Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металл органические соединения с я-связями

    С другой стороны, существуют связи С -— где углерод приобретает частичный отрицательный заряд и тем самым склонность к электрофильным реакциям. Группировка X в этом случае должна состоять из атомов, имеющих меньшую электроотрицательность, чем углерод речь идет, в первую очередь, о металл-органических соединениях типа К—Ка, К— igX, К—Н Х и др. [c.271]

    В книге описаны свойства карбонилов металлов и их производных, теоретические основы процессов их получения и исследования. Впервые систематизирован материал по получению и применению смешанных карбонилов, карбонильных кластеров с я-связью и других новых карбонилов. Несколько разделов посвящено металл-органическим соединениям на основе карбонилов металлов. Рассмотрено применение карбонилов металлов в качестве катализаторов, антидетонаторов и промежуточных продуктов при получении металлорганических соединений и т. д. [c.143]


    Присоединение м е т а л л о р г а н и ч е с к и х соедииений к производным с достаточно активными двойными связями протекает по полярному механизму. Такое присоединение имеет место в реакциях типа Гриньяра или Михаэля, поскольку как карбонильная группа в первом, так и сопряженная система двойных связей во втором случае, обычно легко поляризуются. К поляризованной молекуле присоединяется затем металл-органическое соединение, диссоциированное иа металл-катион и органический анион. Однако способностью присоединять к себе некоторые металлорганические соединения обладают лишь те производные олефинов, у которых двойная связь активирована в рез льтате сопряжения с бензольным ядром, иапример стирол [507]. [c.105]

    Органические аналитические реагенты (ОАР), как правило, обладают высокой чувствительностью и селективностью. Эти важные для анализа свойства обусловливают широкое применение ОАР в капельном, фотометрическим, хроматографическом методах анализа. Химическая реакционная способность органических соединений связана с наличием в молекуле определенных групп атомов гидроксильной -ОН, гидросульфидной -8Н, оксимной >С=КОН, иминной =МН, карбоксильной -СООН, сульфогруппой -ЗОдН и др. Такие группы атомов являются реакционными центрами, а атом водорода, входящий в эти группы, может замещаться ионами металлов. [c.94]

    НЫХ восстанавливающих агентов (природа которых связана с природой замедленной стадии выделения водорода на данном металле) позволяет истолковать значительное число опытных данных. В частности, она дает возможность объяснить существование избирательного электровосстановления (см. табл. 21.1). По-видимому, восстановление органических соединений на платиновых и никелевых катодах совершается за счет адсорбированных атомов водорода, присоединяющихся к неполярным связям (типа двойных или тройных связей) между углеродными атомами. На катодах из ртути и свинца восстановление совершается за счет ионов водорода, присоединяющихся с большей легкостью к отрицательным полярным группам (типа карбонильных или карбоксильных групп). [c.441]

    В связи с преобладающим адсорбционным эффектом органических ингибиторов кислотной коррозии особое значение для понимания механизма их действия и для рационального подхода к созданию новых ингибиторов приобретает заряд поверхности корродирующего металла, т. е. его ф-потенциал. Применение приведенной шкалы потенциалов иозволяет использовать данные электрокапиллярных измерений на ртути в растворах, содержащих органические соединения, для оценки их эффективности в качестве ингибиторов при кислотной коррозии железа и других металлов. Значение ф-потенциала корродирующего металла иозволяет не только предсказать, какие вещества могут быть ингибиторами, но и рассчитать коэффициенты торможения. Л. И. Антропов в разработанной им формальной теории ингибиторов показал, что наблюдаемый в области малых и средних заполнений коэффициент ингибирования у представляет собой произведение ряда частных коэффициентов ингибирования  [c.508]


    Комплексные металлоорганические координационные соединения. Соединения типа [металл(органическое основание) олефин] анион . Это в большинстве своем комплексные соединения донорно-акцеп-торного типа (так как в образовании связи участвуют я-электроны, они были названы я-комплексами)  [c.72]

