Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектр и структура температура плавления

    Читая работы классиков органической химии, невольно обращаешь внимание на то, с какой тщательностью и любовью описывают они полученные органические вещества, сколько внимания уделяют в этих описаниях очистке и характеристике веществ. В современных работах эта часть выглядит суше и лаконичнее для каждого вновь полученного вещества принято приводить данные его элементного анализа, брутто-формулу приводят также точки плавления и кипения, для жидкостей — показатель преломления. На основании данных, получаемых с помощью современных физико-химических методов исследования (оптических спектров, ядерного магнитного резонанса, масс-спектрометрии и др.), обычно удается составить представление о структуре вещества, не прибегая к классическим химическим методам установления строения, т. е. к постепенной деградации сложного вещества и исследованию получающихся при этом осколков. Такое описание создает зачастую у начинающего химика ложное представление, что современные методы исследования избавляют его от необходимости тщательной химической работы (прежде всего имеется в виду чистота препарата), чго эти новые методы якобы сами по себе способны дать правильный ответ. Изучающему химию важно внушить с самого начала, что современные методы исследования не исключили тщательности в его работе, а, наоборот, подняли требования к чистоте, индивидуальности органического вещества. Многие препараты, полученные по старым методикам и в свое время описанные как индивидуальные — при исследовании, например, методами хроматографии,— оказываются смесями. Между тем правильный анализ, точная температура плавления, правильная спектральная характеристика — все это может быть получено только при работе с хими- [c.354]


    Поскольку строение молекулы СО и N1 аналогично, сходны и их физические свойства очень низкие температуры плавления (для СО —204 °С) и кипения (—191,5/С) стандартные энтропии близки [для СО 198 Дж/(К-моль), N2 199 Дж/(К-моль)] в твердом состоянии оксид углерода (П), как и азот, существует в виде двух модификаций (кубической и гексагональной) плохо растворяются в воде и т.д. Сходство проявляется также в структуре спектров СО и N2. [c.439]

    Остаются еще, конечно, и другие характеристики вещества его спектры, цветные реакции, некоторые особенности химического поведения. Однако, во-первых, они обычно менее индивидуальны и характерны для данного соединения, во-вторых, далеко не для всех соединений с известной структурой описаны в литературе (в отличие от двух самых распространенных температуры плавления и удельного вращения). Таким образом, заочная идентификация соединения по литературным данным — вещь малонадежная. Совсем другое дело — держать в руках два образца неизвестного вещества и известного, устроить им, так сказать, очную ставку. В научной литературе это называется идентифицировать вещество путем прямого сравнения с заведомым образцом . Здесь возможности для надежной идентификации резко расширяются. [c.57]

    Когда мы говорим, что две структуры изометричны, то подразумевается, что они имеют одинаковые скалярные свойства и сравнимые межатомные расстояния в них идентичны. В силу последнего обстоятельства изометрические структуры должны иметь одинаковые длины связей, величины валентных углов и т. д. Следовательно, скалярные свойства и межатомные расстояния изометрических соединений должны быть идентичными. Энантиомеры, будучи изометричными, имеют точно совпадающие скалярные свойства, включая температуру плавления, температуру кипения, плотность, ИК- и УФ-спектры, растворимость и т, д. [c.156]

    В книге, состоящей из 40 глав, основное место, естественно, уделяется описанию различных методов исследования полимеров. Представлены все методы определения молекулярных весов полимеров, их молекулярновесового распределения, обсуждаются разнообразные спектральные методы, применяющиеся для анализа строения и структуры гомо- и сополимеров УФ-, ИК-, КР-спектро-скопия, эмиссионная спектроскопия, спектроскопия ЯМР, масс-спектроскопия, спектроскопия ЭПР, нейтронное рассеяние, аннигиляция позитронов. Ряд глав посвящен хроматографическим методам, таким, как газовая и жидкостная хроматография, в том числе и при высоких давлениях, тонкослойная хроматография, ионообменная хроматография, ситовая хроматография, включая гель-про-никающую хроматографию, хроматография с обращением фаз. Методы анализа структуры полимеров обсуждаются при рассмотрении электронной микроскопии, рентгеноструктурного анализа, дифракции электронов и ряда других методов. Физические свойства полимеров оцениваются с помощью таких методов, как дилатометрия, определение температур плавления и стеклования полимеров, их электрических характеристик, анизотропии, диффузии и поверхностного натяжения. Представлены также методы исследования различных видов деструкции полимеров. [c.6]


