Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Донорно-акцепторная связь кислотные свойства

    Таким образом, в периоде слева направо усиливаются кислотные и ослабевают основные свойства водородных соединений. Основные свойства водородных соединений V группы ослабевают с увеличением порядкового номера элемента. Так, фосфин в отличие от аммиака хотя и образует донорно-акцепторные связи с протоном, что приводит к образованию аналогичных аммиаку солей фосфония со многими кислотами, но их прочность уступает соединениям с ионом N14/. Это отличие фосфина от аммиака обусловлено значительно большим радиусом атома фосфора по сравнению с атомом азота. Ослабление основных свойств равносильно усилению кислотных свойств. В VII и VI группах кислотные свойства водородных соединений р-элементов усиливаются по мере увеличения порядкового номера элемента. [c.99]


    Химические свойства воды. Вода — весьма реакционноснособное вещество. Она взаимодействует с окислами металлов и неметаллов, образуя гидраты основного и кислотного характера. Вода обладает амфотерными свойствами. При взаимодействии со щелочами она ведет себя как кислота, а с кислотами как основание. Активные металлы взаимодействуют с водой с выделением водорода. Например, калий и натрий разлагают воду без нагревания, магний при нагревании, а железо при сильном нагревании. В результате наличия в молекуле воды отрицательно заряженных ветвей электронного облака она способна входить в состав координационных соединений в виде лигандов с образованием донорно-акцепторной связи (Си(Н20)4]804-Н20. [c.13]

    По теории Льюиса к кислотно-основным взаимодействиям относятся все реакции комплексообразования, основанные на возникновении донорно-акцепторной связи. В то же время с ее помощью трудно объяснить кислые свойства обычных протонсодержащих кнслот. [c.41]

    Другая область широкого применения кластерной модели — исследование кислотно-основных свойств окисных катализаторов. В качестве параметров, характеризующих льюисовскую кислотность и основность, используют энергии хемосорбционной связи с активным центром молекул, обладающих донорными или акцепторными свойствами, энергии НСМО и ВЗМО кластеров, реже заряды па атомах металла и кислороде. На основе их анализа удается предсказать возрастание донорно-акцепторной силы центров с увеличением степени координационной ненасыщенности центрального иона, изменение кислотных свойств в ряду окислов металлов, влияние щелочных и щелочноземельных металлов на кислотно-основные и каталитические свойства алюмосиликатов. [c.134]

    Таким образом, в периоде слева направо усиливаются кислотные и ослабевают основные свойства водородных соединений. Основные свойства водородных соединений V группы ослабевают с увеличением порядкового номера элемента. Так, фосфин в отличие от аммиака хотя и образует донорно-акцепторные связи с протоном, что приводит к образованию аналогичных аммиаку солей фосфония со многими кислотами, но их прочность уступает соединениям с ионом Это отличие фосфи- [c.120]

    В принципе, следуя по пути расширения взглядов на кислоты и основания, можно считать, что кислотные свойства сопряжены с наличием некоторого электрофильного центра, притягивающего отрицательно заряженные частицы и стремящегося отдать положительно заряженные, а основные свойства - наоборот. Так, Льюис предложил считать кислотой акцептор пары электронов, имеющий подходящую вакантную орбиталь, а основанием - донор, имеющий неподеленную пару электронов. В результате взаимодействия основания с кислотой образуется знакомая нам по разд. 3.7 донорно-акцепторная ковалентная связь  [c.190]


    Таким образом, экспериментальные данные убедительно показывают, что введение в комплекс лигандов, обладающих и-акцепторны-ми свойствами, приводит к усилению кислотной диссоциации протонсодержащих лигандов как в транс-, так и в ч с-положении. Вывод о том, что при замене а-донорного лиганда на п-акцепторный происходит усиление кислотных свойств комплексов, может использоваться для качественного предсказания кислотных свойств еще неизученных соединений. Сущность этого явления заключается в электронных смещениях в комплексе в целом. Поскольку лиганды, обладающие л-акцепторными свойствами, всегда являются слабыми ст-донорами, то усиление кислотных свойств под влиянием л-акцепторных лигандов, несомненно, является суммарным эффектом, складывающимся из меньшего смещения электронной плотности на центральный атом по <т-связи и смещения электронной плотности от центрального атома на я-акцепторный лиганд по л-связи. [c.276]