    Способность органических продуктов образовывать комплексные соединения с металлами известна давно. Однако своеобразие практического применения их в качестве деактиваторов металла для топлив нефтяного происхождения выдвигает ряд новых, самостоятельных теоретических проблем. Известно, что простейшие органические соединения, содержащие хотя бы один гетероатом (азот, кислород, сера или фосфор), уже обладают координационными связями и способны образовывать с медью комплексные соединения, но такие соединения обладают малой стабильностью и в их присутствии каталитическое влияние меди на окисление бензинов сохраняется. [c.252]

    Органические соединения, имеющие два гетероатома, образуют более устойчивые комплексы, так как координационные связи гетероатомов, замыкаясь на металл, образуют своеобразные кольца, обладающие известной прочностью. Например, этилендиамин образует с медью комплекс типа  [c.252]

    В общем, химические термины гораздо легче переводить с иностранных языков, нежели прочий текст, так как эти термины на разных языках всегда имеют некоторое сходство с той или другой не слишком устаревшей системой наименований, применяемой в Англии или США. Имеются хорошо известные соединения, названия которых представляют исключения из приведенного выше, несколько смягченного утверждения. Примерами здесь могут служить обычные металлы и газы, а также некоторые органические соединения, такие, как уксусная и муравьиная кислоты. Большинство затруднений связано со сходством названий, за которыми скрывается различный смысл. Приведенные ниже примеры могут оказаться полезными для разрешения подобных затруднений. [c.71]

    Неорганические соединения, у которых возможен переход возбужденных электронов на основной уровень только с определенных энергетических уровней, обладают флуоресценцией. Этим требованиям удовлетворяют соединения редкоземельных элементов и урана (1П, IV, VI). Флуоресценция свойственна, в основном, органическим соединениям. Поэтому в анализе неорганических веществ используют флуорогенные органические аналитические реагенты, образующие флуоресцирующие комплексы с нонами металлов. Чем сильнее поглощает органическое соединение в ультрафиолетовой области спектра, тем интенсивней его флуоресценция. Этому условию удовлетворяют алифатические, насыщенные циклические соединения, соединения с системой сопряженных двойных связей, и в меньшей степени ароматические соединения с гетероатомами. Введение электро-нодонорных заместителей в молекулу органического соединения [c.95]

    Электрохимическая коррозия возникает при взаимодействии металлов с растворами электролитов, электропроводящими органическими соединениями и расплавами солей. Разрушительное действие коррозии на железо связано с пористостью ржавчины, не предохраняющей металл от дальнейшего доступа кислорода и влаги. [c.157]

    Очень широко распространены комплексные соединения ионов металлов с различными полярными органическими и неорганическими молекулами (последние в химии комплексных соединений называются лигандами). В этих соединениях связь может осуще- [c.33]

    Нефть представляет собой сложную природную смесь углеводородов различных классов, а также многочисленных сернистых, азотистых, кислородных, и некоторых других органических соединений. Ее элементарный состав колеблется в довольно узких пределах С = 83,5ч-87%, Н=11,5- 14%, остальное — 5, N и О. В очень малых количествах присутствуют металлы (V, Сг, N1, Ее, M,g, Т1, Na), а также 51 и Р, составляющие так называемую золу. С элементарным составом нефти связаны ее плотность и текучесть — чем легче и текучее нефть, тем она прн прочих равных условиях содержит меньше С и больше Н. Плотность нефти колеблется от 790 до 930 кг/м . [c.28]

    Основные исследования А. Н. Несмеянова относятся к области злементоорганических соединений. В 1929 г. он открыл диазометод получения ртутьорганических соединений и в дальнейшем с большим успехом применил этот метод при синтезе металл-органических соединений. Вместе с сотрудниками института были получены органические соединения многих металлов, изучены переходы от одних металлорганических соединений к другим, причем найдены пути для получения ранее неизвестных типов соединений (установлена связь между строением и реакционной способностью металлорганических соединений, в том числе таутомерных форм, и разъяснен механизм электрофильного замещения у насыщенного атома углерода), выполнены систематические исследования ферроцена и ценовых соединений. Основываясь а обширном экспериментальном материале, А. Н. Несмеянов сформулировал ряд положений, расширяющих классические основы теории химического строения. [c.304]