    Два соединения можно считать идентичными, если они имеют одинаковые физические свойства температуры плавления и кипения, показатель преломления и т. п. Чем больше измерено физических свойств, тем убедительнее доказательство. Один масс-спектр равноценен измерению многих физических свойств, поскольку он указывает относительные количества большого числа различных фрагментов. Если измерен масс-спектр неизвестного соединения и если он идентичен спектру ранее описанного соединения с известной структурой, то можно сделать совершенно определенный вывод, что эти два соединения идентичны. [c.396]

    Степень кристалличности полимеров сильно зависит от состава, а при переходе из аморфного состояния в кристаллическое и наоборот существенным образом меняются и частоты, и интенсивности полос поглощения. Анализ образцов кристаллической структуры следует проводить при температуре выше температуры плавления полимера. Если модельное соединение имеет кристаллическую структуру, то это не означает, что она аналогична кристаллической структуре полимера, поэтому спектры должны быть получены для образцов в расплавленном состоянии. [c.226]

    Перекристаллизация до достижения постоянной температуры плавления — вероятно, самая простая методика очистки и характеристики чистоты твердых кристаллических веществ. Обычно этого бывает вполне достаточно, но в ряде случаев применение этой или какой-нибудь другой характеристики гомогенности вещества но одному единственному критерию может привести к серьезным ошибкам. Так, например, образование смешанных кристаллов может сильно затруднить разделение двух веществ, в то же время четкая температура плавления, не меняющаяся при перекристаллизации, будет создавать видимость чистоты вещества. Необходимо использовать, по крайней мере, два метода очистки, например хроматографию и кристаллизацию, при этом в первом случае можно менять адсорбенты, а во втором — растворители для перекристаллизации. Чтобы выявить скрытые смеси, проводят операции до тех пор, пока не перестанут изменяться все физические свойства, которые могут быть определены. Практически обычно добиваются постоянства температуры плавления и оптического вращения (для жидкостей — температуры кипения и показателя преломления), а также прекращения изменений тонкой структуры ИК-спектра. Если это возможно, то дополнительно проводят хроматографирование на бумаге (до получения одного пятна в разных системах растворителей) и сравнение экспериментальных и расчетных данных при противоточном распределении. [c.29]

    В тех случаях, когда известна температура плавления полученного производного, можно воспользоваться таблицами, приведенными в литературе. Если же данные о температуре плавления вещества отсутствуют, то у химика в руках оказывается, по существу, новое неизвестное соединение, которое необходимо охарактеризовать. Часто для установления химической структуры веществ могут оказаться полезными таблицы физических констант, например показателей преломления. Для более точной идентификации спектр неизвестного соединения необходимо сопоставить с имеющимися в литературе сведениями об ИК, ЯМР- и (в ряде случаев) масс-спектрах. Спектральные данные сравнивают так же, как отпечатки пальцев. [c.162]

