным, главным образом из Снх8, при X равном 1,8-2,0. Первой стадией при возникновении адгезии является образование Снх8. Этот слой может увеличиваться за счет катионной диффузии, то есть переноса ионов металла и свободных электронов через сульфидный слой. На границы поверхности "сера-сульфид происходит реакция  [c.223]

    Ингибирующее действие защитных коллоиднов объясняют [100] тем, что селективная адсорбция уменьшает концентрацию перекиси водорода на каталитической поверхности, что в свою очередь понижает скорость процесса. С этим объяснением согласуется наблюдение, что защитный коллоид препятствует адсорбции ионов, которые индуцируют коагуляцию. Если задерживается адсорбция перекиси водорода катализатором, то екорость реакции замедляется очевидно, сильный защитный коллоид сильнее препятствует адсорбции ионов, чем слабый защитный коллоид, и поэтому действует на каталитическую реакцию в большей степени. Изменение скорости разложения перекиси водорода приписывали также влиянию диффузии [169] реагентов к поверхности коллоида в противовес предположению образования коллоидального комплекса. С точки зрения этой теории нельзя объяснить, почему сильный защитный коллоид ингибирует реакцию больше, чем слабый. [c.327]

    Для правильного понимания глубокого механизма тонохимических стадий приготовления большое значение имеет изучение диффузии и само-диффузни в твердой фазе при помощи радиоизотопов [41]. Для беспрепятственного течения наиболее ])аснространенных типов центростремительных реакций [42], примерами которых может служить образование металлов (Си, N1, Ре), восстановление окислов или пиролитическое разложение карбонатов и оксалатов (рис. 7), требуется непрерывный приток или у] Од материала через слой продукта реакций. В тех случаях, когда этот приток (увод) осуществляется через твердую фазу, а не через норы и трещины, сугцественпое значение имеет вопрос о природе диффундирующих частиц. По теории Вагнера [43] и Мотта [44], при реакциях окислительно-восстановительного типа, в зависимости от электронного строении окисла, контролирующим может быть движение электронов, (-Ь)-ионов металла или (—)-ионов кислорода. На скорость может оказывать влияние также разность потенциалов, возникающая из-за разной подвижности электронов и тяжелых частиц. [c.12]

    Обычно перенапряжение ионизации металла при растворении металлов в активном состоянии имеет низкие значения. Торможение анодного процесса вследствие затруднения диффузии в растворе ионов металла, т. е. концентрационная поляризация, исходя из установленных в электрохимии закономерностей [14, 17, 18], соответствует величине 0,0591g С, для одновалентных ионов или 0,0291д С для двухвалентных ионов (/=25 °С), где С — концентрация (точнее, активность) собственных ионов металла в растворе непосредственно у поверхности металла. Поэтому торможение анодного процесса в большинстве случаев коррозии также относительно невелико. Более значительное торможение анодного процесса может наблюдаться вследствие наступления явления анодной пассивности металла, т. е. резкого торможения анодного процесса при достижении анодом определенного потенциала в результате образования на поверхности анода адсорбционных или фазовых пассивных пленок (обычно имеющих оксидный или гидро-ксидный характер). Механизм и современная теория пассивности рассмотрены в следующей главе. [c.31]

    Добавка нескольких процентов соляной или фосфорной кислоты к серной существенно повышает скорость реакции и обеспечивает практически полное превращение. Механизм этого явления и реакции вообще можно объяснить на основании пленочной теории, по которой зона, непосредственно окружающая каждую частицу перекиси бария, представляет собой относительно неподвижную область, через которую массообмен происходит главным образом за счет молекулярной диффузии ионов и молекул. Хотя степень турбулентности фактически возрастает непрерывно с увеличением расстояния от поверхности частицы, все же можно себе представить, что существует совершенно неподвижная пленка, как это показано на рис. 10. В этой пленке происходит реакция и совершается массообмен исключительно за счет ионной и молекулярной диффузии. Ввиду ограниченной растворимости перекиси бария, ионы водорода, диффундирующие внутрь, вероятно, реагируют вблизи поверхности смеси твердых фаз—перекиси бария и окиси бария—с образованием перекиси водорода и ионов бария, которые затем диффундируют наружу. Если кислотный анион образует нерастворимую бариевую соль, то аииоиы также диффундируют внутрь, что [c.97]

    Дхар и Чаттерджи разработали теорию. ритмических осаждений, значительно отличающуюся от теории пересыщения Вильгельма Оствальда. Согласно послед.ней, полностью игнорируется особое влияние геля, в котором происходят диффузии и осаждения. В предыдущих своих исследованиях Дхар уже принимал, что ритмические осаждения могут зависеть, по существу, от непосредственной пептизации осадка, образованного реакцией в геле при переходе пасладнего в золь. Когда вновь образованное труднорастворимое вещество обогащается до известной степени сильно концентрированным диффундирующим электролитом, происходит внезапная коагуляция вследствие того, что пептизация гелем, в котором происходит ионная реа1кцня, ограничена. Образуется первый ритмический осадок, который снова адсорбирует -золь продукта реакции. Таким образом, формируется зона, свободная от осадка, и раство.р электро- [c.302]

    Другая теория, связанная с именами Карбрера и Мотта, дает объяснение образованию тонких пленок окислов при температурах, когда ионная диффузия еще незначительна, но создание электрического поля делает возможным движение ионов. [c.8]


Смотреть страницы где упоминается термин Теории диффузии образования ионных пар: [c.226]    [c.29]    [c.239]    [c.74]    [c.70]    [c.342]    [c.426]    [c.176]    [c.13]    [c.258]    [c.76]    [c.407]    [c.395]    [c.421]   
Явления переноса в водных растворах (1976) -- [ c.499 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия теория

Ионные образование

Ионные теория образования

Ионов образование

Ионы образование



© 2024 chem21.info Реклама на сайте