    Кг.... Выражение (4) следует из общих представлений, аналогичных развитым в мультиплетной теории катализа для оценки адсорбционного потенциала смешанного катализатора и при рассмотрении избирательности действия катализаторов. Действительно, чем прочнее комплекс [К—М], тем больше инкременты Ялк.... Следовательно, величины АЯак характеризуют прочность связи модификатора с катализатором. Увеличение этой величины снижает д и увеличивает энергетический барьер Ед (по абсолютной величине). Это взаимодействие, которое можно характеризовать константой устойчивости соответствующего комплекса. К[км] в согласии с принципом энергетического соответствия мультиплетной теории должно отвечать некоторому оптимальному значению для получения максимального эффекта. Здесь, по-видимому, определенный интерес могут представлять корреляции между каталитической активностью модифицированных катализаторов и константами устойчивости соответствующих комплексов металл — органическое соединение. [c.73]

    Существуют специальные микрополярографы, на которых можно определить 10 г вещества в 0,01 мл раствора. Метод полярографического анализа широко применен при анализе лекарственных веществ, в биохимии, фармации и клинических анализах. Полярографическим методом можно легко определить следы примесей в химико-фармацевтических препаратах и химических реактивах, например присутствие меди в растворах лимонной кислоты, чистоту хирургического эфира, содержание формальдегида в таблетках и т. д. Кроме металлов, многие органические соединения также способны восстанавливаться на ртутном капельном электроде, например, хингидрон, оксигемоглобин, никотиновая кислота, пиридин, ацетальдегид, ацетон и др. Восстановление органических соединений связано с выделением водорода in statu nas endi , и поэтому формула Нернста для расчета потенциалов неприменима для органических соединений. Такие вещества, как щавелевая кислота, могут быть восстановлены как из кислого, так и из нейтрального или -щелочного раствора. Кодеин и хинин восстанавливаются только из нейтрального или щелочного раствора. Очень хорошо полярографируются хино-идные вещества, например тиокол, алоин и др. [c.615]

    Подобная миграция двойной связи протекает под влиянием многих каталитических систем. Наибольший интерес представляют катализаторы, способные селективно и практически количественно изомеризовать ВНБ в ЭНБ. Это — натрий на промотировапной иоташем окиси алюминия [27], амид калия в жидком аммиаке [28, 29], пентакарбонил железа в сочетании с основаниями [30] и другие комплексы на основе металл-органических соединений. Подробнее вопрос о получении ЭНБ каталитической изомеризацией ВНБ будет рассмотрен в последующих сооб-щениях. [c.37]

    С самого начала в основу деления соединений, содержащих металл и остатки органических молекул, был положен следующий принцип. Если соединение имеет связь металл — углерод, то это металл-органическое соединение. С этой точки зрения карбонилы ШГаллов, например Р4(СО)б и №(С0>4, а также изонитрильные соединения металлов, например, Сг(0 РЬ)а и Ре(рЧВи Ь- (в тех и других металл связан с лигандами через ат6м углерода), часто считают металл органическими соединениями. [c.8]

    Тем не менее винильные производные металлов — гораздо менее активные анионные инициаторы, чем их насыщенные аналоги. Причина этого состоит в делокализации отрицательного заряда карб-анионного компонента металлалкенила вследствие включения заряда в л-электронную систему связи С=С. Насколько такой эффект значителен, показывают результаты квантовохимических расчетов молекул СаНаЬ и СН2=СНЬ1. Расчеты, выполненные с оптимизацией геометрии этих молекул, приводят к разности зарядов на С-атомах 0,30 и 0,19 заряда электрона в первой и во второй из них соответственно [2]. Отсюда следует, что относительная активность металл-органического соединения в реакции инициирования полимеризации находится в зависимости не только от ионности связи С—М1, но и от реакционной способности его карбанионного компонента. Обычно эти характеристики соединений меняются антипараллельно. [c.46]

    Гетерогенное окисление в газовой фазе осуществлено главным обра ом для двух классов углеводородов — олефинов и ароматических. Именко эти классы углеводородов могут образовывать комплексы с нереходны.ми металлами разного электронного строения. По-видимому, неспособность насыщенных углеводородов к комплексообразованию является причиной неудач при попытке неполного каталитического окисления насыщенных углеводородов в газовой фазе. Поэтому дальнейшее развитие области неполного окисления более инертных к комплексообразованию органических соединений связано с исследованием их комплексообразукш1их свойств. [c.47]