    Образование Н-связи в растворе или в чистом веществе изменяет большинство физических и некоторые из химических свойств соединения. При ассоциации свойства вещества обычно меняются в такой степени, что поведение ассоциированных соединений требует специального рассмотрения. Это не представляется удивительным, так как образование Н-связи может изменить не только массу, размеры, форму частиц и расположение отдельных атомов, но и электронную структуру функциональных групп. Наиболее важными или чаще всего наблюдаемыми эффектами являются смещение частоты в ИК-спектре и в спектре комбинационного рассеяния (КР), изменение температур плавления и кипения, изменение растворимости в результате возникновения Н-связи между растворенным веществом и растворителем, отклонение от законов идеальных газов и идеальных растворов, изменение диэлектрических свойств и электропроводности и смещение сигнала протонного магнитного резонанса. В некоторых случаях (как правило, при наличии сильных межмолекулярных связей) изменениям подвергается и ряд других свойств, многие из которых были использованы для исследования ассоциации. К числу этих, менее существенных свойств принадлежат плотность жидкости и пара, молярный объем, парахор, вязкость, электронные спектры, а также теплопроводность и скорость распространения звука. [c.15]

    Исследование спектров ЭПР показало, что в облученной целлюлозе [231, 315] и других аналогичных полимерах с высокой степенью кристалличности [231, 315—317] образуются очень устойчивые свободные радикалы. По-видимому, кристаллическая структура, характеризующаяся нали шем большого числа водородных связей, защищает эти радикалы от действия различных реагентов, затрудняя их проникновение или препятствуя их взаимодействию со свободными радикалами. Сигнал ЭПР быстро исчезает при нагревании образцов до температуры, близкой к температуре плавления кристаллитов, а также в присутствии воды [315 ]. Присутствие этих радикалов в облученных образцах—наиболее вероятная причина деструкции, протекающей в целлюлозе и пектинах после прекращения облучения [318, 319], и реакций инициирования облученной целлюлозой привитой сополимеризации различных мономеров [312, 315]. [c.116]


    Разделенные изотопы также находят применение в спектроскопии и в физике твердого тела [1169]. Разницы в массах изотопов вызывают колебательные и вращательные изотопные эффекты в молекулярных спектрах. Разнообразные интересные спектроскопические эффекты вызваны разницей в значениях ядерного спина, магнитного момента и электрического квадрупольного момента для различных изотопов. Изучение этих эффектов очень трудно и иногда невозможно без наличия образцов, сильно обогащенных определенным изотопом. Исследование изотопных сдвигов в оптических спектрах атомов [670, 1170, 1847] дает возможность получить информацию о распределении заряда в ядрах различных изотопов и, следовательно, о размере, форме и структуре ядра. Многие из объемных свойств твердых тел зависят от масс атомов, и хотя эти эффекты малы и трудноопределимы, они изучались при рассмотрении электрической проводимости, температуры плавления, удельного объема, удельной теплоемкости и термоэлектродвижущей силы [1346]. Исследование в области сверхпроводимости показало, что критическая температура обратно пропорциональна атомной массе [ИЗО]. Методом дифракции рентгеновских лучей было рассмотрено различие кристаллических решеток LiF и LiF. Оказалось, что решетка LiF меньше на коэффициент 1,0002. Образцы разделенных изотопов нашли применение в качестве источников излучения. Они могут быть использованы для получения монохроматического излучения и, таким образом, пригодны в качестве эталонов длин волн и точного измерения длины. [c.462]

    На основании масс-спектров не удается однозначно установить структуру побочного продукта циклизации диамина 532в. Однако из спектра очевидно, что этот продукт является мономером. Гидролиз и ацетилирование последнего приводят к соединению, которое по данным ИК-спектров и температуре плавления является изомером тетраацетата 536. Однако из-за недостатка вещества окончательного решения в пользу одной из двух возможных структур сделать не удалось. Остается еще рассмотреть продукты циклизации 537, 538 и 540 п = 12). Гидролиз и ацетилирование первых могут дать тетраацетат 539, а третьего — тетраацетат 536. Для побочного продукта циклизации диамина 532в по стерическим причинам возможна структура 537 или 538 п — 12) возможно также, что он представляет собой смесь этих изомеров. [c.167]