    Наличие в активных центрах в пространственной близости окислительно-восстановительных и кислотно-основных центров позволяет осуществлять элементарные акты сопряженных процессов. Так, протонизация окислительновосстановительного центра усиливает его акцепторные способности, а окисление центра может способствовать его депротонизации. Образование водородных и других донорно-акцепторных связей также влияет на окислительновосстановительные свойства реагентов. Другая функция таких связей - прецизионная ориентация каталитических групп на всех стадиях процесса в активном центре. [c.551]

    Из схемы видно, что фтороводород в водном растворе отщепляет положительные ионы водорода, т. е. проявляет кислотные свойства. Этому процессу способствует и другое обстоятельство ион кислорода имеет неподеленную электронную пару, а ион водорода — свободную орбиталь, благодаря чему образуется дополнительная ковалентная связь (донорно-акцепторная). [c.138]

    Силовые характеристики, позволяя оценить силу кулоновского взаимодействия отрываемого электрона с атомом (или ионом п-ж валентности), очевидно, прямо связаны с донорно-акцепторными (кислотно-щелочными) свойствами атомов (и ионов). Одиако величины характеризуя нейтральные ато- [c.48]

    Если отвлечься от направленности электронных эффектов, то изменение 0-донорной и я-акцепторной способности заместителей в основном сказывается на эффективном заряде центрального атома увеличение о-донорных свойств заместителя приведет к падению величины ж уменьшению кислотных свойств группы КН в комплексе, а увеличение я-акцепторных свойств заместителя по тем же причинам должно вызвать увеличение кислотных свойств этой группы. Связь ненаправленных эффектов лигандов с изменением эффективного заряда центрального атома отмечалась в работе [68]. Примером влияния о-донорной способности заместителя на кислотные свойства воды может служить сравнение кислотных свойств изомерных аквокомплексов Р1(П)  [c.75]

    По мере увеличения степени окисления металла устойчивость аквакатионов возрастает из-за увеличения прочности связи М—О, образующейся по донорно-акцепторному механизму, и уменьшения прочности связи О—Н в молекулах воды, входящих в состав аквакатиона (сильное отталкивание между протонами связанной воды и ионами металла, несущими большой заряд). Поэтому аквакатионы металлов в степени окисления (+11) и больше уже проявляют кислотные свойства. [c.181]

    В результате кислотные характеристики катализатора — число и сила кислотных мест — уже не могут однозначно определять его каталитические свойства. Еще резче это проявляется в случае катализаторов, обладающих свойствами апротонных кислот или оснований, так как донорно-акцепторное взаимодействие более специфично, и изменения энергии связи не могут быть выражены в виде зависимости от одной функции типа силы кислотных центров. [c.450]

    Кроме кислотно-основ ных многие растворители обладают и другими свойствами, представляющими интерес для аналитической химии. Довольно большая группа растворителей образует координационные связи с частицами растворенного вещества. Это так называемые координирующие растворители. Их подразделяют на донорные и акцепторные. До-норные образуют координационные связи с акцепторами электронных пар, а акцепторные с их донорами. Донорные свойства проявляют многие диполярные акцепторные растворители — они более энергично сольватируют катионы. Акцепторными являются многие протолитические растворители — более энергично они взаимодействуют с анионами. Эта классификация также не безусловна, так как в зависимости от условий взаимодействия и партнера растворитель может проявлять как донорные, так и акцепторные свойства. [c.36]


    Наиболее важным в учении Д.И. Менделеева является то, что им заложены научные основы теории химического взаимодействия между компонентами раствора [38-39]. В настоящее время это взаимодействие учитывают на основе представлений о сольватации (гидратации). Учение о растворах интенсивно развивается получено много важных результатов и обобщений. К ним относятся установление донорно-акцепторпого механизма сольватации ионов, единой донорно-акцепторной природы межмолекулярных водородных и ион-молекулярных связей, кооперативного характера водородных связей обнаружение гидрофобных и сходных с ними (в неводных растворах) эффектов, отрицательной гидратации (сольватации) и других структурных эффектов разработка методов определения разнообразных свойств растворов, установление их взаимосвязи создание количественной теории сольватации, диссоциации электролитов выявление роли растворителя построение единой шкалы кислотности и другие. [c.22]