    Металлорганические соединения ванадия, никеля, железа, меди, цинка и других металлов, содержащиеся в нефтях, в основном сосредоточены в гудроне, хотя некоторая часть их летуча и при перегонке переходит в масляные дистилляты. Содержание металлов в тяжелых дистиллятах составляет 0,01% от содержания их в остатке перегонки. Основная часть металлов связана со смолами и асфальтенами. При выделении из гудрона смолисто-асфальтеновой части 80% и более металлов выделяется вместе со смолисто-асфальтеновыми веществами. Значительная часть металлов находится в нефтях в виде металлопорфинировых комплексов. Содержание металл органических соединений в нефтях с высоким содержанием гетероатомных соединений, смол и асфальтенов значительно - на два-три порядка выше, чем в малосернистых нефтях с низким содержанием смолисто-асфальтеновых веществ. В высокосмолистых нефтях содержание ванадия достигает 2 10 %, никеля 110 %, содержание других металлов значительно ниже. [c.30]

    Влияние материала электрода иногда приписывают только величине перенапряжения водорода на нем. Действительно, на металлах с высоким водородным перенапряжением реакции восстановления часто идут полнее. Кроме того, на таких электродах легче могут быть достигнуты потенциалы, при которых происходит носстановление трудно восстанавливаемых соединений. Однако в общем случае прямого параллелизма между водородным перенапряжением на электродном материале (его катодным потенциалом) и его активностью по отношению к реакциям электровосстановления не существует. Более того, оказывается, что некоторые соединения лучше восстанавливаются на катодах с низким перенапряжением и хуже или даже вообще не восстанавливаются на металлах с высоким водородным перенапряжением. Такое избирательное электровосстановление органических соединений представляет собой распространенное явление (Л. И. Антропов, 1951). Примеры избирательного восстановления приведены в табл. 21.1. На катодах с низким перенапряжением — платине и никеле (особенно в форме черни или губки) —преимущественно восстанавливаются изолированные ненасыщенные связи в органических соединениях жирного ряда и двойные связи в бензольном кольце. В то же время эти связи практически ке гидрируются на катодах, обладающих высоким водородным перенапряжением, таких, например, как ртуть или свинец. Напротив, полярные группы — карбонильная и карбоксильная — восстанавливаются на катодах с высоким перенапрям ением водорода и не затрагиваются на катодах с низким перенапряжением. Исключение составляют нитро- и нитрозо- [c.432]

    Модель противоизносного действия сернистых соединений, в частности дисульфидов, предполагает адсорбцию присадки на поверхности металла и последующую диссоциацию молекул по связям 5—5 с образованием достаточно прочных соединений с металлом. Эффективность противозадирного действия характеризуется образованием сульфидов и дисульфидов металлов. Органические сульфиды имеют худшие противозадирные свойства по сравнению с соответствующими дисульфидами. Сульфиды, как и другие соединения с прочно связанными атомами серы, образуют с металлами комплексы донор но-акцепторного типа за счет участия неподеленной Зр -пары электронов атома серы. Образование таких комплексов облегчает воздействие кислорода (ПО месту присоединения углеводородных радикалов к сере. Для сульфидов предполагается также постадий-ное взаимодействие серы с железом с образованием сульфидов железа. [c.263]

    Этен-номенклатурное название С2Н4 его тривиальное название-этилен.) Соединения с циклическим расположением атомов, имеющие делокализованные, бензолоподобные кратные связи, называют ароматическими. Дакрон, нафталин, ДДТ, аденин и рибофлавин (см. рис. 21-1 и 21-3) содержат ароматические группы. На примере аденина и рибофлавина видно также, что углерод способен образовывать двойные связи с азотом и что азот может принимать участие в образовании ароматических циклов с делокализованными кратными связями. Многие разделы органической химии связаны с особыми свойствами систем, включающих ароматические циклы. Ароматические молекулы и комплексные соединения переходных металлов являются двумя важнейшими классами соединений, в которых энергия, необходимая для возбуждения электрона, приходится на видимую часть спектра. Поэтому практически все красители представляют собой такие соединения и принимают участие в механизмах захвата и переноса энергии фотонов. [c.270]