    Распределение и структура парафиновых боковых цепей в тяжелых нефтяных фракциях изучены совершенно недостаточно. Присутствие длинных парафиновых боковых цепей нормальной (линейной) структуры (выше С а) по крайней мере в товарных смазочных маслах с низкой температурой застывания, по-пидимому, невозможно. Известные алкиларомати-ческие и циклопарафиновые углеводороды с длинной нормальной боковой цепью обладают высокими температурами плавления и могут быть отделены от твердого парафина при помощи дспарафинизации. Алкилциклические углеводороды с длинными разветвленными парафиновыми боковыми цепями должны иметь низкую температуру застывания и могут встречаться в смазочных маслах. Однако более вероятно, что атомы углерода в боковых цепях распределяются между несколькими боковыми цепями. В настоящее время исследование спектров поглощения в инфракрасной и в ближней инфракрасной области служит единственным методом, который может дать известное представление о распределении парафиновых боковых цепей, по определению среднего числа СНд-, СН - и СН-групп, приходящихся на одну молекулу. [c.37]

    Поскольку асфальтены образовывали не иетинный раствор, а скорее всего давали коллоидную дисперсию, тонкая структура ИК-сиектра в области поглощения ароматических соединений могла быть потеряна. Для тяжелого масла соотношение алифатических протонов к ароматическим в спектрах ЯМР равнялось 4,01 1, а соотношение метиленовых и метильных протонов было равно 1 1,75, Для асфальтенов эти значения равнялись соответственно 3,49 1 и 1 1,1. Температура плавления асфальтенов равна 146°С. Молекулярная масса, найденная методом осмометрии в парах (с о-ксилолом в качестве растворителя), составила 407. для тяжелого масла и 638 для асфальтенов. Относительные выходы тяжелого масла и асфальтенов из исходных углей и пз деиолиме-ризованного продукта различались незначительно. [c.324]

    Для доказательства структуры продукта восстановления (II) был синтезирова описанный в литературе [2] 1, 4-диокси-3- фен1ИЛ-1,2, 3,4-тетрагидроизохинолин. Смешанная проба веществ, а также их бензоильных производных депрессии температуры плавления не дала. Инфракрасные спектры поглощения в обоих случаях оказались идентичными. Они снимались на приборе ИКС-12 в вазелиновом масле.  [c.48]

    Поскольку строение молекул СО и N2 аналогично, сходны и их физические свойства. Так, как и азот, СО имеет очень низкую температуру плавления (—204°С) и кипения (—191,5°С) стандартная энтропия СО (197,3 дж1град-моль) близка таковой азота (191,3 дж1град)4 хмоль)] в твердом состоянии оксид углерода (И), как и азот, существует в виде двух модификаций (кубической и гексагональной) плохо растворяется в воде и т. д. Сходство проявляется также в структуре спектров СО и N3. [c.460]

    Из нефти Хаудаг получен АК, из которого затем экстракционнохроматографическим способом дополнительно выделена узкая фракция со следующим элементным составом С—64,5 Н—6,1 N—13,5 О—16,1 мас.%, молекулярной массой 238, температурой плавления 82—87°С. После гидролиза этой фракции получены кристаллы, которым на основании определенных элементного состава и молекулярной массы приписана эмпирическая формула С11,2Нц,9К2,08О1,9з. Это вещество имело гораздо более высокую температуру плавления, слабо растворялось в воде и спирте, имело кристаллическую структуру (по рентгенограммам) и, судя по ИК-и масс-спектрам, среди выделенных веществ мог присутствовать триптофан. В пересчете на нефть концентрация этой тринтофановой гидролиз-но1"1 фракции составляла около 0,0012 мас.%. [c.48]