    В кетонах (ацетоне) сила карбоновых кислот снижается на 8 единиц р/С, а фенолов на 3—4 единицы р/С. Это можно объяснить различными видами образования водородных связей в спиртах и кетонах. Наличие дополнительной водородной связи в спиртах приводит к увеличению кислотности карбоновых кислот [1]. Ацетон снижает силу оснований еще в большей степени, чем кислот [89]. Сила оснований в 90%-ном ацетоне уменьшается на б—8 единиц р/С, в то время как сила ароматических карбоновых кислот уменьшается приблизительно на 5 единиц, а фенолов на 3—4 единицы. Это объясняется тем, что у кетонов акцепторные свойства более выражены по сравнению с донорными. В среде метилэтилкетона и метилизобутилкетона определены р/Св моно-, ди- и триоктиламинов полученные [90] значения равны 4—5. [c.29]

    В первых разделах этой главы мы показали, что сольватационные явления в физическом аспекте не однородны, поскольку они обусловлены разными независимыми свойствами среды. Если упростить проблему и свести всю специфическую сольватацию к образованию водородных или аналогичных им акцепторно-донорных связей между молекулами растворителя и растворенного вещества, то можно принять, что способность растворителей к специфической сольватации обусловлена двумя свойствами — общими кислотностью (электрофильностью) и основностью (нуклеофильностью) растворителей. Что касается неспецифической сольватации, то с точки зрения электростатического подхода, упомянутого в разделе 111,2, она также определяется двумя независимыми свойствами среды, выраженными через соответствующие функции от диэлектрической проницаемости и показателя преломления. В формальном подходе, развитом Коппелем и Пальмом [72, с. 203 191], каждое из перечисленных свойств среды связывается с соответствующим формальным типом взаимодействия между растворителем и растворенным веществом. Соответственно этому, необходимо знать для каждой среды значения четырех параметров типа X. Численные значения этих параметров определены следующим образом. [c.106]

    Имеются все же и такие соединения, которые не могут ни отщеплять, ни присоединять протоны, однако обладают свойствами, сходными со свойствами протонных кислот и оснований. Эти вещества, например, вызывают вполне определенное окрашивание индикаторов. Они называются апротонными кислотами и основаниями. Их поведение объясняет теория, созданная в 1923 г. Льюисом. По этой теории вещества, имеющие свободные электронные орбитали и тем самым способные принять на эти орбитали непо-деленные электронные пары, считают кислотами. Вещества же, имеющие неноделенные электронные пары, которые могут быть использованы для образования химической связи, считают основаниями. При кислотно-основном взаимодействии между кислотами и основаниями образуется донорно-акцепторная связь. [c.41]

    Хотя можно было предполагать, что эти вещества будут участвовать в комплексообразовании с солями металлов за счет образования Р=0-груп-лами донорно-акцепторных связей аналогично фосфатам, однако эти отношения могли быть и иными. В таких веществах СНа-группа, активированная двумя фосфорильными группами, естественно, должна была обладать кислотными свойствами. В соответствии с этим комплексы могли быть построены по ацетилацетонатпому типу  [c.251]

    Положение кремния и фосфора в Периодической таблице обусловливает также нарастание кислотных свойств при переходе от Si к Р. Так, увеличивается реакционная способность. Другим примером изменения кислотно-основных свойств в ряду Si—Р может служить существование такого соединения, как SiPjOy, в котором кремний играет роль основного катиона по отношению к фосфору. Интересно отметить, что в структуре соединения SiPgO,, как и в стишовите (SiOg), кремний находится в шестерной координации. Эту особенность можно объяснить образовав(ием s/j d -донорно-акцепторной связи между кремнием и кислородом, что определяет октаэдрическую координацию кремния. [c.88]

    В элементарном акте кыслогно-осмовкой реакции происходит перенос протона или же образование гетерополярных донорно-акцепторных связей. В протолитических реакциях аталитичеакая активность зависит от легкости передачи катализатором протона реагенту в случае кислотного катализа или отрыва катализатором протона от реагента в случае основного катализа. По протолитическому механизму протекают, по-видимому, реакции крекинга парафинов, цикланов, полимеризация некоторых олефинов, алкилирование ароматических соединений. Ряд реакций идет с участием льюисовских кислотных центров скелетная изомеризация олефинов, дегидратация спиртов, гидратация и гидрохлорирование ацетилена, элиминирование галоидоводородов из галоидал-килов, полимеризация низших олефинов. Основанием для отнесения реакций к указанному типу служит то, что на поверхности катализаторов, ускоряющих эти реакции, с помощью различных физических методов обнаружено существование акцепторных центров, ответственных за хемосорбцию реагентов. Кроме того, для ряда реакций обнаружена связь активности катализатора с акцепторными свойствами катиона. Для протекания некоторых гетеролитических реакций необходимо наличие как акцепторных, так и донорных центров. [c.12]