    Активными катализаторами реакций перемещения двойной связи и ц с-т/ анс-изомеризации оказались растворимые в углеводородах органические соединения щелочных и щелочноземельных металлов — сильные основания (В. Н. Ипатьев с сотр.). Например, бутен-1 в растворе о-хлортолуола переходит в смесь цис- и транс-бутена-2 при добавлении натрия и антраценнатрия [3]. трет-Ъу-тилкалий вызывает превращение 2-метнлпентена-1 в 2-метилпен-тен-2, причем скорость реакции существенно возрастает, если ее проводить в растворе диметилсульфоксида [4]. Растворы натрия и лития в этилендиамине активируют структурную изомеризацию [5]. Интересно, что сами амины, даже высокоосновные, не вызывали изомеризации [6]. [c.89]

    Элементы этих групп достаточно широко распространены в природе. Практически все представители их найдены в нефтях, причем содержание N3, К, Са, Мд достаточно высоко и достигает порядка 10- —10 % [923], а в золе нефтей на эти элементы приходится до 15—20% веса. Несхмотря на их широкую представительность, сведений о содержащих эти элементы органических соединениях очень мало. Это связано с тем, что ще-иочными и щелочноземельными элементами представлен основной катионный состав пластовых вод, их ионы с трудом отмываются от нефти и могут находиться в ионном равновесии с входящими в нефть веществами кислотной природы. Большинство исследователей приходят к выводу, что щелочные и щелочноземельные металлы присутствуют в нефтях в форме солей нефтяных кислот, фенолятов и тиофеноля-тов как в виде простых монофункциональных соединений, так и в виде составных частей крупных иолифуикциональных молекулярных агрегатов, смол и асфальтенов. Найдено, например, что 92% их в нефти С-1 (Калифорния) присутствует в форме легко гидролизуемых нефтерастворимых соединений [76]. [c.171]

    К обширному классу эле.менторгаиических соединений относятся многочисленные соединения фосфора, кремния, бора, а также металлов — металлоорганические соединения. Следует подчеркнуть, что к последнему классу относятся только такие соединения, в которых атомы металлов непосредственно связаны с атомами углерода. Алкоксиды и ароксиды (алкоголяты, гликоляты, глнцераты, феноляты) металлов, соли органических кислот, сложные эфиры металлсодержащих кислот и т. п. не относятся к металлоорганическим соединениям. [c.143]

    Опасные свойства пероксидов как класса соединений связаны с наличием нестабильной группы X- 3-0-Y, где X или Y может быть металлом, водородом или оранической группой. Если X или Y - водород, то образующееся соединение известно как пероксид водорода, который широко используется в ракетной технике как в виде чистого соединения, так и в смеси с восстановителями. Его применяют (после каталитического разложения) как рабочее тело в жидкотопливных ракетах. Пероксид водорода широко используется как исходное соединение в производстве органических пероксидов. [c.623]

    В последние годы, в связи с возрастающей потребностью нефтегазодобывающих предприятий в качественных и доступных по своей стоимости средствах защиты металлического оборудования от коррозионного разрушения, возникают предпосылки к активному поиску сырья, пригодного для создания на его основе не дорогих, но вместе с тем высокоэффективных ингибиторов коррозии. Диапазон органических соединений, используемых для этой цели, весьма широк. Особого внимания, с нашей точки зрения, заслуживают соединения, содержащие ацетальный фрагмент, соединения аминного типа (амины, имидазолины, амиды и их производные), кетосульфиды, синтетические жирные кислоты, а также комплексы на основе триазолов, содержащие соли переходных металлов. Эффективность всех этих соединений во многом п )едопределяется склонностью к адсорбции на металле и способностью к формированию на поверхности защитных апенок с высокими барьерными свойствами. Кроме того, многие из этих соединений являются дешевыми и не находящими квалифицированного использования продуктами производств химической и нефтеперерабатывающей промышленности. В частности, при производстве многих катализаторов, используемых в нефтехимических процессах, от 3 до 5 % целевого продукта составляют магериалы, которые содержат соли переходных металлов. Отработанные катализаторы не подлежат регенерации, поэтому одним из возможных путей их утилизации является применение в качестве недорогого сырья для производства ингибиторов. [c.286]