    На основании наличия полосы поглощения карбонильной группы при 6,0 мкм (1667 СМ ) был составлен список возможных кристаллических альдегидов и кетонов с температурами плавления от 58 до 63°С. Этот список оказался идентичным тому, который приведен выше в примере 4. Поскольку соединение, структуру которого было необходимо установить, не восстанавливало перманганата калия и хромового ангидрида, то можно было исключить все окисляющиеся соединения, а именно В, Г, Е, Ж, 3, И и К. Остаются возможные структуры А, Б, Д. Из рассмотрения этих структур видно, что только в соединении Д имеется метокси-группа. ИК-Спектр неизвестного соединения [антисимметричные валентные колебания С—О—С арилалкилового эфира при 7,9 мкм (1266 СМ ), симметричные валентные колебания С—О—С при 9,7 мкм (1030 СМ )] также указывал на возможное присутствие этой функциональной группы. Исходя из этого, была сделана проба с иодистоводородной кислотой, которая оказалась положительной. Окончательная идентификация была проведена путем получения 2,4-динитрофенилгидразона, который после перекристаллизации плавился при температуре 180—18ГС, что подтвердило структуру 4-метоксибензофенона для исследуемого соединения. [c.533]

    Вызывало недоумение наличие довольно широкой полосы поглощения в ИК-спектре в области от 6,0 до 6,5 мкм (1667— 1538 см ). Вновь был составлен список кристаллических альдегидов и кетонов с температурами плавления от 58 до 63°С. Этот список возможных структур был идентичен тому, который приведен в примере 4. При обработке неизвестного соединения раствором перманганата калия и хромовым ангидридом оба этих реагента восстанавливались. На этом основании из списка были исключены неокисляющиеся соединения А, Б и Д. Затем провели пробу Цейзеля на присутствие метоксигруппы. Поскольку эта проба оказалась отрицательной, из списка возможных структур были исключены соединения Е и К- На том же основании следовало бы исключить соединение Д, отвергнутое ранее. Отсутствие в ПМР-спектре изучаемого вещества сигнала метоксильной группы подтверждает обоснованность исключения этих веществ. В качестве возможных структур остались соединения В, Г, Ж и 3. После этого был снова рассмотрен ИК-спектр. При этом его полосы поглощения сравнивали с таблицами с учетом соображений, приведенных в гл. 5 и 6. По-видимому, широкая полоса поглощения в области 6,2—6,5 мкм относится к валентным С=С-колебаниям енолизованного кетона. Полоса О—Н валентных колебаний енолов является широкой и в данном примере распространяется от 3,1 до 4,0 мкм (от 3200 до 2500 см с низким поглощением вследствие уширения). Исходя из этого, была проведена реакция исследуемого соединения с реактивом хлорид железа (III)—пиридин, при этом образовался раствор голубоватокрасного цвета. Полученный препарат 2,4-динитрофенилгидразона плавился в интервале температур от 150 до 151°С, что согласуется с литературным значением для этого производного бензоилаце-тона (соединение В). [c.536]

    ПВФ, полученный в присутствии обычных свободно-радикальных инициаторов, имеет беспорядочно ориентированную (атактическую) молекулярную структуру и содержит до 32% звеньев, соединенных по типу голова к голове , т. е. в поли-.мерной цепи одно мономерное звено из каждых шести присоединяется обратно . Степень стереорегулярности образцов ПВФ, синтезированных на катализаторах Пиглера — Натта, а также при инициировании полимеризациич ооралкилами, существенно не улучшается. У образцов обнаружен одни и тот же тип спектров дифракции рентгеновских лучей полимеры отличаются лишь повыщенными степенью кристалличности и температурой плавления кристаллитов [121], что обусловлено более регулярным присоединением по типу голова к хвосту . С понижением те.мпературы полимеризации повышается регулярность ПВФ за счет уменьшения аномальных мономерных связей голова— голова , хвост—хвост и разветвлений цепи полимера. [c.74]