    Пропускание через катализатор Р1 - А12О3 - Р, отравленный сернистыми и азотистыми соединениями, углеводорода, не содержащего серы и азота, приводило к восстановлению активности до первоначального уровня. Те же результаты были получены при обработке катализатора водородом при повышенной температуре (450-500 °С). Таким образом, в изученных условиях отравление катализатора - А12О3 - Р было обратимым. В подобных концентрациях и условиях сера является ядом для данного катализатора в реакции дегидрирования, связанной с действием металлических центров, тогда как азот не влияет на его дегидрирующие свойства. Токсичность соединений серы и азота в виде сероводорода и аммиака объясняется взаимодействием этих соединений с поверхностными атомами металла и донорно-акцепторными центрами фторированного оксида алюминия. Следует предположить, что сера образует с платиной соединения, обладающие пониженной активностью в реакции дегидрирования в данных условиях. Что касается азота, то отсутствие наблюдаемого эффекта в реакции дегидрировакия циклогексана связано с превращением аммиака (в присутствии воды) в ион аммония, экранированная структура которого делает его нетоксичным по отношению к платине. Кроме того, большая часть аммиака должна связываться кислотными центрами катализатора. Слабое влияние серы при ее массовой доле до 0,01% на изомеризацию н-гексана или н-пентана на алюмоплатиновом [c.87]

    Химические свойства. В водных растворах пероксида водорода образуются молекулярные соединения состава Н202-2Н20 < л = —50,2°С) за счет образования водородных связей НаО- -Н—0—0—Н---0Н2, переходящих в донорно-акцепторные при диссоциации Н2О2 по кислотному типу  [c.236]

    С кислородом халькогены (S, Se, Те) образуют два ряда оксидов— ЭО2 и ЭО3 оба имеют кислотный характер. Кислоты типа Н ЭОз неустойчивы, проявляют окислительные и восстановительные свойства. Такой же двойственный характер у их солей и оксидов ЭО . Окислительное число элемента в этих соединениях -f 4, а число парноэлектронных связей три, одна из которых донорно-акцепторная (гл. III, 11). Например, в SO2 и в H2SO3 сера имеет три поделенные пары электронов и одну неподеленную. [c.306]

    Многие физические свойства амидов и имидов могут быть поняты с точки зрения делокализации неподеленной пары электронов азота на я-электроны карбонильной группы. Этот эффект приводит к тому, что связь С (О)—N до некоторой степени имеет свойства двойной связи (кратность связи в амидах да 1,5, в ими-дах Л 1,3). Вместе с тем возникает 1,3-диполь, в котором азот обладает частичным положительным зарядом, а кислород — частичным отрицательным. Планарная природа амидной группы и существование конфигурационных изомеров также являются следствием частично непредельного характера связи. Вместе с тем донорно-акцепторные свойства амидной группы, проявляющиеся в кислотно-основных взаимодействиях, в склонности к комплексооб-разованию, а также в тенденции к ассоциации, являются следствием ее биполярного строения. Универсальность амидной группы в образовании частичных связей между собой и с многими другими функциональными группами в значительной мере определяет структурное многообразие производных биологически важных белков (см. части 23 и 24). [c.426]

    Нет такого единственного параметра, который можно. было бы эффективно применять ко всем типам явлений, меняющихся с растворителем. Это связано с тем, что процесс сольватации может одновремекно включать несколько механизмов взаимодействия. Двумя важнейшими свойствами растворителя являются донорная (нуклеофильная, основная, катион-сольватирующая) способность и акцепторная (электрофильная, кислотная, анион-сольватирующая) способность, с точки зрения которых взаимодействия растворенное вещество — растворитель можно рассматривать как кислотно-основные реакции в самом широком смысле этого слова. Большинство используемых растворителей практически амфотерно, что не позволяет найти корреляцию между их донорной и акцепторной силой. [c.165]