    Защитная эффективность ингибиторов на основе органических соединений определяющим образом зависит от адсорбционной и электрохимической активности молекул, проявляющейся на границе раздела металл - коррозионная среда . В свою очередь, эта активность непосредственно связана с величинами квантЬво-химических и физико-химических параметров молекул, к которым относятся энергии верхних заполненных и нижних свободных молекулярных орбиталей (ВЗМО и НСМО), дипольный момент, максимальные и минимальные заряды на атомах, молекулярная масса и количество атомов в молекуле. В сгтучае соблюдения идентичности условий экспериментов можно в определенном приближении считать, что защитная эффективность ингибитора является функцией от квантово- и физико-химическт параметров его молекул. [c.288]

    Высокомолекулярные органические ингибиторы, которые преимущественно применяют в настоящее время в нефтяной и газовой промышленности, относятся к соединениям, содержащим азот, серу или кислород, т. е. элементы, имеющие на внешней орбите неиоделенные пары электронов и способные поэтому к активному донорно-акцепторному взаимодействию. Использование органических соединений, содержащих кратные (двойные и тройные) связи, обусловлено наличием я-связей, для которых характерна высокая поляризуемость и способность к взаимодействию с металлом. [c.90]

    Для достижения хорошего сцепления ЛКП с алюминием необходима специальная обработка поверхности. Такую подготовк у обеспечивает применение фосфатирующего грунта. Можно исполь — зовать фосфатированне и анодирование. Желательно, чтоб1 грунтовочный слой содержал в качестве ингибирующего пиУмент-хромат цинка. Применение свинцового сурика не рекомендуете ввиду электрохимического взаимодействия между алюминием металлическим свинцом, образующимся в результате его вытеснения из соединений свинца. В качестве грунта, обеспечивающего хорошее сцепление с металлом, можно с успехом использовать также ЛКМ, пигментированные цинковой пылью и оксидом цинка. -В этом случае Zn и ZnO, по-видимому, предварительно реагируют с органическими кислотами связующего, предупреждав образование на поверхности раздела металл—краска алюминиевы зс мыл и других соединений, которые ослабляют сцепление ЛКП с металлом. [c.255]

    Для того чтобы вещество могло выполнять функцию ингибитора травления, оно должно иметь в общем случае одну или несколько полярных групп, посредством которых молекула могла бы присоединяться к поверхности металла. Обычно они представляют собой органические соединения, содержащие азот, амины, серу или группу ОН. Важное значение для эффективности ингибитора имеют размер, ориентация, форма молекулы и распределение электрического заряда в ней. Например, обнаружено, что коррозия железа в 1т растворе соляной кислоты замедляется производными тиогликолевой кислоты и З-меркаптонронионовой кислоты в степени, которая закономерно зависит от длины цепи соединений [32]. Возможность адсорбции соединения на поверхности данного металла и относительная сила связи адсорбции часто зависят от такого фактора, как заряд поверхности металла [33]. Катодная поляризация в присутствии ингибиторов, которые лучше адсорбируются при потенциалах более от- [c.269]

    Энергетическая часть мультиплетной теории рассматривает энергии связей (в ккал г-мол) различных органических соединений и энергии связей атомов с металлами. Данные рассчитываются по формуле, [c.143]

    Введение атома металла или металлосодержащего фрагмента в молекулу органического соединения с обра. ованием связи углсвод-мета.1ьт. Основные способы металлирования заключаются в замещении на. метол атом-) водорода, галогена, алкоксигруппы, другого атома металла (переметал гаро-вание) и т.д. [c.244]