    К сожалению, метод дисков страдает некоторыми серьезными и неустранимыми недостатками. Сначала предполагалось, что приготовление диска сводится только к измельчению образца и суспендированию частиц в добавляемом галогениде щелочного металла. Но сейчас выяснилось, что во многих случаях при этом происходят и другие, весьма существенные изменения природы материала образца. Бекер [2] установил, что при этом происходит расширение и смещение полос вследствие потери кристалличности образца, а также изменения спектра, обусловленные взаимопревращениями полиморфных модификаций из-за напряжений при энергичном измельчении и высоком давлении. Он исследовал чувствительность разных материалов к таким изменениям, рассматривая механические свойства веществ, их температуры плавления и кристаллические структуры. Фар-мер [64] также наблюдал изменения в спектрах карбоновых кислот, которые он объяснил адсорбцией мономеров на поверхнбстях зерен галогенидов щелочных металлов. Эффекты такого типа более вероятны у органических соединений, чем у неорганических. [c.304]

    К этой суспензии добавляется четыреххлористый титан. При взаимодействии изоамилнатрия с четыреххлористым титаном образуется каталитический комплекс. Суспензия каталитического комплекса переводится в реактор с растворителем, куда при давлении 5 ат подается очищенный этилен. После окончания реакции разложение каталитического комплекса проводится этиловым или изопропиловым спиртом. После разложения катализатора суспензия полимера фильтруется 0"р растворителя. После промывки полимера спиртом проводится водная промывка и сушка полимера воздухом. Особенностью полиэтилена, полученного с изоамилнат-рием, является его высокая температура плавления, которая составляет 196—208° С в атмосфере инертного газа полимер плавится при 300° С. Полимер, расплавленный при 200° С, при повторном нагревании плавится при 130° С, т. е. как и обычный полиэтилен. Полиэтилен, полученный по методу Неницеску, по-видимому, обладает сшитой структурой, с чем и связана его высокая температура плавления. Это подтверждается спектрами, где отсутствуют полосы, соответствующие двойным связям. Кристалличность полиэтилена невысокая и составляет 50%, мол. вес около 1 ООО ООО и плотность 0,95—0,96, предел прочности на разрыв 230— 290 кг/сж . Молекулярный вес может варьироваться, применяя различные соотношения компонентов катализатора, в пределах от 200000 [c.80]

    При исследовании некоторых монозамещенных бензола были обнаружены полиморфные превращения, протекающие в узком температурном интервале вблизи температуры плавления вещества [1, 3, 22]. Изучение спектров поглощения полиморфных модификаций с использованием изложенных выше стереохимиче-ских подходов к анализу спектров позволило обнаружить некоторые различия в форме молекул, из которых построены эти кристаллы. Оказалось, что наблюдаемые в кристаллах фазовые превращения сопровождаются небольшим сдвигом спектров в шкале частот, изменением поляризационного отношения интенсивностей полос, а также изменением детальной электронно-колебательной структуры спектров. Так, спектр поглощения кристаллов НТМ н-гексилбензола сдвинут в длинноволновую сторону на 148 см относительно спектра ВТМ того же соединения. Расщепление колебания увеличивается с 80 сж (ВТМ) до 118 см (НТМ). Изменение этих характеристик свидетельствует о большем нарушении правильной формы углеродного кольца молекулы в решетке НТМ, чем в решетке кристалла ВТМ н-гексилбензола. [c.125]

    Оптические изомеры при измерении в растворе дают идентичные спектры, однако в твердом состоянии иногда проявляют различия вследствие разницы в кристаллической структуре и т. п. Исследование ИК-спектров оптических изомеров особенно важно потому, что серии реакций при синтезе и деструкции приводят в конечном счете к необходимости сравнивать оптически активный природный изомер с рацемическим продуктом, которые могут различаться по температурам плавления [71, 125], как это показано для эфира 3-кето-А -этиохолатриеновой кислоты (рис. 5). [c.168]