    Приведенные данные о реакциях ГАОС с протонодонорными соединениями, и прежде всего с водой, открывают ранее не известную область комплексообразования в этих системах. Отличительными особенностями образования донорно-акцепторных комплексов подобного типа являются сохранение металлоорганической функции (согласно представлениям координационной химии непереходных элементов [75] вследствие взаимного влияния лигандов связь А1—С должна даже усиливаться) и их слабая бренстедовская кислотность. Последний из названных признаков отличает рассматриваемую группу комплексов, особенно комплексов ГАОС с водой, от традиционных кислот Бренстеда и Льюиса. Очевидно, не последнюю роль в проявлении кислых свойств комплексов играет нуклеофильность оснований (мономера), с чем и связано появление таких свойств, как селективность действия. Помимо дальнейшего всестороннего изучения явления комплексообразования ГАОС полученные результаты стимулировали широкое использование комплексов в промышленном электрофильном катализе. Актуальность подобных работ, имея в виду ограниченные возможности AI I3 и возрастающий дефицит в нем, несомненна. Ряд удачных решений (разработка технологии получения бутилкаучука и полиизобутнленов и неплохие перспективы в синтезе алкилпроизводных ароматических углеводородов и т. д.) вселяют надежды на плодотворность дальнейших усилий по внедрению новых катализаторов в промышленность. [c.12]

    Кремний в большинстве его соединений является явно электроположительным но сравнению с углеродом и кислородом. Полинг [316] установил относительные электроотрицательности кремния (1,8), углерода (2,5) и кислорода (3,5). На основании нредноложения, что ионный характер ковалентной связи обусловлен неодинаковым распределением электронов, было предложено два эмпирических уравнения, которые связывают ионный характер связи с различной электроотрицательностью участвующих в связи атомов. В табл. 22 сравнивается ионный характер связей кремния и углерода с другими атомами по Полингу [316] и Хэнпею и Смиту [189]. Явно выраженный ионный характер связей кремний— элемент по сравнению с соответствующей связью углерод —элемент очевиден. Заслуживает внимания предсказанный частично ионный характер связи кремний-кислород, составляющий 37—51%, особенно, если сравнивать со связью углерод — кислород, ионный характер которой равен 20 —22%, и со связью углерод — углерод, по существу неионной. Предполагают, что большая доля ионного характера связи является причиной многих свойств полисилоксанов, таких, как термическая стабильность, легкость кислотной и щелочной каталитических перегруппировок, оптических свойств [202, 468, 489]. Однако связь кремний — кислород, хотя и значительно более полярная, чем связь углерод—кислород, вероятно, является менее ионной, чем можно было предположить, исходя из существования донорно-акцепторной — л-связи кремния с кислородом. Последний эффект, который должен быть весьма существенным (см. стр. 9), не учитывается в эмпирическом уравнении, применяемом для установления соответствующего ионного характера связи. [c.197]

    Механизм адсорбции непредельных и ароматических углеводородов на многих оксидных катализаторах рассматривается в рамках донорно-акцепторного взаимодействия, в котором катализаторы, содержащие электрондефицитные центры, выступают в роли льюисовских кислот (акцепторов электрона), а углеводороды с кратныкга тг-связями - в роли оснований. При таком рассмотрении следует ожидать, что прочность адсорбции углеводородов, а следовательно, направление и скорость их окислительных превращений должны зависеть от кислотно-ос-новных свойств поверхности катализатора. В работе [10] экспериментально показано, что направление окислительного превращения пропилена на бинарных оксидных катализаторах зависит от кислотно-основных свойств этих катализаторов. В качестве характеристики кислотных свойств поверхности катализатора использовали скорость изомеризации бутилена-1 в бутилен-2, происходящей с участием центров кислотной природы. Степень кислотности оценивали по температуре, при которой достигалась скорость образования цис- и транс-бугнпвиоъ 2 [c.14]

    Пероксикислоты могут образовывать ассоциаты, как за счет типичных для кислот водородных связей, так и по донорно-акцепторному механизму с участием внешнего пероксидного кислорода, сочетающего в себе электрофильные и нуклеофильные свойства. Некоторые выводы о природе кислотно-основных ассоциатов могут быть сделаны на основании спектроскопических исследований [251, 256—258] и квантовохимичеоких расчетов [258—262]. [c.62]