    Сорбция тяжелых металлов донными отложениями з ависит от особенностей их состава и содержания органических веществ. В частности, 5-10% свинца в донных отложениях связано с органическими веществами, особенно с гуминовыми кислотами. При этом серьезную опасность для биоты представляет превращение неорганических соединений свинца в органические типа (СНз)зРЬ и (СНз)4РЬ. Интенсивность сорбции ртути донными отложениями также зависит от содержания в них органических соединений. Следует отметить, что в конечном итоге тяже-ные металлы в водных экосистемах концентрируются в придонных осадках и в биоте, тогда как в самой воде они остаются в сравнительно небольших концентрациях. Так, при концентрации ртути в донных отложениях 80-800 мкг/кг ее содержание в воде не превьппает 0,1-3,6 мкг/л. По имеющимся на сегодняшний день данным, планктон концентрирует свинец в 12 ООО раз, кобальт - в 16 ООО раз, медь - в 90 ООО раз. [c.107]

    Уровни содержания тяжелых металлов в почвах зависят от окислительно-восстановительных и кислотно-основных свойств последних вод-но-теплового режима и геохимического фона территории. Обычно с увеличением кислотности почв подвижность элементов возрастает. Так, при pH < 7,7 ионная форма цинка в почве представлена гексааква-ионом [2п(Н20)бР, тогда как при pH > 9,1 отмечается существование 2п(ОН)2 или [2п(ОН)4р (191 . Исследования показали, что тяжелые металлы в почвах содержатся в водорастворимой, ионообменной и непрочно адсорбированной формах. Водорастворимые формы, как правило, представлены хлоридами, нитратами, сульфатами и органическими комплексными соединениями, которые могут составлять до 99% от общего количества растворимых форм. Кроме того, ионы тяжелых металлов могут бьггь связаны с минералами как часть кристаллической решетки. Так, значительная доля цинка в почве представлена в виде изоморфных соединений в слюдах, обманках и других минералах. Следует отмстить, что кадмий не образует собственных минералов, а присутствует в них в виде примесей. Его особенностью является также то, что он практически не связывается гумусовыми веществами почв. Особенно высокие концентрации тяжелых металлов в почвах могут наблюдаться в районах расположения рудников и автомагистралей. [c.108]

    В экзоэдральных соединениях Сбо Ь1 и 6o Na, расположение атома металла напротив центров пяти- или шестичленного кольца более благоприятно, чем над атомами углерода. Эффективный заряд на атоме лития в 6o Li близок к нулю, заселенности его 2s и 2р атомных орбиталей (АО) приближаются к 0,25. Следовательно, распределение эффективных зарядов в молекуле определяется не только передачей 2s электрона от лития к фуллерену как акцептору, но и обратной подачей электронной плотности с 2p АО углеродов С ) на вакантные 2р АО металла. В результате связь литий - фуллерен должна иметь существенный вклад ковалентной составляющей, что характерно для литийорганических соединений в отличие от органических комплексов других щелочных металлов. [c.86]

    Обобщение исследований ряда основных проблем глубокого окисления органических соединений дано в работах Л.Я.Марголис, О.В.Крылова, В.А.Ройтера, С.Л.Кипермана, В.Д.Сокольского, Г.И.Голодца, В.В.По-новского, Я.Б.Гороховатского, В.М.Власенко и других ученых. Разработаны многочисленные катализаторы глубокого окисления органических веществ как металлического типа (в основном, нлатина или палладий или их смеси, нанесенные в небольших количествах на инертный носитель), так и более дешевые катализаторы - оксиды металлов, однако при этом остается далеко до конца не решенной проблема их выбора для конкретных процессов очистки газов [10]. Приводимые в технической литературе данные редко содержат информацию, позволяющую моделировать процесс термокаталитической очистки газов на основе экспериментальных материалов [11], которые к тому же часто противоречивы. В связи с этим нами сделана попытка обобщения и анализа ряда задач термокаталитической очистки паровоздушных смесей от примесей наиболее характерных органических веществ, содержащихся в отходящих газах про- [c.9]


Смотреть страницы где упоминается термин Металл органические соединения с я-связями: [c.652]    [c.37]    [c.244]    [c.129]    [c.187]    [c.23]    [c.316]    [c.75]    [c.55]    [c.80]   
Смотреть главы в:

Углублённый курс органической химии книга2 -> Металл органические соединения с я-связями




ПОИСК





Смотрите так же термины и статьи:

Металлы соединения

Органические металлы

Связи в металлах

Связь в органических соединения

Соединения со связями металл — металл



© 2024 chem21.info Реклама на сайте