    Представляется невероятным, чтобы в различных циклах как четного, так и нечетного ряда превращений инверсии конфигурации хлорвинильной группы происходили бы именно столько раз, сколько необходимо, чтобы вновь получилась та конфигурация, которая была в исходном соединении. Следует отметить, что Несмеянов и сотрудники выделили и охарактеризовали различные промежуточные продукты, устанавливая при этом геометрическую конфигурацию как на основании температуры плавления, так и другими методами, например на основании спектра комбинационного рассеяния б с-(транс-р-хлорвинил) ртути, а также превращением бис-(транс- -хлорвинил)оловоди-хлорида в г ис-изомер действием ультрафиолетового света. Об установлении структуры гранс-С1СН = СНН С1 с помощью дифракции рентгеновских лучей упоминалось ранее. [c.129]

    Явление изоморфизма в органических кристаллах наблюдается обычна в случае замены в молекуле данного атома однотипным. Так, согласно рентгеноструктурным и нашим спектроскопическим исследованиям [1, 2], изоморфными являются ряды п-дигалоид- и симм,тригалоидзамещенных бензола. В спектрах комбинационного рассеяния света малых частот изоморфных кристаллов наблюдаются определенные закономерности в расположении частот линий, их интенсивностях, состоянии поляризации, ширине. Между средними коэффициентами квазиупругих сил, вычисленных из частот вращательных качаний молекул, и температурами плавления веществ наблюдается линейная зависимость. Исследования показали, что наблюдаемая зависимость распространяется на достаточно широкий круг веществ, кристаллы которых принадлежат одной и той же пространственной группе симметрии, а молекулярные структуры являются подобными. Б слз ае совершенно изоморфных кристаллов наблюдается также линейная зависимость между средними коэффициентами квазиупругих сил ж коэффициентами плотной упаковки кристаллов. [c.227]

    В настоящей работе исследовалась реакция взаимодействия сульфолена-3 2,4- и 3, 4-диметилсульфолепа-З с масляным и эпантовым альдегидами. Опыты проводились при 20, 50 и 80°. В качестве конденсирующего агента применялся едкий натр (в виде 10%-ного раствора), ингибитором полимеризации служил пирогаллол (0,05% к весу компонентов). Молярное соотношение сульфолен альдегид составляло 1 2 (при соот-дюшении компонентов 1 1 конденсация не происходила — возвращался исходный сульфолен). Методика проведения реакции заключалась в том, что к водно-спиртовому щелочному раствору приливалось (дважды равными порциями) рассчитанное количество сульфолена и альдегида в этиловом спирте, после чего реакционная смесь энергично перемешивалась при заданной температуре в течение определенного времени и по охлаждении экстрагировалась бензолом. Из высушенного над хлористым кальцием экстракта бензол отгонялся при пониженном давлении, а оставшиеся в перегонной колбе продукты подвергались дальнейшей обработке (жидкие перегонялись в вакууме, твердые перекристаллизовывались до постоянной температуры плавления) и исследованию. При 20° (независимо от продолжительности) альдегиды частично осмолялись, а сульфолен выделялся неизменным. Однако при нагревании реакционной смеси до 80° в течение 1,5 ч и последующей ее обработке по приведенной методике наряду с большим количеством смолы были выделены масляная и энанто-вая кислоты (в количествах, позволивших идентифицировать их по температуре кипения, показателю преломления и плотности, а также оставшийся после их отгонки не растворимый в обычных растворителях желтый порошок. Последний после промывки эфиром и сушки на воздухе не плавился при 230°, разлагаясь при дальнейшем нагревании, и дальнейшему исследованию не подвергался. Выход этого продукта (по-видимому, полимера сульфолена) составлял 40—45% от веса исходного сульфолена. Наиболее благоприятным для конденсации оказалось нагревание реакционной смеси при 50° в течение трех часов. При этом после отгонки бензола из бензольного экстракта оставалось светло-желтое масло, представляющее собой раствор продуктов конденсации в масляной или энантовой кислотах. Разделение этих продуктов проводилось вымораживанием при —70° в эфирном растворе. Кислоты растворялись в эфире и переходили в фильтрат, а не растворимые в эфире продукты конденсации отделялись на стеклянном фильтре и перекристаллизовывались из спиртобензольной смеси до постоянной температуры плавления. Структура полученных соединений устанавливалась при помощи ИК-спектров поглощения и данных элементарного анализа. Для некоторых продуктов при- [c.230]