    Растворители можно разбить на доноры электронной пары (ДЭП) и акцепторы электронной пары (АЭП) в зависимости от их химического строения и химических свойств [65]. К сожалению, некоторые растворители нельзя отнести ни к той, ни к другой категории например, алифатические углеводороды не обладают свойствами ни ДЭП, ни АЭП. Растворители-ДЭП преимущественно сольватируют молекулы или ионы, являющиеся акцепторами электронной пары. Обратное справедливо для растворителей-АЭП. В этом отношении большинство взаимодействий растворенного вещества с растворителем можно рассматривать как обобщенную реакцию льюисовой кислоты с льюисовым основанием. Полярные молекулы растворенного вещества всегда 1 еют основный центр с повышенной электронной плотностью и кислотный центр с пониженной электронной плотностью. Для количественной оценки донорной и акцепторной эффективности растворителей Гутманн предложил так называемые донорные числа ОМ и акцепторные числа ЛЛ [65] см. разд. 2.2.6 и табл. 2.3 и 2.4. Благодаря способности образовывать координационные связи растворители-ДЭП н растворители-АЭП в общем случае хорошо ионизируют растворенные вещества (разд. 2.6). [c.111]

    В своих работах А. И. Шатенштейн [43], критикуя взгляды М. И. Усановича на кислотно-основное взаимодействие, считает, что образование водородной связи является уже проявлением кислотно-основных свойств. Согласно А. И. Шатенштейну, основание— электронно-донорное вещество, обладающее сродством к протону кислота — электронно-акцепторное вещество, в равновесной реакции которого с основанием участвует водород. Кислота соединяется с основанием или отдает ему протон . Однако формулировки, данные А. И. Шатенштейном, не указывают на условность понятия кислоты и основания. [c.15]

    В табл. 4.9 приведены гутмановские акцепторные числа (AiV) наряду с величинами 2 Косовера и Ет Димрота — Рейхардта, характеризующими акцепторные свойства растворителей. Интересно отметить по данным этой таблицы, что в ряду растворителей с низкими значениями AN акцепторная способность сравнительно полярного диэтилового эфира ниже, чем неполярных растворителей, таких, как бензол и тетрахлорид углерода. Полярные растворители, содержащие кислотную С—Н-связь, такие, как дихлорметан, хлороформ и формамид, имеют среднюю акцепторную способность растворителями с высокими АИ являются спирты, вода и кислоты. Данные табл. 4.9 показывают, что числа АН следуют в такой же последовательности, как и величины Ет и 2. Кроме того, между величинами АИ и теплотами сольватации некоторых анионов, например хлорид-иона и Ре(СК)5 , имеется почти линейная корреляция. Из приведенных данных также видно, что акцепторные свойства типичных донорньк растворителей могут различаться. Экспериментально определяемые величины донорной способности таких растворителей устанавливаются по теплотам сольватации хлорида сурьмы(У) однако (особенно в случае растворителей с низкой донорной, но высокой акцепторной способностью) это может приводить к неправильной оценке донорной способности. Значение величин АИ позволяет в этом случае провести оценку донорной способности более точно. [c.59]

    Изучение этих специфических форм и корреляций между их химическим и электронным строением, с одной стороны, и их реакционной способностью, с другой — одна из центральных задач теории катализа. В сколько-нибудь общем виде она пока далека от разрешения, хотя можно считать установленной роль определенных форм в отдельных группах реакций. Так, например, при изучении различных органических реакций на алюмосиликатных катализаторах на основании химических данных довольно давно пришли к выводу о существовании на их поверхности бренстедтовских протонных и люисовских апротонных кислотных центров. При катализе промежуточно образуются хемосорбированные карбониевые ионы и комплексы, связанные с поверхностью водородными и акцепторно-донорными связями. Колебательные, электронные и ЭПР- овские спектры хемосорбированных молекул на алюмосиликатах, особенно обстоятельно изученные в Советском Союзе Терениным и его сотрудниками [191 и за рубежом Лефтиным с сотрудниками [201, подтвер- дили эти выводы. Они показали, что при хемосорбции на этих катализаторах в зависимости от характера акцепторно-допорных свойств молекул (и от наличия протонных центров или их замещения ионами щелочных металлов) образуются типы поверхностных соединений, указанные на следующей схеме  [c.52]


Смотреть страницы где упоминается термин Донорно-акцепторная связь кислотные свойства: [c.568]    [c.203]    [c.8]    [c.422]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Акцепторная РНК

Донорно-акцепторная связь

Кислотные свойства

Связь акцепторная

донорные



© 2024 chem21.info Реклама на сайте