    Структура органического соединения определяется наиболее легко в том случае, если можно показать, что его физические свойства (температура плавления, температура кипения, показатель преломления, плотность, растворимость, спектры поглощения электромагнитного излученця, масс-спектр, дифракция рентгеновских лучей и т. д.) или его химические свойства идентичны свойствам ранее полученного вещества с известной структурой. Отсюда следует, что при идентификации соединений путем сравнения их свойств со свойствами известных соединений чистота имеет первостепенное значение. О чистоте данного вещества часто судят по его температуре кипения или плавления и растворимости — температура плавления обычно оказывается наиболее чувствительной к примесям и наиболее легко определяемой. В целом, однако, малые количества примесей часто оказывается трудно определить этими способами. В настоящее время становится обычным определение чистоты путем применения различных методов сверхочистки (или сверхразделения ) при этом выясняется, могут ли быть отделены какие-либо примеси и изменяются ли при этом свойства образца. [c.24]

    Физические свойства. Полиизобутилены с низким молекулярным весом — вязкие маслоподобные жидкости, а с молекулярным весом больше 50 ООО —каучукоподобные вещества. Натта [171] сравнивает растворимость, температуру плавления и плотность аморфных и кристаллических полиизобутил енов, полученных методами стереоспецифической полимеризации. По всем этим показателям кристаллический полиизобутилен выгодно отличается от аморфного плотность (г/сж ) для кристаллического образца 1,08, температура плавления—220°, в то время как для аморфного—1,04—1,065 и 170° соответственно. Растворимость кристаллического полимера в обычных растворителях значительно меньше, чем аморфного. Указанные различия в свойствах объясняются неодинаковой пространственной структурой цепей кристаллических и аморфных образцов, что подтверждается заметными различиями в их инфракрасных спектрах. Автор считает, что в цепях кристаллических полимеров все группы, связанные с асимметрическими атомами уг- [c.199]

    При полимеризации гексадиепа-1,5 образуется мягкий каучукоподобный полимер, приблизительно на 40% растворимый в бензоле. Катализатор, содержащий четыреххлористый титан и триизобутилалюминий в молярном соотношении 1 1, оказывается неэффективным, однако при молярном соотношении компонентов 1 3 удается достигнуть высоких степеней конверсии. Лучшие выходы растворимого полимера получаются при комнатной температуре и высоких концентрациях растворителя. Растворимый полимер имеет температуру плавления 85—90° и в разбавленном растворе характеризуется вязкостью 0,23. Инфракрасный спектр поли-гексадиепа-1,5 свидетельствует о незначительной ненасыщенности и позволяет предположить структуру, образующуюся в результате циклополимеризации  [c.154]

    Арран [429] установил, что спектр комбинационного рассеяния плавленого кварца сходен со спектром кристаллического. Андерсон и Беммель [430] сообщили, что в плавленом 510а при низкой температуре и высокой частоте наблюдается большой эффект внутреннего трения это связывается со структурой стеклообразного состояния . [c.313]


Смотреть страницы где упоминается термин спектр и структура температура плавления: [c.123]    [c.408]    [c.621]    [c.480]    [c.39]    [c.72]    [c.25]    [c.464]    [c.25]    [c.464]    [c.7]    [c.70]    [c.409]    [c.261]    [c.303]   
Органические синтезы через карбонилы металлов (1970) -- [ c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Температура плавления



© 2025 chem21.info Реклама на сайте